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要旨

一様な密度成層流体中を伝播する内部波ビームの 3次元撹乱に対する線形安
定性を取り扱った。具体的には，撹乱の波長がビームの幅に比べて十分長い場
合を仮定し，漸近理論を駆使して Euler 方程式系を基に変調安定性を調べた。
その結果，一方向のみにエネルギーを伝える進行波ビームは，振幅がある値を
超えると変調不安定となり，両方向にエネルギーを伝える定在波ビームは，任
意の振幅において変調不安定となることが分かった。

1. 緒言
In an inviscid, incompressible, unifonnly stratified fluid of constant Brunt-V\"ais\"al\"a frequency $N_{0}$ , a

plane intemal wave has the wave frequency $\omega$ which is a function only of the angle $\theta$ between the
wavenumber direction and the vertical[l]:

$\omega=N_{0}\sin\theta$ . (1.1)
The internal wave beam involves plane waves with various wavenumbers $l$ for a certain fixed angle $\theta,$

and the beam is localized in the wavenumber direction. Such localization is possible because intemal
waves essentially propagate perpendicular to the wave crest.

Intemal wave beams can be readily produced from a two-dimensional oscillating source of a given
frequency $\omega_{0}(<N_{0})$ . The induced steady beam pattem consists of four straight lines stretching from the
source with the angles $\pm\cos^{-1}(\omega_{0}/N_{0})$ to the vertical. This well-known pattem is called ‘St Andrew’s
Cross’, and was first verified experimentally by Mowbray & Rarity[2] using vibration of a horizontal
cylinder as an oscillating source.

In the present study, we examine the linear stability of these internal wave beams to long-wavelength
three-dimensional perturbations. The stability of the internal wave beam was treated in the past only by
Tabaei and Akylas[3], and they found that the wave beam is two-dimensionally stable. Here we examine
the stability to three-dimensional perturbations, and found that they are, in fact, three-dimensionally
unstable if their amplitude exceeds some threshold value for progressive beams and unstable for any
amplitude for purely standing beams. This report is based on Kataoka and Akylas[4].

2. 基礎方程式
Consider three-dimensional internal wave disturbances in an inviscid, incompressible, uniformly

stratified Boussinesq fluid of constant Brunt-V\"ais\"al\"a frequency $N_{0}$ . For the purpose of studying the
stability of an intemal wave beam, it is convenient to work with the spatial coordinates $(\xi,\eta,\zeta)$ , the
along-beam, across-beam and horizontal transverse directions, respectively (Fig. 1). We use
dimensionless variables throughout, employing the same scalings as in Tabaei & Akylas[3] (with the
beam width as characteristic length, $1/N_{0}$ as time scale, and a typical value ofthe background density).

The flow velocity in the $(\xi,\eta,\zeta)$ directions is denoted by $u=(u,v,w)$ . The goveming equations are
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$\nabla\cdot u=0$ , (2.la)
$\rho_{l}+u\cdot\nabla\rho=-u\sin\theta+v\cos\theta$ , (2.lb)

$u_{t}+u\cdot\nabla\rho=-p_{\xi}+\rho\sin\theta$ , (2.lc)

$v_{t}+u\cdot\nabla v=-p_{\eta}-\rho\cos\theta$ , (2.ld)

$w_{t}+u\cdot\nabla w=-p_{\zeta}$ , (2.le)

where $\theta$ is an angle between the $\eta$ axis and the vertical, $t$ is the time, and $\rho$ and $p$ are the
density and pressure perturbations from the background state, respectively, and the subscripts $t,$ $\xi,$ $\eta$

and $\zeta$ denote partial differentiation with respect to these variables.
Equations (2.1) have the $fol[oWil$

$\{$

$ng$ exact solution representing fmite-amplitude internal wave beam
$u=u_{0}(t,\eta)\equiv\{U(\eta)e^{-i\sin\theta t}+c.c.\},$

$v=w=0,$

$\rho=\rho_{0}(t,\eta)\equiv\vdash iU(\eta)e^{-isi\theta l}+c.c.\}$, (2.2)

