Quantum scattering in crossed constant magnetic and time－dependent electric fields

神戸大学大学院理学研究科 足立 匡義（Tadayoshi ADACHI） Graduate School of Science，Kobe University

1 Introduction

In this article，we would like to mention the results of our paper［1］，which is concerned with the study of the quantum dynamics of a charged particle in the presence of crossed constant magnetic and time－dependent electric fields．
We consider a quantum system of a charged particle moving in the plane \boldsymbol{R}^{2} in the presence of the constant magnetic field \boldsymbol{B} which is perpendicular to the plane，and the time－dependent electric field $\boldsymbol{E}(t)$ which always lies in the plane．For the sake of simplicity，we write \boldsymbol{B} as $(0,0, B)$ with $B>0$ ，and $\boldsymbol{E}(t)=\left(E_{1}(t), E_{2}(t), 0\right)$ ．Then the free Hamiltonian under consideration is defined by

$$
\begin{equation*}
H_{0}(t)=H_{0, L}-q E(t) \cdot x, \quad H_{0, L}=(p-q A(x))^{2} /(2 m), \tag{1.1}
\end{equation*}
$$

where $m>0, q \in \boldsymbol{R} \backslash\{0\}, x=\left(x_{1}, x_{2}\right)$ and $p=\left(p_{1}, p_{2}\right)=\left(-i \partial_{1},-i \partial_{2}\right)$ are the mass，the charge，the position，and the usual momentum of the charged particle，respectively，and

$$
A(x)=\left(-B x_{2} / 2, B x_{1} / 2\right)
$$

is the vector potential in the symmetric gauge．Here we put $E(t)=\left(E_{1}(t), E_{2}(t)\right) . H_{0, L}$ is called the free Landau Hamiltonian．It is well known that

$$
\sigma\left(H_{0, L}\right)=\sigma_{\mathrm{pp}}\left(H_{0, L}\right)=\{|\omega|(n+1 / 2) \mid n \in \boldsymbol{N} \cup\{0\}\}
$$

holds，where $\omega=q B / m$ ．$|\omega|$ is called the Larmor frequency．Each eigenvalue of $H_{0, L}$ ，which is called a Landau level，is of infinite multiplicity（see e．g．Avron－Herbst－Simon［5］）．In fact， this can be seen as follows：First of all，we introduce the momentum D and the pseudomo－ mentum k of the charged particle in the presence of \boldsymbol{B} as

$$
D=p-q A(x), \quad k=p+q A(x) .
$$

Writing D and k as $\left(D_{1}, D_{2}\right)$ and $\left(k_{1}, k_{2}\right)$ ，respectively，we have

$$
\left(D_{1}, D_{2}\right)=\left(p_{1}+q B x_{2} / 2, p_{2}-q B x_{1} / 2\right), \quad\left(k_{1}, k_{2}\right)=\left(p_{1}-q B x_{2} / 2, p_{2}+q B x_{1} / 2\right) .
$$

One of the basic properties of D and k is that

$$
\begin{equation*}
i\left[D_{1}, D_{2}\right]=-q B, \quad i\left[k_{1}, k_{2}\right]=q B, \quad i\left[D_{j}, k_{l}\right]=0 \quad(j, l \in\{1,2\}) . \tag{1.2}
\end{equation*}
$$

Putting

$$
\tilde{U}=e^{i q B x_{1} x_{2} / 2} e^{i p_{1} p_{2} /(q B)}
$$

we have

$$
\begin{array}{ll}
\tilde{U}^{*} D_{1} \tilde{U}=q B x_{2}, & \tilde{U}^{*} D_{2} \tilde{U}=p_{2}, \\
\tilde{U}^{*} k_{1} \tilde{U}=p_{1}, & \tilde{U}^{*} k_{2} \tilde{U}=q B x_{1}
\end{array}
$$

(see e.g. Skibsted [22]). In particular, we have

$$
\tilde{U}^{*} H_{0, L} \tilde{U}=\operatorname{Id} \otimes\left\{p_{2}^{2} /(2 m)+m \omega^{2} x_{2}^{2} / 2\right\}
$$

on $\tilde{U}^{*} L^{2}\left(\boldsymbol{R}^{2}\right)=L^{2}\left(\boldsymbol{R}_{x_{1}}\right) \otimes L^{2}\left(\boldsymbol{R}_{x_{2}}\right)$, which implies the infinite multiplicity of each Landau level. In order to deal with the one dimensional harmonic oscillator $p_{2}^{2} /(2 m)+m \omega^{2} x_{2}^{2} / 2$, we introduce the annihilation operator \tilde{a} and the creation operator \tilde{a}^{*} as

$$
\tilde{a}=\left(|q| B x_{2}+i p_{2}\right) / \sqrt{2|q| B}, \quad \tilde{a}^{*}=\left(|q| B x_{2}-i p_{2}\right) / \sqrt{2|q| B} .
$$

Then we have

$$
p_{2}^{2} /(2 m)+m \omega^{2} x_{2}^{2} / 2=|\omega|\left(\tilde{a}^{*} \tilde{a}+1 / 2\right) .
$$

We also put

$$
\tilde{b}=\left(|q| B x_{1}+i p_{1}\right) / \sqrt{2|q| B}, \quad \tilde{b}^{*}=\left(|q| B x_{1}-i p_{1}\right) / \sqrt{2|q| B},
$$

and introduce a, a^{*}, b and b^{*} as

$$
\begin{array}{ll}
a=\tilde{U} \tilde{\tilde{a}} \tilde{U}^{*}=\left(q D_{1} /|q|+i D_{2}\right) / \sqrt{2|q| B}, & a^{*}=\tilde{U} \tilde{\tilde{a}}^{*} \tilde{U}^{*}=\left(q D_{1} /|q|-i D_{2}\right) / \sqrt{2|q| B}, \\
b=\tilde{U} \tilde{b} \tilde{U}^{*}=\left(i k_{1}+q k_{2} /|q|\right) / \sqrt{2|q| B,}, & b^{*}=\tilde{U} \tilde{b}^{*} \tilde{U}^{*}=\left(-i k_{1}+q k_{2} /|q|\right) / \sqrt{2|q| B} .
\end{array}
$$

Then we obtain an complete orthonormal system $\left\{\left(b^{*}\right)^{l}\left(a^{*}\right)^{n} \phi_{0} / \sqrt{l!n!}\right\}_{(l, n) \in(\boldsymbol{N} \cup\{0\})^{2}}$ of $L^{2}\left(\boldsymbol{R}^{2}\right)$, which consists of eigenfunctions of $H_{0, L}$, where $\phi_{0}(x)=\sqrt{|q| B /(2 \pi)} e^{-|q| B x^{2} / 4}$. In fact, $\left(b^{*}\right)^{l}\left(a^{*}\right)^{n} \phi_{0} / \sqrt{l!n!}$ is an eigenfunction of $H_{0, L}$ belonging to the Landau level $|\omega|(n+1 / 2)$.

We see that $H_{0}(t)$ is essentially self-adjoint on $C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ for any $t \in \boldsymbol{R}$, by virtue of Kato's inequality associated with $H_{0, L}$ and Nelson's commutator theorem (see e.g. Reed-Simon [19] and Gérard-Łaba [15]). Its closure is also denoted by $H_{0}(t)$. Then $H_{0}(t)$ can be written as

$$
\begin{align*}
H_{0}(t) & =D^{2} /(2 m)-q\left(-q B^{2} / 2\right)^{-1} E(t) \cdot A(k-D) \\
& =D^{2} /(2 m)-\alpha(t) \cdot D+\alpha(t) \cdot k \tag{1.3}\\
& =(D-m \alpha(t))^{2} /(2 m)+\alpha(t) \cdot k-m \alpha(t)^{2} / 2
\end{align*}
$$

where

$$
\alpha(t)=\left(\alpha_{1}(t), \alpha_{2}(t)\right)=\left(E_{2}(t) / B,-E_{1}(t) / B\right)=-2 A(E(t)) / B^{2}
$$

is the instantaneous drift velocity of the charged particle. Here we used

$$
k-D=2 q A(x), \quad A(A(x))=-(B / 2)^{2} x, \quad y \cdot A(x)=-A(y) \cdot x
$$

