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1. #E8

In an inviscid, incompressible, uniformly stratified fluid of constant Brunt-Viiséld frequency N,, a
plane internal wave has the wave frequency @ which is a function only of the angle 6 between the
wavenumber direction and the vertical[1]:

o=N,sinf. (1.1)

The internal wave beam involves plane waves with various wavenumbers / for a certain fixed angle &,
and the beam is localized in the wavenumber direction. Such localization is possible because internal
waves essentially propagate perpendicular to the wave crest.

Internal wave beams can be readily produced from a two-dimensional oscillating source of a given
frequency @,(< N,). The induced steady beam pattern consists of four straight lines stretching from the

source with the angles +cos™(@,/N,) to the vertical. This well-known pattern is called ‘St Andrew’s
Cross’, and was first verified experimentally by Mowbray & Rarity[2] using vibration of a horizontal
cylinder as an oscillating source.

In the present study, we examine the linear stability of these internal wave beams to long-wavelength
three-dimensional perturbations. The stability of the internal wave beam was treated in the past only by
Tabaei and Akylas[3], and they found that the wave beam is two-dimensionally stable. Here we examine
the stability to three-dimensional perturbations, and found that they are, in fact, three-dimensionally
unstable if their amplitude exceeds some threshold value for progressive beams and unstable for any
amplitude for purely standing beams. This report is based on Kataoka and Akylas[4].

2. X@ARER

Consider three-dimensional internal wave disturbances in an inviscid, incompressible, uniformly
stratified Boussinesq fluid of constant Brunt-Viiséld frequency N,. For the purpose of studying the

stability of an internal wave beam, it is convenient to work with the spatial coordinates (£,7,{), the

along-beam, across-beam and horizontal transverse directions, respectively (Fig. 1). We use
dimensionless variables throughout, employing the same scalings as in Tabaei & Akylas[3] (with the
beam width as characteristic length, 1/N, as time scale, and a typical value of the background density).

The flow velocity in the (£,7,4) directions is denoted by u = (u,v,w) . The governing equations are
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V-u=0, (2.1a)
p,+u-Vp=-usinf+vcosf, (2.1b)
u +u-Vp=-p, +psiné, (2.1¢c)
v,+u-Vv=-p, —pcost, (2.1d)
w,+u-Vw=-p,, (2.1e)

where @ is an angle between the n axis and the vertical, ¢ is the time, and p and p are the
density and pressure perturbations from the background state, respectively, and the subscripts ¢, &, 7
and ¢ denote partial differentiation with respect to these variables.

Equations (2.1) have the following exact solution representing finite-amplitude internal wave beam
(u=uy(t,n) = {U(n)e'i‘i"o’ + c.c.},
v=w=0,

1p=pot,)= {‘iU(q)e"‘"‘a’ + c.c.},
P = D,(t,n) =\icosd f U(n')dn'e ™™ + c.c.},

where U(77) is a given arbitrary function of 7 which decays rapidly as 7 — o and c.c. denotes

complex conjugate. In the present study we exclude the limiting cases of 6 —>0 and #/2 for which
the internal wave beam approaches a horizontal steady shear flow or becomes nearly vertical with
frequency close to the Brunt-Viiséld frequency. Thus, we put

0<9<%. 2.3)

2.2)

Moreover, in order to avoid density inversions so that the internal wave beam (2.6) is statically stable,
the derivative of the associated vertical particle displacement {iU (n)e'n?" +c.c.} with respect to the
vertical direction must not exceed unity in magnitude everywhere[5], i.e.

dU|
dn

1
2cosf

< 2.4)

internal
wave beam
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Fig. 1 Geometry.
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We examine the linear stability of the above statically stable internal wave beam (2.2)—(2.4) to
three-dimensional perturbations. To this end, employing Floquet theory, we write
3

(u)  [uyt,1))  [d(t,m)

v 0 "}(tsﬂ)
{wl=40 >+4W(t,n)>exp[at+i(k§+m§)], (2.5)
Pl |ptsm)| | ptm)

p) |pem] bt
where (#,v,w,p,p) are unknown functions of ¢t and 7 which are periodic in f with the same

period 27/siné as that of the internal wave beam, o is an unknown complex constant, and k and
m  are given real constants. Substituting (2.5) into (2.1) and linearizing with respect to the perturbations,
we have the following set of equations for (#,v,w,p, p):

ikii + 2+ im =0, (2.6a)
on
% singi+| 2o coso b =—(o +iku,)p, (2.6b)
ot on
Ou . o OUya ga Y
——sm:9p+———v=—[1kp+(0'+1ku0)u], (2.6¢)
ot on
%+cos€,6+§—n=—(o+ikuo)\3, (2.6d)
% +imp = —(o + ikug W . (2.6¢)
In addition to being periodic in ¢ with period 27z /sin@,
AAAAA AAa A 2z
(u,v,w,p,p)(t)z(u, ,W,p,p)(t+—7—), (27)
sind