$p=p_{0}(t,\eta)\equiv\{$ icos $\theta\int U(\eta’)d\eta’e^{-i\sin\theta t}+$ c.c. $\},$

where $U(\eta)$ is a given arbitrary function of $\eta$ which decays rapidly as $\etaarrow\pm\infty$ and c.c. denotes

complex conjugate. In the present study we exclude the limiting cases of $\thetaarrow 0$ and $\pi/2$ for which
the internal wave beam approaches a horizontal steady shear flow or becomes nearly vertical with
frequency close to the Bnmt-V\"ais\"al\"a frequency. Thus, we put

$0< \theta<\frac{\pi}{2}$ . (2.3)

Moreover, in order to avoid density inversions so that the internal wave beam (2.6) is statically stable,

the derivative of the associated vertical particle displacement $\{iU(\eta)e^{-i\sin\theta t}+C\mathcal{L}.\}$ with respect to the
vertical direction must not exceed unity in magnitude everywhere[5], i.e.

$| \frac{dU}{d\eta}|<\frac{1}{2\cos\theta}$ . (2.4)

Fig. 1 Geometry.
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We examine the linear stability of the above statically stable intemal wave beam $(2.2)-(2.4)$ to
three-dimensional perturbations. To this end, employing Floquet theory, we write

$\{\begin{array}{l}uvw\rho p\end{array}\}=\{\begin{array}{l}u_{0}(t,\eta)00\rho_{0}(t,\eta)p_{0}(t,\eta)\end{array}\}+\{\begin{array}{l}\hat{u}(t,\eta)\hat{v}(t,\eta)\hat{w}(t,\eta)\hat{\rho}(t,\eta)\hat{p}(t,\eta)\end{array}\}\exp[\sigma t+i$ ($k$\’e $+m\zeta$) $]$ , (2.5)

where $(\hat{u},\hat{v},\hat{w},\hat{\rho},\hat{p})$ are unknown functions of $t$ and $\eta$ which are periodic in $t$ with the same
period $2\pi/\sin\theta$ as that of the internal wave beam, $\sigma$ is an unknown complex constant, and $k$ and
$m$ are given real constants. Substituting (2.5) into (2.1) and linearizing with respect to the perturbations,
we have the following set of equations for $(\hat{u},\hat{v},\hat{w},\hat{\rho},\hat{p})$ :

$ik\hat{u}+\frac{\partial\hat{v}}{\partial\eta}+im\hat{w}=0$ , (2.6a)

$\frac{\partial\hat{\rho}}{\partial t}+\sin\theta\hat{u}+(\frac{\partial\rho_{0}}{\partial\eta}-\cos\theta)\hat{v}=-(\sigma+iku_{0})\hat{\rho}$ , (2.6b)

$\frac{\partial\hat{u}}{\partial t}-\sin\theta\hat{\rho}+\frac{\partial u_{0}}{\partial\eta}\hat{v}=-[i\ovalbox{\tt\small REJECT}^{\wedge}+(\sigma+iku_{0})\hat{u}]$ , (2.6c)

$\frac{\partial\hat{v}}{\partial t}+\cos\theta\hat{\rho}+\frac{\partial\hat{p}}{\partial\eta}=-(\sigma+iku_{0})\hat{v}$, (2.6d)

$\frac{b\hat{v}}{\partial t}+im\hat{p}=-(\sigma+iku_{0})\hat{w}$ . (2.6e)

In addition to being periodic in $t$ with period $2\pi/\sin\theta,$

$( \hat{u},\hat{v},\hat{w},\hat{\rho},\hat{p})(t)=(\hat{u},\hat{v},\hat{w},\hat{\rho},\hat{p})(t+\frac{2\pi}{\sin\theta})$ , (2.7)

the perturbations must also decay in $\eta,$

$(\hat{u},\hat{v},\hat{w},\hat{\rho},\hat{p})arrow 0$ as $\etaarrow\pm\infty$ . (2.8)
The above set of equations $(2.6)-(2.8)$ constitutes an eigenvalue problem, $\sigma$ being the eigenvalue
parameter. When there is a solution $(\hat{u},\hat{v},\hat{w},\hat{\rho},\hat{p})$ with $\sigma$ having a positive real part, the
corresponding internal wave beam is linearly unstable. Since a solution for $k<0(m<0)$ is obtained
from that for $k>0(m>0)$ by $(\hat{u},\hat{v},\hat{\rho},u_{0},\rho_{0},\eta)arrow(-\hat{u},-\hat{v},-\hat{\rho},-u_{0},-\rho_{0},-\eta)(\hat{w}arrow-\hat{w})$ , we set