We note that

$$
(\alpha(t), 0)=\boldsymbol{E}(t) \times \boldsymbol{B} / B^{2}
$$

and that $\alpha(t)$ is independent of the charge $q \in \boldsymbol{R} \backslash\{0\}$. We also see that when $\alpha(t) \neq 0$, $\sigma\left(H_{0}(t)\right)$ is purely absolutely continuous and

$$
\sigma\left(H_{0}(t)\right)=\boldsymbol{R},
$$

by virtue of (1.3).
When $E(t) \equiv\left(E_{1}, E_{2}\right)$, that is, $E(t)$ is independent of t, Skibsted [22] essentially obtained the following factorization of the unitary propagator $U_{0}(t, s)$ generated by $H_{0}(t)$:

$$
\begin{equation*}
U_{0}(t, 0)=U_{1}(t) e^{-i t H_{0, L}} U_{1}(0)^{*}, \quad U_{1}(t)=e^{i t m \alpha^{2} / 2} e^{-i t \alpha \cdot p} e^{i(t q A(\alpha)+m \alpha) \cdot x} \tag{1.4}
\end{equation*}
$$

where

$$
\alpha=\left(\alpha_{1}, \alpha_{2}\right)=\left(E_{2} / B,-E_{1} / B\right)=-2 A(E) / B^{2}
$$

is the drift velocity of the charged particle, where $E=\left(E_{1}, E_{2}\right)$. Since $H_{0}(t)$ is independent of t in this case, $U_{0}(t, s)$ can be represented as $e^{-i(t-s) H_{0}}$ by writing this time-independent Hamiltonian $H_{0}(t)$ as $H_{0}=H_{0, L}-q E \cdot x . U_{1}(t)$ is a version of the Galilei transform which reflects the effect of the magnetic field \boldsymbol{B}. We note that $U_{1}(0)=e^{i m \alpha \cdot x} \neq$ Id because of $\alpha \neq 0$.
After that, for a general time-dependent electric field $E(t)$, Chee [6] proposed the following factorization of $U_{0}(t, s)$:

$$
\begin{align*}
& U_{0}(t, 0)=M(R(t)) e^{-i t H_{0, L}} J(u(t))^{*}, \\
& M(R(t))=e^{i \int_{0}^{t} R(s) \cdot q A(\dot{R}(s)) d s} e^{-i R(t) \cdot q A(x)} e^{-i R(t) \cdot p}, \tag{1.5}\\
& J(u(t))=e^{i \int_{0}^{t} u(s) \cdot q A(\dot{u}(s)) d s} e^{i u(t) \cdot q A(x)} e^{-i u(t) \cdot p},
\end{align*}
$$

where $R(t)=\left(R_{1}(t), R_{2}(t)\right)$ and $u(t)=\left(u_{1}(t), u_{2}(t)\right)$ are given by

$$
R(t)=\int_{0}^{t} \alpha(s) d s,\binom{u_{1}(t)}{u_{2}(t)}=\int_{0}^{t}\left(\begin{array}{cc}
\cos \omega s & -\sin \omega s \tag{1.6}\\
\sin \omega s & \cos \omega s
\end{array}\right)\binom{\alpha_{1}(s)}{\alpha_{2}(s)} d s
$$

with $\dot{R}(t)=d R(t) / d t$ and $\dot{u}(t)=d u(t) / d t$. Here we note that $\dot{R}(t)=\alpha(t)$, and that one has $R(t)=t \alpha$ when $E(t) \equiv E$. What we emphasize here is that $e^{-i \int_{0}^{t} R(s) \cdot q A(\dot{R}(s)) d s} M(R(t))$ and $e^{-i \int_{0}^{t} u(s) \cdot q A(\dot{u}(s)) d s} J(u(t))$ are just the magnetic translations $T(R(t))$ and $S(u(t))$ generated by k and D, respectively, where

$$
T(y)=e^{-i y \cdot q A(x)} e^{-i y \cdot p}=e^{-i y \cdot k}, \quad S(y)=e^{i y \cdot q A(x)} e^{-i y \cdot p}=e^{-i y \cdot D}
$$

for $y \in \boldsymbol{R}^{2}$ (see e.g. [5] and [15]). For reference, we state one of the features which distinguish between the Galilei transform $U_{1}(t)$ and the magnetic translation $T(t \alpha)$, where α is the drift velocity:

$$
\begin{aligned}
U_{1}(t)^{*} x U_{1}(t) & =x+t \alpha, & U_{1}(t)^{*} D U_{1}(t) & =D+m \alpha \\
T(t \alpha)^{*} x T(t \alpha) & =x+t \alpha, & T(t \alpha)^{*} D T(t \alpha) & =D
\end{aligned}
$$

On the other hand, in the absence of the magnetic field \boldsymbol{B}, it is well known that the following factorization of $U_{0}(t, s)$, which is called the Avron-Herbst formula, holds (see e.g. Cycon-Froese-Kirsch-Simon [7]):

$$
\begin{equation*}
U_{0}(t, 0)=e^{-i a^{0}(t)} e^{i b^{0}(t) \cdot x} e^{-i c^{0}(t) \cdot p} e^{-i t K_{0}} \tag{1.7}
\end{equation*}
$$

where $K_{0}=p^{2} /(2 m)$, and

$$
\begin{equation*}
b^{0}(t)=\int_{0}^{t} q E(s) d s, c^{0}(t)=\int_{0}^{t} b^{0}(s) / m d s, a^{0}(t)=\int_{0}^{t} b^{0}(s)^{2} /(2 m) d s \tag{1.8}
\end{equation*}
$$

Inspired by these two formulas (1.5) and (1.7), we have derived an Avron-Herbst type formula for $U_{0}(t, s)$:

Theorem 1.1 (Adachi-Kawamoto [1]). The following Avron-Herbst type formula for $U_{0}(t, 0)$

$$
\begin{equation*}
U_{0}(t, 0)=e^{-i a(t)} e^{i b(t) \cdot x} T(c(t)) e^{-i t H_{0, L}}, \quad T(c(t))=e^{-i c(t) \cdot q A(x)} e^{-i c(t) \cdot p} \tag{1.9}
\end{equation*}
$$

holds, where $b(t)=\left(b_{1}(t), b_{2}(t)\right), c(t)=\left(c_{1}(t), c_{2}(t)\right)$ and $a(t)$ are given by

$$
\begin{align*}
& \binom{b_{1}(t)}{b_{2}(t)}=\int_{0}^{t}\left(\begin{array}{cc}
\cos \omega(t-s) & \sin \omega(t-s) \\
-\sin \omega(t-s) & \cos \omega(t-s)
\end{array}\right)\binom{q E_{1}(s)}{q E_{2}(s)} d s, \tag{1.10}\\
& c(t)=\int_{0}^{t} b(s) / m d s, \quad a(t)=\int_{0}^{t}\left\{b(s)^{2} /(2 m)+b(s) \cdot q A(c(s)) / m\right\} d s
\end{align*}
$$

Here we note that by taking B as 0 formally in (1.9) and (1.10), one can obtain the AvronHerbst formula (1.7) in the absence of the magnetic field \boldsymbol{B} because $\omega=0$ and $A(x) \equiv 0$. Hence we have obtained a natural extension of the Avron-Herbst formula to the case of the presence of the magnetic field \boldsymbol{B}, by virtue of the magnetic translation $T(c(t))$.

From now on, we will discuss a scattering problem for the free Hamiltonian $H_{0}(t)$ and the perturbed Hamiltonian $H(t)=H_{0}(t)+V(x)$, where the time-independent potential $V(x)$ satisfies that $|V(x)| \rightarrow 0$ as $|x| \rightarrow \infty$.

Now we explain an advantage of the Avron-Herbst type formula (1.9) from the point of view of the scattering theory: Put

$$
E_{\nu, \theta}(t)=E_{0}(\cos (\nu t+\theta), \sin (\nu t+\theta))
$$

for $E_{0}>0, \nu \in \boldsymbol{R}$ and $\theta \in[0,2 \pi)$. We note that $\left|E_{\nu, \theta}(t)\right| \equiv E_{0}$. Now we consider the case where $E(t)=E_{\nu, \theta}(t)$. By a straightforward calculation, we have

$$
\begin{aligned}
& R(t)= \begin{cases}-E_{0}((\delta \cos)(\nu t),(\delta \sin)(\nu t)) /(\nu B), & \nu \neq 0 \\
E_{0}(t \sin \theta,-t \cos \theta) / B, & \nu=0\end{cases} \\
& u(t)= \begin{cases}-E_{0}((\delta \cos)(\tilde{\nu} t),(\delta \sin)(\tilde{\nu} t)) /(\tilde{\nu} B), & \tilde{\nu} \neq 0 \\
E_{0}(t \sin \theta,-t \cos \theta) / B, & \tilde{\nu}=0\end{cases}
\end{aligned}
$$