the perturbations must also decay in 77,
@,v,w,0,p) >0 as 57—+ (2.8)
The above set of equations (2.6)—(2.8) constitutes an eigenvalue problem, o being the eigenvalue
parameter. When there is a solution (#,v,w,p,p) with o having a positive real part, the
corresponding internal wave beam is linearly unstable. Since a solution for k<0 (m<0) is obtained
from that for k>0 (m>0)by (,v,0,uy,0,,7) = (—8,~V,—p,~ty,~py,—1) (W —>—W), we set
k>0, m>0. 2.9)

3. MR (k~m'? <<1)
Assuming now that the perturbation is long in the £ and £ directions, thatis, ¥ and m in (2.9)
are small,
k=e’x, m=¢*, 3.1
where ¢ is a small positive parameter and x is a positive O(l) constant, we seek an asymptotic
solution of (2.6)-(2.8) for small 0<e<<1.

3.1. Inner solution

Putting aside the decaying boundary condition (2.8), we seek a solution of (2.6) which satisfies the
periodicity condition (2.7) in ¢ and variesby O(1) in 7, by introducing the following expansions
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(3.2)

Substituting (3.1) and (3.2) into (2.6) and collecting the same-order terms in &, we obtain a series of

equations for (@™, W™D 50 MY (n=0,1,2,-):

A (n+3)
i ™ +—a =F®",
n
op™ n
P +sin@u” =G™,
oum .
p” _Smgp(") =H(")’
a"(n) an
g +cos@p™ =",
n

A (n+2)

ot

+ iﬁ(") =Jm

’

where the terms on the right-hand sides are inhomogeneous terms and given by
FO=GO=H® =1 =JO -0 (n=0)
F™ = _iﬁ(ﬂﬂ), G™ =M — 1 _ g _ (n=12),

: A (n+l)

F™ = —iw

n
e

ot
J® = (6P +ixu )w"?

™ =_

G" = [cos@ - %&-)G("’ —(0® +imuy)p?

Oy nmy . n(ne . .
JH® = o 250 — i —(6® +imu)a™® (n=34).

(3.3a)
(3.3b)
(3.3¢)

(3.3d)

(3.3¢)

(3.4a)
(3.4b)

(3.4¢)

For n =0, equations (3.3) are homogeneous and have the following nontrivial solution that satisfies

the periodicity condition (2.7)

where V'® is constant and
VO =-ix [U®dy'.
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Here U®(n) and W ®(n) are as yet undetermined functions of 7 : Capital-letter variables with the
hat and subscript * are the complex amplitudes of components proportional to ~e**"? that have the
same frequency as the underlying beam, and variables with the overbar denote mean-flow components
(which are independent of t); V'® and W@, in particular, represent O(¢’) and O(¢’) mean
flows in the across-beam (7) and the transverse (&) directions, respectively. The higher harmonic

components (~ e*>'%"% 2% ...y do not appear at this level.

For n2>1, the equations (3.3) are inhomogeneous, and the inhomogeneous terms G, H™ 6 ™
and J™ on the right-hand sides of (3.3) must satisfy the following solvability conditions to have a
solution

Lz”/Sinaeiis‘mﬂt(i iG™ 4 H("))dt =0, (373)

ﬂsln ()
[ 9{1(cot9H(") F 1™y a; }11:0. (3.7b)
n

For n=1 and 2, the solvability conditions (3.6) are identically satisfied, and a solution of (3.3)
satisfying (2.7) becomes the same form as (3.5) with the numbers in the parentheses. at any superscripts
being added by » and

o Z 4 J" Wy (3.8a)
7 =ik [ 00’ +eatd [ [ O dn'an, (3.85)
(n=1,2).

For n=3 and 4, the solvability conditions (3.7) become the following six equations for
OO,09, 700,00 70):

o0 =xcosO "ql}f")dn (;U Ve, (3.93)
n
cPU© =k cosh .r[}f’)dr;’ ddU Ve, (3.9b)
TA0)

o® 92"_ =2k cot e[ [0®dn’ + fU<°>d J (3.9¢)

n
cPU® = cose[fo(”dry 4= cotﬁf f U@dn"dn’ J-Fl((ii _rW(z)dn , (3.9d)
oPUY = COS@( fU‘”dn +— cot&f _r U(O)dﬂ"dn)ﬂ _rW(z)dn , (3.9)

77 ()
o® —— dI;V —Zcotel: ( fU‘”dn +— coterfU‘O)dn”dn)
n

+ a—;’—(x r U7y + —;—cotﬁ_r _r l}f’)dn"dn'ﬂ

where the asterisk denotes complex conjugate. These equations for the amplitudes, U®(7) and