$k>0,$ $m\succ 0$ . (2.9)

3. 漸近解析 $(k\sim m^{3/2}<<1)$

Assuming now that the perturbation is long in the $\xi$ and $\zeta$ directions, that is, $k$ and $m$ in (2.9)
are small,

$k=\epsilon^{3}\kappa,$ $m=\epsilon^{2}$ , (3.1)
where $\epsilon$ is a small Positive Parameter and $\kappa$ is a Positive $O(1)$ constant, we seek an asymptotic
solution of $(2.6)-(2.8)$ for small $0<\epsilon<<1.$

3.1. Inner solution
Putting aside the decaying boundaly condition (2.8), we seek a solution of (2.6) which satisfies the
periodicity condition (2.7) in $t$ and varies by $O(1)$ in $\eta$ , by introducing the following expansions
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$\{\begin{array}{l}\hat{u}=\hat{u}^{(0)}+\epsilon\hat{u}^{(1)}+\cdots,\hat{v}=\epsilon^{3}\hat{v}^{(3)}+\epsilon^{4}\hat{v}^{(4)}+\cdots,\hat{w}=\epsilon^{2}\hat{w}^{(2)}+\epsilon^{3}\hat{w}^{(3)}+\cdots,\hat{\rho}=\hat{\rho}^{(0)}+\epsilon\hat{\rho}^{(1)}+\cdots,\hat{p}=\hat{p}^{(0)}+\epsilon\hat{p}^{(1)}+\cdots,\sigma=\epsilon^{3}\sigma^{(3)} +\epsilon^{s}\sigma^{(5)}+\cdots,\end{array}$ (3.2)

Substituting (3.1) and (3.2) into (2.6) and collecting the same-order terms in $\epsilon$ , we obtain a series of
equations for $(\hat{u}^{(n)},\hat{v}^{(n+3)},\hat{w}^{(n+2)},\hat{\rho}^{(n)},\hat{p}^{(n)})(n=0,1,2,\cdots)$ :

$i\kappa\hat{u}^{(n)}+\frac{\partial\hat{v}^{(n+3)}}{\partial\eta}=F^{(n)}$ , (3.3a)

$\underline{\partial\hat{\rho}^{(n)_{+\sin\theta\hat{u}^{(n)}}}}=G^{(n)}$

, (3.3b)
$\partial t$

$\partial\hat{u}^{(n)}$

$\overline{\partial t}-\sin\theta\hat{\rho}^{(n)}=H^{(n)}$ , (3.3c)

$\underline{\partial\hat{p}^{(\hslash)_{+\cos\theta\hat{\rho}^{(n)}}}}=I^{(n)}$

, (3.3d)
$\partial\eta$

$\partial\hat{w}^{(n+2)}$

$-+i\hat{p}^{(n)}=J^{(n)}$ , (3.3e)
$\partial t$

where the terms on the right-hand sides are inhomogeneous terms and given by
$F^{(0)}=G^{(0)}=H^{(0)}=I^{(0)}=J^{(0)}=0(n=0)$ (3.4a)

$\{\begin{array}{l}F^{(n)}=-i\hat{w}^{(n+1)}G^{(n)}=\hat{v}^{(n)}-(\sigma^{(3)}+in\ell_{0})\hat{\rho}^{(n-3)}H^{(n)}=\frac{\partial u_{0}}{\partial\eta}\hat{v}^{(n)}-i\hat{\varphi}^{(n- 3)}-(\sigma^{(3)}+in\ell_{0})\hat{u}^{(n-3)}(n=3,4)I^{(n)}=\frac{\partial\hat{v}^{(n)}}{\partial t}J^{(n)}=\triangleleft\sigma^{(3)}+ixu_{0})\hat{w}^{(n- 1)}\end{array}F^{(n)}=-i\hat{w}^{(n+1)}, G^{(n)}=H^{(n)}=I^{(n)}=J^{(n)}=0(n=1,2) ,(3.4c)(3.4b)$

For $n=0$, equations (3.3) are homogeneous and have the following nontrivial solution that satisfies
the periodicity condition (2.7)