where we put $\tilde{\nu}=\nu+\omega,(\delta \cos)(s)=\cos (s+\theta)-\cos \theta$ and $(\delta \sin)(s)=\sin (s+\theta)-\sin \theta$ for the sake of brevity. Hence we see that $R(t)$ is growing of order $|t|$ when $\nu=0$ because of $|R(t)|=E_{0}|t| / B$ although $R(t)$ is bounded in t when $\nu \neq 0$, and that $u(t)$ is growing of order $|t|$ when $\tilde{\nu}=0$ because of $|u(t)|=E_{0}|t| / B$ although $u(t)$ is bounded in t when $\tilde{\nu} \neq 0$. In consequence of (1.5) and the growth of $R(t)$ or $u(t)$, the possibility of the existence of scattering states for the system under consideration in the case where $\nu \tilde{\nu}=0$ is suggested: In fact, it follows from

$$
\binom{e^{-i t H_{0, L}} D_{1} e^{i t H_{0, L}}}{e^{-i t H_{0, L}} D_{2} e^{i t H_{0, L}}}=\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right)\binom{D_{1}}{D_{2}},
$$

which can be obtained by (1.2), that

$$
e^{-i t H_{0, L}} S(u(t))^{*}=e^{-i t H_{0, L}} e^{i u(t) \cdot D}=e^{i \tilde{u}(t) \cdot D} e^{-i t H_{0, L}}=S(\tilde{u}(t))^{*} e^{-i t H_{0, L}}
$$

holds, where $\tilde{u}(t)=\left(\tilde{u}_{1}(t), \tilde{u}_{2}(t)\right)$ with

$$
\begin{aligned}
\binom{\tilde{u}_{1}(t)}{\tilde{u}_{2}(t)} & =\left(\begin{array}{cc}
\cos \omega t & \sin \omega t \\
-\sin \omega t & \cos \omega t
\end{array}\right)\binom{u_{1}(t)}{u_{2}(t)} \\
& =\int_{0}^{t}\left(\begin{array}{cc}
\cos \omega(t-s) & \sin \omega(t-s) \\
-\sin \omega(t-s) & \cos \omega(t-s)
\end{array}\right)\binom{\alpha_{1}(s)}{\alpha_{2}(s)} d s
\end{aligned}
$$

Hence we obtain

$$
\begin{equation*}
U_{0}(t, 0)=e^{i \int_{0}^{t} R(s) \cdot q A(\dot{R}(s)) d s} e^{-i \int_{0}^{t} u(s) \cdot q A(\tilde{u}(s)) d s} T(R(t)) S(\tilde{u}(t))^{*} e^{-i t H_{0, L}} \tag{1.11}
\end{equation*}
$$

from (1.5) by a straightforward calculation. Let ϕ be an eigenfunction of $H_{0, L}$ belonging to some Landau level λ. Here we note that

$$
\left\|F(|x| \leq C t) U_{0}(t, 0) \phi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}=\|F(|x+R(t)-\tilde{u}(t)| \leq C t) \phi\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}
$$

for $t>0$, and $|\tilde{u}(t)|=|u(t)|$, where $F(|x| \leq C t)$ stands for the characteristic function of the set $\left\{x \in \boldsymbol{R}^{2}| | x \mid \leq C t\right\}$. In the case where $\nu \tilde{\nu}=0,|R(t)-\tilde{u}(t)| \geq 3 E_{0} t /(4 B)$ holds for sufficiently large $t>0$. Then, by taking C as $E_{0} /(2 B)$, we obtain

$$
\left\|F\left(|x| \leq E_{0} t /(2 B)\right) U_{0}(t, 0) \phi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)} \leq\left\|F\left(|x| \geq E_{0} t /(4 B)\right) \phi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)} \rightarrow 0
$$

as $t \rightarrow \infty$, by virtue of the triangle inequality. This suggests the possibility of the existence of scattering states in the case where $\nu \tilde{\nu}=0$. As is well known, the case where $\tilde{\nu}=0$, that is, $\nu=-\omega$, is closely related with the phenomenon of the cyclotron resonance. The formula (1.11) can be also obtained by the idea of Enss-Veselić [12]: We first introduce

$$
\hat{H}_{0}(t)=\hat{H}_{0, \hat{\omega}}-\hat{f}(t) z+\hat{g}(t) p_{z}, \quad \hat{H}_{0, \hat{\omega}}=p_{z}^{2} /(2 m)+m \hat{\omega}^{2} z^{2} / 2
$$

acting on $L^{2}\left(\boldsymbol{R}_{z}\right)$, where $z \in \boldsymbol{R}$ and $p_{z}=-i d / d z$. Then one can obtain a factorization of the propagator $\hat{U}_{0}(t, s)$ generated by $\hat{H}_{0}(t)$:

$$
\hat{U}_{0}(t, 0)=e^{-i \hat{a}(t)} e^{i \hat{b}(t) z} e^{-i \hat{c}(t) p_{z}} e^{-i t \hat{H}_{0, \hat{\omega}}} .
$$

In fact, the differential equations which $\hat{a}(t), \hat{b}(t)$ and $\hat{c}(t)$ should obey are as follows:

$$
\left\{\begin{array}{l}
\binom{\dot{\hat{b}}(t)}{\dot{\hat{c}}(t)}=\left(\begin{array}{cc}
0 & -m \hat{\omega}^{2} \\
1 / m & 0
\end{array}\right)\binom{\hat{b}(t)}{\hat{c}(t)}+\binom{\hat{f}(t)}{\hat{g}(t)}, \\
\dot{\hat{a}}(t)=\hat{b}(t) \dot{\hat{c}}(t)-\hat{b}(t)^{2} /(2 m)-m \hat{\omega}^{2} \hat{c}(t)^{2} / 2
\end{array}\right.
$$

with $\hat{a}(0)=\hat{b}(0)=\hat{c}(0)=0$. Then one can obtain

$$
\binom{\hat{b}(t)}{\hat{c}(t)}=\int_{0}^{t}\left(\begin{array}{cc}
\cos \hat{\omega}(t-s) & -m \hat{\omega} \sin \hat{\omega}(t-s) \tag{1.12}\\
\sin \hat{\omega}(t-s) /(m \hat{\omega}) & \cos \hat{\omega}(t-s)
\end{array}\right)\binom{\hat{f}(s)}{\hat{g}(s)} d s
$$

by a straightforward calculation. Here we note that $H_{0}(t)=H_{0, L}-\alpha(t) \cdot D+\alpha(t) \cdot k$ holds (see (1.3)). Using $\tilde{U}^{*} H_{0}(t) \tilde{U}=\hat{H}_{0, \omega}-\alpha(t) \cdot \tilde{D}+\alpha(t) \cdot \tilde{k}$ with $z=x_{2}, \tilde{D}=\left(q B x_{2}, p_{2}\right)$ and $\tilde{k}=\left(p_{1}, q B x_{1}\right)$, we obtain

$$
\tilde{U}^{*} U_{0}(t, 0) \tilde{U}=\check{T}(t, 0) e^{-i \hat{a}(t)} e^{i \hat{b}(t) x_{2}} e^{-i \hat{c}(t) p_{2}} e^{-i t \hat{H}_{0, \omega}}
$$

with $\hat{f}(t)=q B \alpha_{1}(t)=q E_{2}(t), \hat{g}(t)=-\alpha_{2}(t)=E_{1}(t) / B$ and $R(t)=\int_{0}^{t} \alpha(s) d s$, where $\check{T}(t, s)$ is the propagator generated by $\alpha(t) \cdot \tilde{k}=\alpha_{1}(t) p_{1}+q B \alpha_{2}(t) x_{1}$. In the same way as above, we obtain the following representation of $\check{T}(t, 0)$:

$$
\begin{aligned}
& \check{T}(t, 0)=e^{-i \check{a}(t)} e^{-i \check{b}(t) x_{1}} e^{-i \check{c}(t) p_{1}}, \\
& \check{b}(t)=q B R_{2}(t), \quad \check{c}(t)=R_{1}(t), \quad \check{a}(t)=-\int_{0}^{t} q B R_{2}(s) \alpha_{1}(s) d s
\end{aligned}
$$

Noting that $q B=m \omega$ and using the Baker-Campbell-Hausdorff formula, we have

$$
\begin{aligned}
U_{0}(t, 0) & =e^{-i \tilde{a}(t)} e^{-i \bar{b}(t) k_{2} /(q B)} e^{-i \tilde{c}(t) k_{1}} e^{-i \hat{a}(t)} e^{i \hat{b}(t) D_{1} /(q B)} e^{-i \hat{c}(t) D_{2}} e^{-i t H_{0, L}} \\
& =e^{-i(\tilde{a}(t)+\bar{b}(t) \tilde{c}(t) / 2)} e^{-i(\hat{a}(t)-\hat{b}(t) \hat{c}(t) / 2)} T(R(t)) S(\tilde{u}(t)) e^{-i t H_{0, L}}
\end{aligned}
$$

with

$$
\binom{\tilde{u}_{1}(t)}{\tilde{u}_{2}(t)}=\binom{\hat{b}(t) /(q B)}{-\hat{c}(t)}=\int_{0}^{t}\left(\begin{array}{cc}
\cos \omega(t-s) & \sin \omega(t-s) \\
-\sin \omega(t-s) & \cos \omega(t-s)
\end{array}\right)\binom{\alpha_{1}(s)}{\alpha_{2}(s)} d s
$$