(3.96)

U®(n), of the primary harmonic perturbation and the induced transverse mean flow, W ®(5) and
W ® (), must be supplemented with suitable boundary conditions. Specifically,
[ [0dnay >0, [ [0®ardn »0, [U%n >0, [UPdn' -0, (3.10)

_ _ 70
w50, WO —>:F———-‘SI;0 (7 - +0),
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where matching with the outer solution (3.13) obtained in Section 3.2 is already taken into account.
The conditions (3.9) ensure that the flow field associated with the primary-harmonic perturbation, as

well as the O(g?) transverse mean flow component vanishes far away from the beam. The induced

mean flow at O(g’), however, does not remain locally confined in the vicinity of the beam:
(@,%,w)—> s’V‘”[cctO, 1, —1) (7 - +x), 3.11)
sin@

where 7 @ is constant. In order to construct an overall solution of (2.6)—(2.7) that satisfies the
decaying condition (2.8) in 7 , we must seek an outer solution which decays slowly in 7 at infinity

and is connected to (3.11) in the inner limit.

3.2. Outer solution
Introducing a reduced coordinate
Y=¢p, (3.12)

we look for a solution which varies by O(1) in ¥ and is independent of ¢ (mean flow) of the
following orders

=8 (Y), $=6%,(1), Ww=e%,(¥), p=epp(Y), P='Po(). (.13)
The orders of (3.13) are determined by (3.11) and balance of terms in (2.6) noting that u,,p, —0
(J7| > ). Substituting (3.1), (3.12y—(3.13) and o =£’c® into (2.6) and collecting the same-order
terms in £ of each equation, we obtain

(SRR

2.3 0 2
£2x

Fig. 2 Streamlines of the mean flow described by the outer solution (3.15) (with (2.5)). The abscissa
e*x [=€*(£cos@+nsinf)] is the horizontal direction perpendicular to the other horizontal

transverse &£°¢ direction (the ordinate) along the beam positioned at x=0. Streamlines for

|£2§|>7r/2 are symmetric with respectto 24 =+7/2.
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o 4 i, =0,
dy
sinfu,, —cosfv, =0,
{-sin6p, + i, =0, (3.14)

. Y
cosfp, +—2% +oy, =0,
Po dy (o)

lip, +0P, =0.
These equations have a solution which decays as IY | — o and is connected to (3.11) at Y=0
d,]| |cotd
Vo 1
IW, ¢ ={ —i/sind A exp(——L) for Y>0, (3.15a)
/60 o cos@/sin’ 6 sinf
j’oJ ‘0'(3) /sin@
u, (coto
Vo 1
W, o= J i/sin@ A exp(gggj for Y<0, (3.15b)
Po o® cosf/sin’ 0
Po) |-0@/sing ]

where V'@ is constant. The flow described by (3.15) is purely horizontal because #u, /v, =coté, and

it forms a single circulating flow which traverses the beam because 7 ® is constant (figure 2).

Thus, we have constructed an overall solution of (2.6)—(2.7) which satisfies the decaying condition
(2.8) under the supposition that there is a solution (U®,U®, 7@, U, 0" W) of the eigenvalue
problem (3.9)—(3.10). If the eigenvalue problem (3.9)—(3.10) has a solution whose eigenvalue o
has a positive real part, the underlying beam is unstable. Its possibility is explored numerically in Section
4.

4. (3.9)-(3.10) D ¥ fEAZ

4.1. Renormalization

We let
v.=[[UPanan, vo=[00dn, p=-itn6[T®dy, g;=-itano7®,
. 4.1)
V=tno7®, ¥=2tmox, 5=200,0 F-_2 y
cos“ @ cosd
and obtain a renormalized version of the eigenvalue problem (3.9)—(3.10):
; ~
LV _gdv. U, (4.22)
dnp dnp dn
2 d}
iV gdv. dU (4.2b)

dn’ dn dn

2 - rr
590 _ g dU dv.  dUdy, ) .20)
dzy dn dn dn dgn
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~

&d(‘;/s- =EWS- +i(//_ _%g_¢, (42d)
n
cdys, o O
a—;’; =~y +iv) -0, (4.2¢)
5dﬂ=_i ﬂ-(ﬁyxs_+it//_)+ﬂj—(§l/ls++il/l+) ) (4.29)
dn dn dn

with
V.0, v, 50, 250,y 50, >0, gL (noi0).  (43)
dn sin @
Equations (4.2)—(4.3) constitute the eigenvalue problem for (v_,y,,Q, ¥ .Ws,,9s), with o being
the eigenvalue parameter. We solve this problem numerically.
The underlying beam profile (,7(77) is chosen to be the same Gaussian streamfunction profiles as
Tabaei et al.[5],