$\{\begin{array}{l}\hat{u}^{(0)}\hat{v}^{(3)}\hat{w}^{(2)}\hat{\rho}^{(0)}\hat{p}^{(0)}\end{array}\}=\{\begin{array}{l}\frac{0}{V}(3)\overline{W}^{(2)}00\end{array}\}+\{\begin{array}{l}\hat{U}_{-}^{(0)}\int\hat{U}_{-}^{(0)}d\eta’\hat{V}^{(3)}-i\hat{U}_{-}^{(0)}icot\theta\int\hat{U}_{-}^{(0)}dicos\theta\eta’\end{array}\}e^{-i\sin\theta t}+\{\begin{array}{l}\hat{U}_{+}^{(0)}\hat{V}_{+}^{(3)}icot\thetai\hat{U}_{+}^{(0)}\int-icos\theta\hat{U}_{+}^{(0)}d\eta’\int\hat{U}_{+}^{(0)}d\eta’\end{array}\}e^{is\dot{m}\theta t}$, (3.5)

where $\overline{V}^{(3)}$ is constant and
$\hat{V}_{\pm}^{(3)}=-i\kappa\int\hat{U}_{-}^{(0)}d\eta’$ (3.6)
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Here $\hat{U}_{\pm}^{(0)}(\eta)$ and $\overline{W}^{(2)}(\eta)$ are as yet undetermined functions of $\eta$ : Capital-letter variables with the
hat and subscript $\pm$ are the complex amplitudes of components proportional to $\sim e^{\pm i\sin\theta t}$ that have the
same frequency as the underlying beam, and variables with the overbar denote mean-flow components
(which are independent of $t$ ); $\overline{V}^{(3)}$ and $\overline{W}^{(2)}$ , in particular, represent $O(\epsilon^{3})$ and $O(\epsilon^{2})$ mean
flows in the across-beam $(\eta)$ and the transverse $(\zeta)$ directions, respectively. The higher hamonic
components $(\sim e^{f2i\sin\theta/}, e^{\pm 3is\dot{m}\theta t},\cdots)$ do not appear at this level.

For $n\geq 1$ , the equations (3.3) are inhomogeneous, and the inhomogeneous terms $G^{(n)},$ $H^{(n)},$ $I^{(n)}$

and $J^{(n)}$ on the right-hand sides of (3.3) must satisfy the following solvability conditions to have a
solution

$J^{2\pi/\sin\theta}e^{\pm i\sin\theta t}(\pm iG^{(n)}+H^{(n)})dt=0$ , (3.7a)

$J^{2\pi/s\dot{m}\theta}[i(\cot\theta H^{(n)}+I^{(n)})-\frac{\partial J^{(n)}}{\partial\eta}]1t=0$ . (3.7b)

For $n=1$ and 2, the solvability conditions (3.6) are identically satisfied, and a solution of (3.3)
satisfying (2.7) becomes the same form as (3.5) with the numbers in the parentheses, at any superscripts
being added by $n$ and

$\overline{V}^{(n+3)}=-i\int\overline{W}^{(n+1)}d\eta’$ , (3.8a)

$\hat{V}_{\pm}^{(n+3)}=-i\kappa\int\hat{U}_{\pm}^{(n)}d\eta’+\cot\theta\int\int’\hat{U}_{\pm}^{(n-1)}d\eta^{n}d\eta’$ , (3.8b)

$(n=1,2)$ .
For $n=3$ and 4, the solvability conditions (3.7) become the following six equations for

$(\hat{U}_{-}^{(0)},\hat{U}_{+}^{(0)},\overline{W}^{(2)},\hat{U}_{-}^{(1)},\hat{U}_{+}^{(1)},\overline{W}^{(3)})$ :

$\sigma^{(3)}\hat{U}_{-}^{(0)}=\kappa\cos\theta\int\hat{U}_{-}^{(0)}d\eta’-\frac{dU}{d\eta}\overline{V}^{(3)}$ , (3.9a)

$\sigma^{(3)}\hat{U}_{+}^{(0)}=-\kappa\cos\theta\int\hat{U}_{+}^{(0)}d\eta’-\frac{dU^{*}}{d\eta}\overline{V}^{(3)}$, (3.9b)