By a straightforward calculation, we also have

$$
-\frac{d}{d t}(\check{a}(t)+\check{b}(t) \check{c}(t) / 2)=R(t) \cdot q A(\dot{R}(t)), \quad \frac{d}{d t}(\hat{a}(t)-\hat{b}(t) \hat{c}(t) / 2)=u(t) \cdot q A(\dot{u}(t))
$$

which yields (1.11).
Now we will make a similar calculation on $c(t)$. In fact, we have

$$
\begin{aligned}
& b_{1}(t)= \begin{cases}q E_{0}\{\sin (\nu t+\theta)-\sin (-\omega t+\theta)\} / \tilde{\nu}, & \tilde{\nu} \neq 0, \\
q E_{0} t \cos (-\omega t+\theta), & \tilde{\nu}=0,\end{cases} \\
& b_{2}(t)= \begin{cases}-q E_{0}\{\cos (\nu t+\theta)-\cos (-\omega t+\theta)\} / \tilde{\nu}, & \tilde{\nu} \neq 0, \\
q E_{0} t \sin (-\omega t+\theta), & \tilde{\nu}=0,\end{cases}
\end{aligned}
$$

as for $b(t)$. Here we used $\tilde{\nu}-\omega=\nu$. Hence we have

$$
\begin{aligned}
& c_{1}(t)= \begin{cases}-(\omega / \tilde{\nu}) E_{0}\{(\delta \cos)(\nu t) / \nu+(\delta \cos)(-\omega t) / \omega\} / B, & \nu \tilde{\nu} \neq 0, \\
E_{0}\{t \sin \theta-(\delta \cos)(-\omega t) / \omega\} / B, & \nu=0, \\
E_{0}\{-t \sin (-\omega t+\theta)+(\delta \cos)(-\omega t) / \omega\} / B, & \tilde{\nu}=0,\end{cases} \\
& c_{2}(t)= \begin{cases}-(\omega / \tilde{\nu}) E_{0}\{(\delta \sin)(\nu t) / \nu+(\delta \sin)(-\omega t) / \omega\} / B, & \nu \tilde{\nu} \neq 0 \\
E_{0}\{-t \cos \theta-(\delta \sin)(-\omega t) / \omega\} / B, & \nu=0, \\
E_{0}\{t \cos (-\omega t+\theta)+(\delta \sin)(-\omega t) / \omega\} / B, & \tilde{\nu}=0,\end{cases}
\end{aligned}
$$

where we used $\omega=q B / m$. Hence we see that $c(t)$ is growing of order $|t|$ when $\nu \tilde{\nu}=0$, although $c(t)$ is bounded in t when $\nu \tilde{\nu} \neq 0$. We note that when $\nu=0$,

$$
\begin{equation*}
c(t)-E_{0}(-(\delta \cos)(-\omega t),-(\delta \sin)(-\omega t)) /(\omega B)=t \alpha \tag{1.13}
\end{equation*}
$$

holds by $\left(E_{1}, E_{2}\right)=E_{0}(\cos \theta, \sin \theta)$, and that when $\tilde{\nu}=0$, that is, $\nu=-\omega$,

$$
\begin{equation*}
c(t)-E_{0}((\delta \cos)(-\omega t),(\delta \sin)(-\omega t)) /(\omega B)=-t \alpha(t) \tag{1.14}
\end{equation*}
$$

holds. In consequence of (1.9), the possibility of the existence of scattering states for the system under consideration in the case where $\nu \tilde{\nu}=0$ is suggested by the growth of $c(t)$ only: In fact,

$$
\left\|F(|x| \leq C t) U_{0}(t, 0) \phi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}=\|F(|x+c(t)| \leq C t) \phi\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}
$$

holds for some eigenfunction ϕ of $H_{0, L}$, and in the case where $\nu \tilde{\nu}=0,|c(t)| \geq 3 E_{0} t /(4 B)$ holds for sufficiently large $t>0$. Thus, by the same argument as above, we see that $\| F(|x| \leq$ $\left.E_{0} t /(2 B)\right) U_{0}(t, 0) \phi \|_{L^{2}\left(R^{2}\right)} \rightarrow 0$ as $t \rightarrow \infty$ in the case where $\nu \tilde{\nu}=0$. Here we note that

$$
\binom{c_{1}(t)}{c_{2}(t)}=\binom{R_{1}(t)}{R_{2}(t)}-\binom{\tilde{u}_{1}(t)}{\tilde{u}_{2}(t)}=\int_{0}^{t}\left(\begin{array}{cc}
1-\cos \omega(t-s) & -\sin \omega(t-s) \tag{1.15}\\
\sin \omega(t-s) & 1-\cos \omega(t-s)
\end{array}\right)\binom{\alpha_{1}(s)}{\alpha_{2}(s)} d s
$$

can be verified by a straightforward calculation. Moreover, it follows from (1.9) that

$$
\begin{equation*}
U_{0}(t, s)=\mathscr{T}(t) e^{-i(t-s) H_{0, L}} \mathscr{T}(s)^{*}, \quad \mathscr{T}(t)=e^{-i a(t)} e^{i b(t) \cdot x} T(c(t)) \tag{1.16}
\end{equation*}
$$

holds, although such a formula cannot be obtained from (1.5) easily. We note that $\mathscr{T}(0)=$ Id by definition. These show an advantage of the Avron-Herbst type formula (1.9).

The existence of scattering states is equivalent to the existence of (modified) wave operators, as is well known. In this article, we consider the case where $E(t)=E_{\nu, \theta}(t)$ with $\nu \in\{0,-\omega\}$ and $\theta \in[0,2 \pi)$ only, give a short-range condition on the potential V, which implies the existence of usual wave operators, and propose a rather simple modifier by which the modified wave operators can be defined for some long-range potentials. Now we pose the following assumption ($V 1$) on V :
$(V 1) V$ is written as the sum of real-valued functions $V^{\text {sing }}, V^{\text {s }}$ and V^{1}, and that $V^{\text {sing }}, V^{\text {s }}$ and V^{1} satisfy the following conditions: $V^{\text {sing }}$ is compactly supported, belongs to $L^{p}\left(\boldsymbol{R}^{2}\right)$ with $2 \leq p<\infty$, and satisfies $\left|\nabla V^{\text {sing }}\right| \in L^{2 p /(p+1)}\left(\boldsymbol{R}^{2}\right) . V^{\text {s }}$ belongs to $C^{1}\left(\boldsymbol{R}^{2}\right)$, and satisfies

$$
\begin{equation*}
\left|V^{\mathrm{s}}(x)\right| \leq C_{0}\langle x\rangle^{-\rho_{\mathrm{s}, 0}}, \quad\left|\left(\nabla V^{\mathrm{s}}\right)(x)\right| \leq C_{1}\langle x\rangle^{-\rho_{\mathrm{s}, 1}} \tag{1.17}
\end{equation*}
$$

for some $\rho_{\mathrm{s}, 0}>1$ and $\rho_{\mathrm{s}, 1}>0$, where C_{0} and C_{1} are non-negative constants. V^{1} belongs to $C^{1}\left(\boldsymbol{R}^{2}\right)$, and satisfies

$$
\begin{equation*}
\left|V^{1}(x)\right| \leq \tilde{C}_{0}\langle x\rangle^{-\rho_{1}}, \quad\left|\left(\nabla V^{1}\right)(x)\right| \leq \tilde{C}_{1}\langle x\rangle^{-1-\rho_{1}} \tag{1.18}
\end{equation*}
$$

for some $0<\rho_{1} \leq 1$, where \tilde{C}_{0} and \tilde{C}_{1} are non-negative constants.
Under this assumption $(V 1)$, we see that the propagator $U(t, s)$ generated by

$$
\begin{equation*}
H(t)=H_{0}(t)+V \tag{1.19}
\end{equation*}
$$

exists uniquely, by virtue of the results of Yajima [23] and $\mathscr{T}(t)$ in (1.16). If the local singularity of $V^{\text {sing }}$ is like $|x|^{-\gamma}$, and that of $\left|\nabla V^{\text {sing }}\right|$ is like $|x|^{-1-\gamma}$, then γ should satisfy $0<\gamma<1 / 2$. Then we obtain the following result about the existence of (modified) wave operators:

Theorem 1.2 (Adachi-Kawamoto [1]). Suppose that (V1) is satisfied, and that $E(t)=E_{\nu, \theta}(t)$ with $\nu \in\{0,-\omega\}$ and $\theta \in[0,2 \pi)$. If $V^{1}=0$, then the wave operators

$$
\begin{equation*}
W^{ \pm}=\operatorname{s-lim}_{t \rightarrow \pm \infty} U(t, 0)^{*} U_{0}(t, 0) \tag{1.20}
\end{equation*}
$$

exist. If $V^{1} \neq 0$, then the modified wave operators

$$
\begin{equation*}
W_{G}^{ \pm}=\operatorname{s-lim}_{t \rightarrow \pm \infty} U(t, 0)^{*} U_{0}(t, 0) e^{-i \int_{0}^{t} V^{1}(c(s)) d s} \tag{1.21}
\end{equation*}
$$

exist.
Next we will consider the problem of the asymptotic completeness of wave operators when $\nu=0$, that is, $E(t)$ is independent of t. Since the Hamiltonians under consideration are independent of t when $\nu=0$, we write $H_{0}(t)$ and $H(t)$ as H_{0} and H, respectively. Then $U_{0}(t, s)$ and $U(t, s)$ are represented as $e^{-i(t-s) H_{0}}$ and $e^{-i(t-s) H}$, respectively. We need the following assumption (V2) on V, which is stronger than ($V 1$) in terms of the regularity of V :
$(V 2) V$ is written as the sum of real-valued functions $V^{\text {s }}$ and V^{1}, and that $V^{\text {s }}$ and V^{1} satisfy the following conditions: V^{s} belongs to $C^{2}\left(\boldsymbol{R}^{2}\right)$, and satisfies $\left|\partial^{\alpha} V^{\mathrm{s}}(x)\right| \leq C_{2}$ with $|\alpha|=2$ in addition to (1.17), where C_{2} is a non-negative constant. V^{1} belongs to $C^{2}\left(\boldsymbol{R}^{2}\right)$, and satisfies $\left|\partial^{\alpha} V^{1}(x)\right| \leq \tilde{C}_{2}$ with $|\alpha|=2$ in addition to (1.18), where \tilde{C}_{2} is a non-negative constant.
The result of the asymptotic completeness obtained in this article is as follows:
Theorem 1.3 (Adachi-Kawamoto [1]). Suppose that (V2) is satisfied, and that $E(t)$ is written as $E_{0, \theta}(t) \equiv E_{0}(\cos \theta, \sin \theta)$ with $\theta \in[0,2 \pi)$. Assume further the short-range condition $V^{1}=0$. Then $W^{ \pm}$are asymptotically complete, that is,

$$
\begin{equation*}
\operatorname{Ran} W^{ \pm}=L_{\mathrm{c}}^{2}(H) \tag{1.22}
\end{equation*}
$$

where $L_{\mathrm{c}}^{2}(H)$ is the continuous spectral subspace of the Hamiltonian H.
Unfortunately the long-range case cannot be dealt with by our analysis. The propagation estimates obtained in this article (see e.g. Proposition 4.4) are not sufficient for the study of the long-range case.
In considering the case where $\nu=-\omega$, the rotating frame is useful: For $x=\left(x_{1}, x_{2}\right) \in \boldsymbol{R}^{2}$, we define $\hat{R}(\omega t)^{-1} x=\left(\left(\hat{R}(\omega t)^{-1} x\right)_{1},\left(\hat{R}(\omega t)^{-1} x\right)_{2}\right)$ by

$$
\binom{\left(\hat{R}(\omega t)^{-1} x\right)_{1}}{\left(\hat{R}(\omega t)^{-1} x\right)_{2}}=\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right)^{-1}\binom{x_{1}}{x_{2}}
$$

and put $L=x_{1} p_{2}-x_{2} p_{1}$, which is called the angular momentum. Then $e^{-i \omega t L}$ can be represented as

$$
\left(e^{-i \omega t L} \phi\right)(x)=\phi\left(\hat{R}(\omega t)^{-1} x\right)
$$

(see e.g. Enss-Kostrykin-Schrader [11]). Let $\Psi(t, x)$ be a solution of the Schrödinger equation

$$
i \partial_{t} \Psi(t)=H(t) \Psi(t), \quad H(t)=H_{0, L}-q E_{-\omega, \theta}(t) \cdot x+V(x)
$$

For such a $\Psi(t, x)$, put

$$
\Phi(t, x)=\left(e^{-i \omega t L} \Psi(t)\right)(x)=\Psi\left(t, \hat{R}(\omega t)^{-1} x\right) .
$$

Then one can see that $\Phi(t, x)$ satisfies the Schrödinger equation

$$
i \partial_{t} \Phi(t)=\hat{H}(t) \Phi(t), \quad \hat{H}(t)=\omega L+e^{-i \omega t L} H(t) e^{i \omega t L}
$$

By a straightforward calculation, we have

$$
\begin{aligned}
\hat{H}(t) & =\omega L+H_{0, L}-q E_{-\omega, \theta}(t) \cdot\left(\hat{R}(\omega t)^{-1} x\right)+V\left(\hat{R}(\omega t)^{-1} x\right) \\
& =(p+q A(x))^{2} /(2 m)-q E_{0, \theta}(t) \cdot x+V\left(\hat{R}(\omega t)^{-1} x\right) \\
& =(p+q A(x))^{2} /(2 m)-q E_{0}(\cos \theta, \sin \theta) \cdot x+V\left(\hat{R}(\omega t)^{-1} x\right) \\
& =\hat{H}_{0}+V\left(\hat{R}(\omega t)^{-1} x\right) .
\end{aligned}
$$

Here we used

$$
H_{0, L}=p^{2} /(2 m)+m \omega^{2} x^{2} / 8-\omega L / 2 .
$$

Hence we see that the problem under consideration can be reduced to the one in the case where $\nu=0$, the magnetic field is given by $-\boldsymbol{B}$, and the potential is given as the rotating potential $V\left(\hat{R}(\omega t)^{-1} x\right)$, which is periodic in time. In particular, in the case where the regular shortrange potential V is radial, that is, V depends on $|x|$ only, the asymptotic completeness can be guaranteed by virtue of Theorem 1.3, because $V\left(\hat{R}(\omega t)^{-1} x\right) \equiv V(x)$.

In the same way as above, the scattering problems for the Hamiltonian perturbed by the rotating potential $V(\hat{R}(\omega t) x)$

$$
\tilde{H}(t)=H_{0, L}-q E_{-\omega, \theta}(t) \cdot x+V(\hat{R}(\omega t) x)
$$

can be reduced to the ones for the time-independent Hamiltonian

$$
\hat{H}=\hat{H}_{0}+V(x) .
$$

Then the asymptotic completeness can be guaranteed by virtue of Theorem 1.3, even if the regular short-range potential V is not radial.

2 Avron-Herbst type formula

We first give the differential equations which $a(t), b(t)$ and $c(t)$ in (1.9) should satisfy with the initial conditions $a(0)=0$ and $b(0)=c(0)=0$, by formal observation: Suppose that (1.9) holds. By differentiating (1.9) in t formally, one can obtain

$$
i \dot{U}_{0}(t, 0)=e^{-i a(t)} e^{i b(t) \cdot x} T(c(t)) H_{0, L} e^{-i t H_{0, L}}
$$

$$
\begin{aligned}
&+e^{-i a(t)} e^{i(t(t) \cdot x} e^{-i c(t) \cdot q A(x)}(\dot{c}(t) \cdot p) e^{-i c(t) \cdot p} e^{-i t H_{0, L}} \\
&+(\dot{a}(t)-\dot{b}(t) \cdot x+\dot{c}(t) \cdot q A(x)) U_{0}(t, 0) .
\end{aligned}
$$

Here we note that $H_{0, L}=D^{2} /(2 m)$ commutes with $T(c(t))$ since the magnetic translation $T(c(t))$ is generated by the pseudomomentum k which commutes with D as mentioned before, and that $e^{-i c(t) \cdot q A(x)} p e^{i c(t) \cdot q A(x)}=p-q A(c(t))$ since $c(t) \cdot q A(x)=-q A(c(t)) \cdot x$. Thus one has

$$
\begin{aligned}
H_{0}(t)= & (p-b(t)-q A(x))^{2} /(2 m)+\dot{c}(t) \cdot(p-b(t)-q A(c(t))) \\
& +\dot{a}(t)-\dot{b}(t) \cdot x+\dot{c}(t) \cdot q A(x) \\
= & H_{0, L}+(-b(t) / m+\dot{c}(t)) \cdot(p-q A(x))-(\dot{b}(t)+2 q A(\dot{c}(t))) \cdot x \\
& +\dot{a}(t)-\dot{c}(t) \cdot(b(t)+q A(c(t)))+b(t)^{2} /(2 m)
\end{aligned}
$$

since $i \dot{U}_{0}(t, 0)=H_{0}(t) U_{0}(t, 0)$ and $\dot{c}(t) \cdot q A(x)=-q A(\dot{c}(t)) \cdot x$. It follows from this that

$$
\begin{gathered}
-b(t) / m+\dot{c}(t)=0, \quad \dot{b}(t)+2 q A(\dot{c}(t))=q E(t), \\
\dot{a}(t)-\dot{c}(t) \cdot(b(t)+q A(c(t)))+b(t)^{2} /(2 m)=0
\end{gathered}
$$