U, f A(De'dl  (progressive beams), (4.42)

U(m) = ‘ ,
%l J: A()e""dl =-2U ne™ (standing beams), (4.4b)

where Uol is a positive parameter and A(/) =ile™"’3//87 . Progressive beams describe uni-directional
beams which involve plane waves with wavenumbers / of the same sign only, whereas standing beams
include those of both signs. The profile U(#7)/U, is shown in figure 3. Statically stable condition (2.4)

becomes
1

Us < 2cos?8’ ,
The internal wave beams (4.4) are statically stable for any 6 if U, <0.5. Even for the greater
amplitudes, they are statically stable depending on the value of €. In what follows, we present the
stability results for progressive beams in Section 4.2 and standing beams in Section 4.3. For numerical
method to solve (4.2)—(4.3), we use the finite-difference method for discretization and a standard QZ
algorithm for the eigenvalue solver[6]. The parameters of (4.2)—(4.3)are 6, ¥ and U,.

(4.5)

| e

054
U@m) 0
U,
0.5F

Y AP T S W —

-6 -4 -2 0 2

S

6

Fig. 3 Profiles U (m)/U, of the progressive beam (4.4a) (solid line: real part, dashed line: imaginary
part) and the standing beam (4.4b) (solid line).
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4.2. Progressive beams
Computed eigenvalues & with a positive real part versus & are plotted in figure 4 for 6= 7/6 and
7/3. Amplitudes of the underlying beams are chosen to be U, =0.35, 0.5 and 0.65 (these beams are all
statically stable according to (4.5)). Figure 4(a) shows that progressive beams are unstable for
U, 2035, and according to our numerical results, the critical amplitude of the instability is about
U,=03.

Figure 4 also shows that the growth rate Re[&], which is an increasing function of ¥ for small &,
reaches a peak at some finite £ and finally falls to zero at the higher X . Thus, the instability is
three-dimensional (or oblique). The stability of the internal wave beam was first examined by Tabaei and
Akylas[3] to longitudinal (two-dimensional) perturbation which corresponds to & —»co in the present
notation, and found no instability. Their result is consistent with our result.

The imaginary part Im[G] of the above complex eigenvalues is plotted in figure 4(). It is always

one-signed (negative) and the magnitude grows linearly in X with almost the same gradient for all
cases.

(@)

0.2

Re[6]

0.1

'
L

orrend o V] N ) N
0 2 4 6 8 0 2
K

o IR o

Fig. 4 Computed eigenvalues & with a positive real part versus % for the progressive beams (44a)
with @=7/6 [U, =035 (0), 0.5 (») and 0.65 (0)] and #/3 [U,=0.35 (+), 0.5 (V) and 0.65
(O)]: (@) Re[G] versus &'; (b) Im[G] versus & . The dotted lines represent the corresponding

gradients 6'/K as kK —>co for the solution of the smaller order k = O(s*) (see [4]).

4.3. Standing beams
Eigenvalues & with a positive real part versus & are plotted in figure 5 for the statically stable beams
with U, =0.1, 0.4 and 0.65 when 6= 7/6 and 7/3 (these beams are all statically stable according

to (4.5)). In contrast to the case of progressive beams in which only complex eigenvalues appear, pure
real eigenvalues solely appear in the standing-beam case.
Figure 5 shows that a standing beam is unstable for the small amplitude U, =0.1. Indeed we have a

surprising result that it is unstable even for very small amplitude U, <<1, that is, the eigenvalues &
remain to be positive as U, — 0. So the standing beam is unstable for any amplitude. Moreover the

eigenvalues & go down to zero at finite X, so that the instability is three-dimensional as in the case of
progressive beams.
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Fig. 5 Computed eigenvalues & versus x for the standing beams (4.4b) with 8=x/6 [U,=0.1
(®), 0.4 (A) and 0.65 (W)] and 7/3 [U,=0.1 (+), 0.4 (¥) and 0.65 (®)]. The dotted lines
represent the corresponding gradients /x as kK — o for the solution of the smaller order
k=0(*) (see [4]).

5. ¥R

The linear stability to three-dimensional disturbances of a uniform, plane internal wave beam in a
stratified fluid with constant buoyancy frequency is considered. The associated eigenvalue problem is
solved asymptotically, assuming perturbations of long wavelength relative to the beam width. In this
limit, instability occurs solely due to oblique perturbations and so it is three-dimensional. Propagating
beams that transport energy in one direction, in particular, are found to be unstable to such oblique
perturbations when the beam steepness exceeds a certain threshold value, whereas purely standing beams
are unstable irrespective of their steepness.
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