$\sigma^{(3)}\frac{d\overline{W}^{(2)}}{d\eta}=2\kappa\cot\theta(\frac{dU}{d\eta}\int\hat{U}_{-}^{(0)}d\eta’+\frac{dU}{d\eta}\int\hat{U}_{+}^{(0)}d\eta’)$ , (3.9c)

$\sigma^{(3)}\hat{U}_{-}^{(1)}=\cos\theta(\kappa\int\hat{U}_{-}^{(1)}d\eta’+\frac{i}{2}$cote $\int\int’\hat{U}_{-}^{(0)}d\eta^{n}d\eta’)+i\frac{dU}{d\eta}\int\overline{W}^{(2)}d\eta’$ , (3.9d)

$\sigma^{(3)}\hat{U}_{+}^{(1)}=-\cos\theta(\kappa\int\hat{U}_{+}^{(1)}d\eta’+\frac{i}{2}\cot\theta\int\int’\hat{U}_{+}^{(0)}d\eta^{n}d\eta’)+i\frac{dU^{*}}{d\eta}\int\overline{W}^{(2)}d\eta’$ , (3.9e)

$\sigma^{(3)}\frac{d\overline{W}^{(3)}}{d\eta}=2\cot\theta[\frac{dU^{r}}{d\eta}(\kappa\int\hat{U}_{-}^{(1)}d\eta’+\frac{i}{2}\cot\theta\int\int’\hat{U}_{-}^{(0)}d\eta^{n}d\eta’)$

(3.9f)

$+ \frac{dU}{d\eta}(\kappa\int\hat{U}_{+}^{(1)}d\eta’+\frac{i}{2}\cot\theta\int\int’\hat{U}_{+}^{(0)}d\eta^{n}d\eta’)]$

where the asterisk denotes complex conjugate. These equations for the amplitudes, $\hat{U}_{\pm}^{(0)}(\eta)$ and
$\hat{U}_{\pm}^{(1)}(\eta)$ , of the primary hannonic perturbation and the induced transverse mean flow, $\overline{W}^{(2)}(\eta)$ and
$\overline{W}^{(3)}(\eta)$ , must be supplemented with suitable boundary conditions. Specifically,

$\int\int^{l}\hat{U}_{-}^{(0)}d\eta^{n}d\eta’arrow 0, \int\int’\hat{U}_{+}^{(0)}d\eta^{\hslash}d\eta’arrow 0, \int\hat{U}_{-}^{(1)}d\eta’arrow 0, \int\hat{U}_{+}^{(1)}d\eta’arrow 0$ , (3.10)

$\overline{W}^{(2)}arrow 0, \overline{W}^{(3)}arrow\mp\frac{i\overline{V}^{(3)}}{\sin\theta} (\etaarrow\pm\infty)$,
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where matching with the outer solution (3.13) obtained in Section 3.2 is already taken into account.
The conditions (3.9) ensure that the flow field associated with the primary-hannonic perturbation, as

well as the $0(\epsilon^{2})$ transverse mean flow component vanishes far away from the beam. The induced

mean flow at $O(\epsilon^{3})$ , however, does not remain locally confined in the vicinity of the beam:

$( \hat{u},\hat{v},\hat{w})arrow\epsilon^{3}\overline{V}^{(3)}(\cot\theta, 1, \frac{\mp i}{\sin\theta}) (\etaarrow\pm\infty)$ , (3.11)

where $\overline{V}^{(3)}$ is constant. In order to construct an overall solution of $(2.6)-(2.7)$ that satisfies the
decaying condition (2.8) in $\eta$ , we must seek an outer solution which decays slowly in $\eta$ at infinity
and is connected to (3.11) in the inner limit.

3.2. Outer solution
Introducing a reduced coordinate

$Y=\epsilon^{2}\eta$ , (3.12)

we look for a solution which varies by $O(1)$ in $Y$ and is independent of $t$ (mean flow) of the
following orders

$\hat{u}=\epsilon^{3}\hat{u}_{0}(Y) , \hat{v}=\epsilon^{3}\hat{v}_{0}(Y) , \hat{w}=\epsilon^{3}\hat{w}_{o}(Y) , \hat{\rho}=\epsilon^{6}\hat{\rho}_{0}(Y) , \hat{p}=\epsilon^{4}p_{0}(Y)$ . (3.13)

The orders of (3.13) are determined by (3.11) and balance of terms in (2.6) noting that $u_{0},\rho_{0}arrow 0$