Thus one obtain the differential equations

$$
\left\{\begin{array}{l}
\dot{b}(t)+2 q A(b(t)) / m=q E(t) \tag{2.1}\\
\dot{c}(t)=b(t) / m \\
\dot{a}(t)=b(t)^{2} /(2 m)+b(t) \cdot q A(c(t)) / m
\end{array}\right.
$$

for $a(t), b(t)$ and $c(t)$. The first equation of (2.1) is written as

$$
\frac{d}{d t}\binom{b_{1}(t)}{b_{2}(t)}+\left(\begin{array}{cc}
0 & -\omega \tag{2.2}\\
\omega & 0
\end{array}\right)\binom{b_{1}(t)}{b_{2}(t)}=\binom{q E_{1}(t)}{q E_{2}(t)}
$$

with $\omega=q B / m$. Thus, by putting

$$
\binom{\tilde{b}_{1}(t)}{\tilde{b}_{2}(t)}=\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \\
\sin \omega t & \cos \omega t
\end{array}\right)\binom{b_{1}(t)}{b_{2}(t)},
$$

the equation (2.2) can be reduced to

$$
\frac{d}{d t}\binom{\tilde{b}_{1}(t)}{\tilde{b}_{2}(t)}=\left(\begin{array}{cc}
\cos \omega t & -\sin \omega t \tag{2.3}\\
\sin \omega t & \cos \omega t
\end{array}\right)\binom{q E_{1}(t)}{q E_{2}(t)}
$$

as is well known. Therefore the solution of (2.1) with the initial conditions $a(0)=0$ and $b(0)=c(0)=0$ is given by (1.10). This fact yields Theorem 1.1. As for the detailed proof, see [1].

Remark 2.1. Recently Asai [2] has used the Avron-Herbst type formula in Theorem 1.1 in the study of the existence of the wave operators in the case where $E(t)$ is given by

$$
E(t)=E_{0}(1+|t|)^{-\mu}(\cos (\nu t+\theta), \sin (\nu t+\theta))+\bar{E}(t)
$$

where $0<\mu<1, \nu \in\{0,-\omega\}$, and $\bar{E}(t)=\left(\bar{E}_{1}(t), \bar{E}_{2}(t)\right)$ satisfies

$$
\left|\int_{0}^{t}\left(\begin{array}{cc}
1-\cos \omega(t-s) & -\sin \omega(t-s) \tag{2.4}\\
\sin \omega(t-s) & 1-\cos \omega(t-s)
\end{array}\right)\binom{\bar{\alpha}_{1}(s)}{\bar{\alpha}_{2}(s)} d s\right| \leq C_{\bar{E}} \min \left\{|t|,|t|^{1-\mu_{1}}\right\}
$$

with some μ_{1} such that $\mu<\mu_{1} \leq 1$, where $\bar{\alpha}(t)=\left(\bar{\alpha}_{1}(t), \bar{\alpha}_{2}(t)\right)=\left(\bar{E}_{2}(t) / B,-\bar{E}_{1}(t) / B\right)$. Then, by virtue of (1.15), one can see that $|c(t)|$ is growing of order $|t|^{1-\mu}$, which implies that the potential $V(x)$ satisfying $|V(x)| \leq C\langle x\rangle^{-\rho}$ with $\rho>1 /(1-\mu)$ is of short-range. One of the typical examples of such $\bar{E}(t)$'s is the one satisfying $|\bar{E}(t)| \leq C(1+|t|)^{-\mu_{2}}$ with $\mu_{2}>\mu$. However, $\bar{E}(t)=E_{\nu, \theta}(t)$ with $\nu \in \boldsymbol{R} \backslash\{0,-\omega\}$ also satisfies (2.4) with $\mu_{1}=1$ as is seen above, which implies that the "perturbation" term $\bar{E}(t)$ is not necessarily decaying faster than the "leading" term $E_{0}(1+|t|)^{-\mu}(\cos (\nu t+\theta), \sin (\nu t+\theta))$ of $E(t)$.

3 Existence of wave operators

In the present and next sections, we sometimes use the following convention for smooth cut-off functions F_{δ} with $0 \leq F_{\delta} \leq 1$ for sufficiently small $\delta>0$: We define

$$
\begin{aligned}
& F_{\delta}(s \leq d)=1 \quad \text { for } s \leq d-\delta, \quad=0 \text { for } s \geq d \\
& F_{\delta}(s \geq d)=1 \text { for } s \geq d+\delta, \quad=0 \text { for } s \leq d
\end{aligned}
$$

and $F_{\delta}\left(d_{1} \leq s \leq d_{2}\right)=F_{\delta}\left(s \geq d_{1}\right) F_{\delta}\left(s \leq d_{2}\right)$.
Throughout this section, we suppose that $(V 1)$ is satisfied, and that $E(t)=E_{\nu, \theta}(t)=$ $E_{0}(\cos (\nu t+\theta), \sin (\nu t+\theta))$ with $\nu \in\{0,-\omega\}$ and $\theta \in[0,2 \pi)$. Then it follows from (1.13) and (1.14) that

$$
|c(t)| \geq 9 E_{0}|t| /(10 B)
$$

for $|t| \geq 20 /|\omega|$, because

$$
\left|E_{0}((\delta \cos)(-\omega t),(\delta \sin)(-\omega t)) /(\omega B)\right|=2 E_{0}|\sin (-\omega t / 2)| /(|\omega| B) \leq 2 E_{0} /(|\omega| B)
$$ and $|\alpha|=E_{0} / B$.

The following propagation estimate for $U_{0}(t, 0)$ is useful for the proof of Theorem 1.2.
Proposition 3.1. Let $\phi \in \mathscr{D}\left(\left(p^{2}+x^{2}\right)^{N}\right)$ with $N \in N, \epsilon>0$ and $\sigma>0$. Then

$$
\begin{equation*}
\left\|F_{\epsilon}\left(t^{-\sigma}|x-c(t)| \geq \epsilon\right) U_{0}(t, 0) \phi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}=O\left(t^{-2 N \sigma}\right) \tag{3.1}
\end{equation*}
$$

holds as $t \rightarrow \infty$.

In the proof, we have only to use

$$
U_{0}(t, 0)^{*} F_{\epsilon}\left(t^{-\sigma}|x-c(t)| \geq \epsilon\right) U_{0}(t, 0)=e^{i t H_{0, L}} F_{\epsilon}\left(t^{-\sigma}|x| \geq \epsilon\right) e^{-i t H_{0, L}}
$$

by virtue of the Avron-Herbst type formula (1.9). As for the detailed proof, see [1].
Now we state the outline of the proof of Theorem 1.2. We first consider the case where $V^{1}=0$. By density argument, one has only to prove the existence of $W^{+} \phi$ for $\phi \in \mathscr{S}\left(\boldsymbol{R}^{2}\right)$. Let $f \in C_{0}^{\infty}\left(\boldsymbol{R}^{2}\right)$ be such that $0 \leq f \leq 1, f(x)=1$ for $|x| \leq 1$ and $f(x)=0$ for $|x| \geq 2$, and σ be such that $0<\sigma<1$. Put $g=1-f$. Then we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U(t, 0)^{*} g\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) \phi=0 \tag{3.2}
\end{equation*}
$$

by virtue of Proposition 3.1. Thus we have only to prove the existence of

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U(t, 0)^{*} f\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) \phi \tag{3.3}
\end{equation*}
$$

Here we note that on the support of $f\left(t^{-\sigma}(x-c(t))\right)$,

$$
|x| \geq|c(t)|-|x-c(t)| \geq|c(t)|-2 t^{\sigma}
$$

holds, and that $|c(t)| \geq 9 E_{0} t /(10 B)$ for $t \geq 20 /|\omega|$ as mentioned above. Thus we see that

$$
V f\left(t^{-\sigma}(x-c(t))\right)=O\left(t^{-\rho_{\mathrm{s}, 0}}\right)
$$

as $t \rightarrow \infty$ by the assumption on V and $\sigma<1$. By virtue of this and Proposition 3.1, one can obtain

$$
\frac{d}{d t}\left(U(t, 0)^{*} f\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) \phi\right)=O\left(t^{-\rho_{s, 0}}\right)+O\left(t^{-(2 N+1) \sigma}\right)
$$

By taking $N \in \boldsymbol{N}$ so large that $(2 N+1) \sigma>1$, one can show the existence of (3.3) because of $\rho_{\mathrm{s}, 0}>1$ and $(2 N+1) \sigma>1$, by virtue of the Cook-Kuroda method.