$(|\eta|arrow\infty)$ . Substituting (3.1), $(3.12)-(3.13)$ and $\sigma=\epsilon^{3}\sigma^{(3)}$ into (2.6) and collecting the same-order
terms in $\epsilon$ ofeach equation, we obtain

$\epsilon^{2}x$

Fig. 2 Streamlines of the mean flow described by the outer solution (3.15) (with (2.5)). The abscissa
$\epsilon^{2}x[=\epsilon^{2}(\xi\cos\theta+\eta\sin e)]$ is the horizontal direction perpendicular to the other horizontal
transverse $\epsilon^{2}\zeta$ direction (the ordinate) along the beam positioned at $x=0$ . Streamlines for

$|\epsilon^{2}\zeta|>\pi/2$ are symmetric with respect to $\epsilon^{2}\zeta=\pm\pi/2.$
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$\{\frac{d\hat{v}_{o}}{\sin\theta dY}+i\hat{w}_{O}=0(3)n^{\hat{u}_{0}-\cos\theta\hat{v}_{O}=0\prime},$

,

(3.14)

These equations have a solution which decays as $|Y|arrow\infty$ and is connected to (3.11) at $Y=0$

$\{\begin{array}{l}\hat{u}_{O}\hat{v}_{o}\hat{w}_{O}\hat{\rho}_{O}\hat{p}_{0}\end{array}\}=\{\begin{array}{l}cot\thetal-i/sin\theta\sigma^{(3)}cos\theta/sin^{2}\theta\sigma^{(3)}/s\dot{m}\theta\end{array}\}\overline{V}^{(3)}\exp(-\frac{Y}{\sin\theta})$ for $Y>0$ , (3.15a)

$\{\begin{array}{l}\hat{u}_{0}\hat{v}_{O}\hat{w}_{O}\hat{\rho}_{O}\hat{p}_{o}\end{array}\}=\{\begin{array}{l}cot\thetali/sin\theta\sigma^{(3)}cos\theta/sin^{2}\theta-\sigma^{(3)}/sin\theta\end{array}\}\overline{V}^{(3)}\exp(\frac{Y}{\sin\theta})$ for $Y<0$ , (3.15b)

where $\overline{V}^{(3)}$ is constant. The flow described by (3.15) is purely horizontal because $\hat{u}_{O}/\hat{v}_{o}=\cot\theta$ , and
it forms a single circulating flow which traverses the beam because $\overline{V}^{(3)}$ is constant (figure 2).

Thus, we have constructed an overall solution of $(2.6)-(2.7)$ which satisfies the decaying condition
(2.8) under the supposition that there is a solution $(\hat{U}_{-}^{(0)},\hat{U}_{+}^{(0)},\overline{W}^{(2)},\hat{U}_{-}^{(1)},\hat{U}_{+}^{(1)},\overline{W}^{(3)})$ of the eigenvalue
problem $(3.9)-(3.10)$. If the eigenvalue problem $(3.9)-(3.10)$ has a solution whose eigenvalue $\sigma^{(3)}$

has a positive real part, the underlying beam is unstable. Its possibility is explored numerically in Section
4.

4. $($3. $9)-(3.10)$の数値解
4.1. Renormalization

We let
$\psi_{\pm}=\int\int’\hat{U}_{\pm}^{(0)}d\eta^{\nu}d\eta’, \psi_{S\pm}=\int\hat{U}_{\pm}^{(1)}d\eta’, \varphi=arrow\tan\theta\int\overline{W}^{(2)}d\eta’, \varphi_{S}=-i\tan\theta\overline{W}^{(3)},$

(4.1)
$V= \tan\theta\overline{V}^{(3)}, \tilde{\kappa}=2\tan\theta\kappa, \tilde{\sigma}=\frac{2\sin\theta}{\cos^{2}\theta}\sigma^{(3)}, \tilde{U}=\frac{2}{\cos\theta}U,$

and obtain a renormalized version of the eigenvalue problem $(3.9)-(3.10)$:
$\tilde{\sigma}\frac{d^{2}\psi_{-}}{d\eta^{2}}=\tilde{\kappa}\frac{d\psi_{-}}{d\eta}-\frac{d\tilde{U}}{d\eta}V$ , (4.2a)