We next consider the case where $V^{1} \neq 0$. By density argument, one has only to prove the existence of $W_{G}^{+} \phi$ for $\phi \in \mathscr{S}\left(\boldsymbol{R}^{2}\right)$. Let σ be such that $0<\sigma<\rho_{1} \leq 1$. In the same way as in the case where $V^{1}=0$, we see that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U(t, 0)^{*} g\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) e^{-i \int_{0}^{t} V^{1}(c(s)) d s} \phi=0 \tag{3.4}
\end{equation*}
$$

by virtue of Proposition 3.1. Here we note that the modifier $e^{-i \int_{0}^{t} V^{1}(c(s)) d s}$ commutes with $U_{0}(t, 0)$. Thus we have only to prove the existence of

$$
\begin{equation*}
\lim _{t \rightarrow \infty} U(t, 0)^{*} f\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) e^{-i \int_{0}^{t} V^{1}(c(s)) d s} \phi \tag{3.5}
\end{equation*}
$$

To this end, we will estimate $\left(V^{1}(x)-V^{1}(c(t))\right) f\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) e^{-i \int_{0}^{t} V^{1}(c(s)) d s} \phi$. We put $V_{1}(t, x)=V^{1}(x) g\left(5 B x /\left(2 E_{0} t\right)\right)$. Then

$$
\left(V^{1}(x)-V^{1}(c(t))\right) f\left(t^{-\sigma}(x-c(t))\right)=\left(V_{1}(t, x)-V_{1}(t, c(t))\right) f\left(t^{-\sigma}(x-c(t))\right)
$$

holds for $t \geq \max \left\{20 /|\omega|,\left(20 B / E_{0}\right)^{1 /(1-\sigma)}\right\}$, since $g\left(5 B x /\left(2 E_{0} t\right)\right)=1$ for $|x| \geq 4 E_{0} t /(5 B)$, and $|c(t)| \geq 9 E_{0} t /(10 B)$ for $t \geq 20 /|\omega|$ as mentioned above. By rewriting $V_{1}(t, x)-$ $V_{1}(t, c(t))$ as

$$
V_{1}(t, x)-V_{1}(t, c(t))=\int_{0}^{1}\left(\nabla V_{1}\right)(t, c(t)+\tau(x-c(t))) \cdot(x-c(t)) d \tau
$$

and taking account of $\sup _{y \in \boldsymbol{R}^{2}}\left|\left(\nabla V_{1}\right)(t, y)\right|=O\left(t^{-1-\rho_{1}}\right)$ by the definition of V_{1} and the assumption on V^{1}, we have

$$
\left(V^{1}(x)-V^{1}(c(t))\right) f\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) e^{-i \int_{0}^{t} V^{1}(c(s)) d s} \phi=O\left(t^{-1-\rho_{1}+\sigma}\right)
$$

Therefore, in the same way as in the case where $V^{1}=0$, we obtain

$$
\left.\begin{array}{rl}
& \frac{d}{d t}\left(U(t, 0)^{*} f\left(t^{-\sigma}(x-c(t))\right) U_{0}(t, 0) e^{-i} \int_{0}^{t} V^{1}(c(s)) d s\right.
\end{array}\right)
$$

for any $N \in \boldsymbol{N}$. By taking $N \in \boldsymbol{N}$ so large that $(2 N+1) \sigma>1$, one can show the existence of (3.5) because of $\rho_{\mathrm{s}, 0}>1,(2 N+1) \sigma>1$ and $1+\rho_{\mathrm{l}}-\sigma>1$, by virtue of the Cook-Kuroda method. As for the detailed proof of Theorem 1.2, see [1].

4 Asymptotic completeness

Throughout this section, we suppose that $E(t)=E_{0, \theta}(t) \equiv E_{0}(\cos \theta, \sin \theta)$. Then we write $E(t), H_{0}(t)$ and $H(t)$ as

$$
E=\left(E_{1}, E_{2}\right), \quad H_{0}=H_{0, L}-q E \cdot x, \quad H=H_{0}+V,
$$

respectively, because $E(t), H_{0}(t)$ and $H(t)$ are independent of t in this case. Since $H_{0}=$ $(D-m \alpha)^{2} /(2 m)+\alpha \cdot k-m \alpha^{2} / 2$ (see (1.3)) and V is H_{0}-compact under the assumption $(V 1)$, we see that

$$
\sigma\left(H_{0}\right)=\sigma_{\mathrm{ess}}\left(H_{0}\right)=\boldsymbol{R}, \quad \sigma(H)=\sigma_{\mathrm{ess}}(H)=\boldsymbol{R}
$$

because of $\alpha \neq 0$, by virtue of the Weyl theorem. The following result can be obtained by virtue of the Mourre theory:

Proposition 4.1. Suppose that $(V 1)$ is satisfied. Then the pure point spectrum $\sigma_{\mathrm{pp}}(H)$ of H is at most countable, and has no accumulation point. Each eigenvalue of H has at most finite multiplicity.

In fact, putting $\tilde{A}=q E \cdot k$, we have the Mourre estimate

$$
\begin{equation*}
f(H) i[H, \tilde{A}] f(H)=q^{2}|E|^{2} f(H)^{2}+K_{f} \tag{4.1}
\end{equation*}
$$

where $f \in C_{0}^{\infty}(\boldsymbol{R} ; \boldsymbol{R})$ and $K_{f}=-f(H) q E \cdot(\nabla V) f(H)$, which is compact on $L^{2}\left(\boldsymbol{R}^{2}\right)$.
In obtaining some useful propagation estimates for $e^{-i t H}$, we need the assumption ($V 2$). Here we note that $[H, \tilde{A}]$ and $[[H, \tilde{A}], \tilde{A}]$ are bounded under the assumption $(V 2)$:

Proposition 4.2. Suppose that ($V 2$) is satisfied. Let $c_{0}, c_{1} \in \boldsymbol{R}$ be such that $c_{0}<c_{1}<q^{2}|E|^{2}$, and let $\epsilon>0$. Then for any real-valued $f \in C_{0}^{\infty}\left(\boldsymbol{R} \backslash \sigma_{\mathrm{pp}}(H)\right)$, there exists $C>0$ such that

$$
\begin{equation*}
\int_{1}^{\infty}\left\|F_{\epsilon}\left(c_{0} \leq \tilde{A} / t \leq c_{1}\right) f(H) e^{-i t H} \psi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}^{2} \frac{d t}{t} \leq C\|\psi\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}^{2} \tag{4.2}
\end{equation*}
$$

for any $\psi \in L^{2}\left(\boldsymbol{R}^{2}\right)$. Moreover,

$$
\begin{equation*}
\int_{1}^{\infty}\left\|F_{\epsilon}\left(\tilde{A} / t \leq c_{1}\right) f(H) e^{-i t H} \psi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}^{2} \frac{d t}{t}<\infty \tag{4.3}
\end{equation*}
$$

for any $\psi \in \mathscr{D}\left(\langle\tilde{A}\rangle^{1 / 2}\right)$.
Proposition 4.3. Suppose that $(V 2)$ is satisfied. Let $c_{1} \in \boldsymbol{R}$ be such that $c_{1}<q^{2}|E|^{2}$, and let $\epsilon>0$. Then for any real-valued $f \in C_{0}^{\infty}\left(\boldsymbol{R} \backslash \sigma_{\mathrm{pp}}(H)\right)$,

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\operatorname{s-lim}} F_{\epsilon}\left(\tilde{A} / t \leq c_{1}\right) f(H) e^{-i t H}=0 \tag{4.4}
\end{equation*}
$$

holds.
These can be shown in the same way as in Sigal-Soffer [20].
Taking account of

$$
q E \cdot(k-D)=2 q^{2} E \cdot A(x)=-2 q^{2} A(E) \cdot x=q^{2} B^{2} \alpha \cdot x
$$

we have

$$
\begin{align*}
& \left\{F_{\epsilon}\left(c_{0} \leq \tilde{A} / t \leq c_{1}\right)-F_{\epsilon}\left(c_{0} \leq q^{2} B^{2} \alpha \cdot x / t \leq c_{1}\right)\right\} f(H)=O\left(t^{-1}\right) \\
& \left\{F_{\epsilon}\left(\tilde{A} / t \leq c_{1}\right)-F_{\epsilon}\left(q^{2} B^{2} \alpha \cdot x / t \leq c_{1}\right)\right\} f(H)=O\left(t^{-1}\right) \tag{4.5}
\end{align*}
$$