$\tilde{\sigma}\frac{d^{2}\psi_{+}}{d\eta^{2}}=-\tilde{\kappa}\frac{d\psi_{+}}{d\eta}-\frac{d\tilde{U}^{*}}{d\eta}V$ , (4.2b)

$\tilde{\sigma}\frac{d^{2}\varphi}{d\eta^{2}}=-i\tilde{\kappa}(\frac{d\tilde{U}^{*}d\psi_{-}}{d\eta d\eta}+\frac{d\tilde{U}d\psi_{+}}{d\eta d\eta})$, (4.2c)
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$\tilde{\sigma}\frac{d\psi_{S-}}{d\eta}=\tilde{\kappa}\psi_{S-}+i\psi_{-}-\frac{d\tilde{U}}{d\eta}\varphi$ , (4.2d)

$\tilde{\sigma}\frac{d\psi_{s+}}{d\eta}=-(\tilde{\kappa}\psi_{S+}+i\psi_{+})-\frac{d\tilde{U}}{d\eta}\varphi$ , (4.2e)

$\tilde{\sigma}\frac{d\varphi_{S}}{d\eta}=-i[\frac{d\tilde{U}}{d\eta}(\tilde{\kappa}\psi_{S-}+i_{\psi_{-}})+\frac{d\tilde{U}}{d\eta}(\tilde{\kappa}\psi_{S+}+i_{\psi_{+}})]$, (4.2f)

with

$\psi_{-}arrow 0, \psi_{+}arrow 0, \frac{d\varphi}{d\eta}arrow 0, \psi_{S-}arrow 0, \psi_{S+}arrow 0, \varphi_{S}arrow\frac{\mp V}{\sin\theta}(\etaarrow\pm\infty)$ . (4.3)

Equations $(4.2)-(4.3)$ constitute the eigenvalue problem for $(\psi_{-},\psi_{+},\varphi, \psi_{S-},\psi_{s+},\varphi_{S})$ , with $\tilde{\sigma}$ being
the eigenvalue parameter. We solve this problem numerically.

The underlying beam profile $\tilde{U}(\eta)$ is chosen to be the same Gaussian streamfimction profiles as
Tabaei et al.[5],

$\tilde{U}(\eta)=\{\begin{array}{ll}U_{0}\zeta A(l)e^{il\eta}dl (proyessive beams), (4.4a)\frac{U_{0}}{2}[A(l)e^{il\eta}dl=-2U_{0}\eta e^{-2\eta^{2}} (standing beams), (4.4b)\end{array}$

where $U_{0}$ is a positive parameter and $A(l)=ile^{-l^{l}/8}/\sqrt{8\pi}$ . Progressive beams describe uni-directional
beams which involve plane waves with wavenumbers $l$ of the same $sign$ only, whereas standing beams
include those of both signs. The profile $\tilde{U}(\eta)/U_{0}$ is shown in figure 3. Statically stable condition (2.4)

becomes

$U_{0}< \frac{1}{2\cos^{2}\theta}$ . (4.5)

The intemal wave beams (4.4) are statically stable for any $\theta$ if $U_{0}<0.5$ . Even for the greater
amplitudes, they are statically stable depending on the value of $\theta$ . In what follows, we present the
stability results for progressive beams in Section 4.2 and standing beams in Section 4.3. For numerical
method to solve $(4.2)-(4.3)$, we use the finite-difference method for discretization and a standard $QZ$

algorithm for the eigenvalue solver[6]. The parameters of $(4.2)-(4.3)$ are $\theta,\tilde{\kappa}$ and $U_{0}.$

1

0.5

$\frac{\tilde{U}(\eta)}{U_{0}}0$

$-0.5$

$-1_{-6}$ $-4 -2$ $0$ 2 4 6
$\eta$

Fig. 3 Profiles $\tilde{U}(\eta)/U_{0}$ of the progressive beam (4.4a) (solid line: real part, dashed line: imaginary
part) and the standin$g$ beam (4.4b) (solid line).

92



4.2. Progressive beams
Computed eigenvalues $\tilde{\sigma}$ with a positive real part versus $\tilde{\kappa}$ are plotted in figure 4 for $\theta=\pi/6$ and
$\pi/3$ . Amplitudes of the underlying beams are chosen to be $U_{0}=0.35,0.5$ and 0.65 (these beams are all
statically stable according to (4.5)$)$ . Figure $4(a)$ shows that progressive beams are unstable for
$U_{0}\geq 0.35$ , and according to our numerical results, the critical amplitude of the instability is about
$U_{0}=0.3.$

Figure 4 also shows that the growth rate ${\rm Re}[\tilde{\sigma}]$ , which is an increasing function of $\tilde{\kappa}$ for small $\tilde{\kappa},$

reaches a peak at some finite $\tilde{\kappa}$ and fmally falls to zero at the higher $\tilde{\kappa}$ . Thus, the instability is
three-dimensional (or oblique). The stability of the internal wave beam was first examined by Tabaei and
Akylas[3] to longitudinal (two-dimensional) perturbation which corresponds to $\tilde{\kappa}arrow\infty$ in the present
notation, and found no instability. Their result is consistent with our result.

The imaginary part ${\rm Im}[\tilde{\sigma}]$ of the above complex eigenvalues is plotted in figure $4(b)$ . It is always
one-signed (negative) and the magnitude grows linearly in $\tilde{\kappa}$ with almost the same gradient for all
cases.

$\tilde{\kappa} \tilde{\kappa}$
Fig. 4 Computed eigenvalues $\tilde{\sigma}$ with a positive real part versus $\tilde{\kappa}$ for the progressive beams (4.4a)

with $\theta=\pi/6[U_{0}=0.35(O),$ $0.5(\triangle)$ and 0.65 $(\square )]$ and $\pi/3[u_{0}=0.35(+),$ $0.5(\nabla)$ and 0.65
$(\Diamond)]:(a){\rm Re}[\tilde{\sigma}]$ versus $\tilde{\kappa};(b){\rm Im}[\tilde{\sigma}]$ versus $\tilde{\kappa}$ . The dotted lines represent the corresponding
gradients $\tilde{\sigma}/\tilde{\kappa}$ as $\tilde{\kappa}arrow\infty$ for the solution ofthe smaller order $k=O(\epsilon^{4})$ (see [4]).

4.3. Standing beams
Eigenvalues $\tilde{\sigma}$ with a positive real part versus $\tilde{\kappa}$ are plotted in figure 5 for the statically stable beams
with $U_{0}=0.1,0.4$ and 0.65 when $\theta=\pi/6$ and $\pi/3$ (these beams are all statically stable according
to (4.5)$)$ . In contrast to the case of progressive beams in which only complex eigenvalues appear, pure
real eigenvalues solely appear in the standing-beam case.

Figure 5 shows that a standing beam is unstable for the small amplitude $U_{0}=0.1$ . Indeed we have a
surprising result that it is unstable even for very small amplitude $U_{0}<<1$ , that is, the eigenvalues $\tilde{\sigma}$

remain to be positive as $U_{0}arrow 0$ . So the standing beam is unstable for any amplitude. Moreover the
eigenvalues $\tilde{\sigma}$ go down to zero at finite $\tilde{\kappa}$ , so that the instability is three-dimensional as in the case of
progressive beams.
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$\tilde{\kappa}$

Fig. 5 Computed eigenvalues $\tilde{\sigma}$ versus $\tilde{\kappa}$ for the standing beams (4.4b) with $\theta=\pi/6[U_{0}=0.1$

$(\bullet$ $)$ , 0.4 (A) and 0.65 $(\blacksquare)]$ and $\pi/3[U_{0}=0.1(+),$ $0.4(v)$ and 0.65 (2)$]$ . The dotted lines
represent the corresponding gradients $\tilde{\sigma}/\tilde{\kappa}$ as $\tilde{\kappa}arrow\infty$ for the solution of the smaller order
$k=O(\epsilon^{4})$ (see [4]).

5. 結言
The linear stability to three-dimensional disturbances of a uniform, plane intemal wave beam in a

stratified fluid with constant buoyancy frequency is considered. The associated eigenvalue problem is
solved asymptotically, assuming perturbations of long wavelength relative to the beam width. In this
limit, instability occurs solely due to oblique perturbations and so it is three-dimensional. Propagating
beams that transport energy in one direction, in particular, are found to be unstable to such oblique
perturbations when the beam steepness exceeds a certain threshold value, whereas purely standing beams
are unstable irrespective of their steepness.
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