Hence the next proposition follows from (4.5), Propositions 4.2 and 4.3 immediately:
Proposition 4.4. Suppose that $(V 2)$ is satisfied. Let $c_{0}, c_{1} \in \boldsymbol{R}$ be such that $c_{0}<c_{1}<q^{2}|E|^{2}$, and let $\epsilon>0$. Then for any real-valued $f \in C_{0}^{\infty}\left(\boldsymbol{R} \backslash \sigma_{\mathrm{pp}}(H)\right)$, there exists $C>0$ such that

$$
\begin{equation*}
\int_{1}^{\infty}\left\|F_{\epsilon}\left(c_{0} \leq q^{2} B^{2} \alpha \cdot x / t \leq c_{1}\right) f(H) e^{-i t H} \psi\right\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}^{2} \frac{d t}{t} \leq C\|\psi\|_{L^{2}\left(\boldsymbol{R}^{2}\right)}^{2} \tag{4.6}
\end{equation*}
$$

for any $\psi \in L^{2}\left(\boldsymbol{R}^{2}\right)$. Moreover,

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\mathrm{~s}-\lim _{\epsilon}} F_{\epsilon}\left(q^{2} B^{2} \alpha \cdot x / t \leq c_{1}\right) f(H) e^{-i t H}=0 \tag{4.7}
\end{equation*}
$$

holds.

Now we will state the outline of the proof of Theorem 1.3: We put $\varepsilon=|\alpha| / 10=|E| /(10 B)$ and $\hat{\alpha}=\alpha /|\alpha|$. Since $|c(t)-t \alpha| \leq 2|E| /(|\omega| B)$ (see $\S 1$), we see that $\hat{\alpha} \cdot t \alpha / t=|\alpha|=10 \varepsilon$ and

$$
\begin{equation*}
\hat{\alpha} \cdot c(t) / t \geq|\alpha|-2|E| /(|\omega| B t) \geq 9 \varepsilon \tag{4.8}
\end{equation*}
$$

for $t \geq 20 /|\omega|$, which is important for understanding the behavior of the charged particle.
Here we note that besides ($V 2$), the short-range condition $V^{1}=0$ is assumed in Theorem 1.3. As is well known, one has only to prove the existence of

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\mathrm{~s}-\lim ^{i t H_{0}}} e^{-i t H} P_{\mathrm{c}}(H) \tag{4.9}
\end{equation*}
$$

where $P_{\mathrm{c}}(H)$ is the spectral projection onto the continuous spectral subspace $L_{\mathrm{c}}^{2}(H)$ of the Hamiltonian H. To this end, we will show the existence of
for any real-valued $f \in C_{0}^{\infty}\left(\boldsymbol{R} \backslash \sigma_{\mathrm{pp}}(H)\right)$. By virtue of (4.7), we have

$$
\begin{equation*}
\underset{t \rightarrow \infty}{s_{-l i m}} e^{i t H_{0}} F_{\varepsilon}(\hat{\alpha} \cdot x / t \leq 8 \varepsilon) f(H) e^{-i t H}=0 . \tag{4.11}
\end{equation*}
$$

Taking account of that $1-F_{\varepsilon}(\hat{\alpha} \cdot x / t \leq 8 \varepsilon)$ may be written as $F_{\varepsilon}(\hat{\alpha} \cdot x / t \geq 7 \varepsilon)$ by definition, we have only to prove the existence of

$$
\begin{equation*}
\operatorname{s-lim}_{t \rightarrow \infty} e^{i t H_{0}} F_{\varepsilon}(\hat{\alpha} \cdot x / t \geq 7 \varepsilon) f(H) e^{-i t H} . \tag{4.12}
\end{equation*}
$$

By taking $f_{1} \in C_{0}^{\infty}(\boldsymbol{R})$ such that $f_{1}(s) f(s)=f(s)$, one has only to show the existence of

$$
\begin{equation*}
\underset{t \rightarrow \infty}{\mathrm{~s}-\lim ^{i t H_{0}}} f_{1}\left(H_{0}\right) F_{\varepsilon}(\hat{\alpha} \cdot x / t \geq 7 \varepsilon) f(H) e^{-i t H} \tag{4.13}
\end{equation*}
$$

which can be proved by Proposition 4.4 and

$$
\begin{equation*}
V^{\mathrm{s}}(x) F_{\varepsilon}(\hat{\alpha} \cdot x / t \geq 7 \varepsilon)=O\left(t^{-\rho_{\mathrm{s}, 0}}\right) \tag{4.14}
\end{equation*}
$$

with $\rho_{\mathrm{s}, 0}>1$. This yields the asymptotic completeness of W^{+}.
In dealing with the long-range case, one needs the propagation estimates for $e^{-i t H}$ analogous to Proposition 3.1, which is much sharper than Proposition 4.4. One of the keys in the proof of Theorem 1.2 is that σ in Proposition 3.1 can be taken as $0<\sigma<\rho_{l} \leq 1$. Unfortunately such sharp estimates have not been obtained for $e^{-i t H}$ yet.

参考文献

［1］Adachi，T．and Kawamoto，M．：Avron－Herbst type formula in crossed constant magnetic and time－dependent electric fields，Lett．Math．Phys．102 65－90（2012）
［2］Asai，T．：On the existence of wave operators in the presence of crossed constant magnetic and time－decaying electric fields，MS Thesis，Kobe University（2013）（in Japanese）
［3］Amrein，W．O．，Boutet de Monvel，A．and Georgescu，V．：C_{0}－groups，commutator methods and spectral theory of N－body Hamiltonians，Progress in Mathematics，135， Birkhäuser Verlag，Basel（1996）
［4］Avron，J．E．，Herbst，I．W．and Simon，B．：Schrödinger operators with magnetic fields． I．General interactions，Duke Math．J． 45 847－883（1978）
［5］Avron，J．E．，Herbst，I．W．and Simon，B．：Separation of center of mass in homogeneous magnetic fields，Ann．Physics 114 431－451（1978）
［6］Chee，J．：Landau problem with a general time－dependent electric field，Ann．Physics 324 97－105（2009）
［7］Cycon，H．，Froese，R．G．，Kirsch，W．and Simon，B．：Schrödinger operators with appli－ cation to quantum mechanics and global geometry，Texts and Monographs in Physics， Springer Study Edition，Springer－Verlag，Berlin（1987）
［8］Dimassi，M．and Petkov，V．：Resonances for magnetic Stark Hamiltonians in two－ dimensional case，Int．Math．Res．Not． 2004 4147－4179（2004）
［9］Dimassi，M．and Petkov，V．：Spectral shift function for operators with crossed magnetic and electric fields，Rev．Math．Phys．22 355－380（2010）
［10］Dimassi，M．and Petkov，V．：Spectral problems for operators with crossed magnetic and electric fields，J．Phys．A 43474015 （2010）
［11］Enss，V．，Kostrykin，V．and Schrader，R．：Energy transfer in scattering by rotating po－ tentials，Proc．Indian Acad．Sci．Math．Sci． 112 55－70（2002）
［12］Enss，V．and Veselić，K．：Bound states and propagating states for time－dependent Hamil－ tonians，Ann．Inst．H．Poincaré Sect．A（N．S．）39 159－191（1983）
［13］Ferrari，C．and Kovařík，H．：Resonance width in crossed electric and magnetic field，J． Phys．A 37 （2004），7671－7697．
[14] Ferrari, C. and Kovařík, H.: On the exponential decay of magnetic Stark resonances, Rep. Math. Phys. 56 197-207 (2005)
[15] Gérard, C. and Łaba, I.: Multiparticle quantum scattering in constant magnetic fields, Mathematical Surveys and Monographs, 90, American Mathematical Society, Providence, RI (2002)
[16] Helffer, B. and Sjöstrand, J.: Equation de Schrödinger avec champ magnétique et équation de Harper. In: Lecture Notes in Physics 345, pp. 118-197. Springer-Verlag (1989)
[17] Herbst, I. W.: Exponential decay in the Stark effect, Comm. Math. Phys. 75 197-205 (1980)
[18] Kato, T.: Wave operators and similarity for some non-selfadjoint operators, Math. Ann. 162 258-279 (1966)
[19] Reed, M. and Simon, B.: Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, Academic Press, New York-London (1975)
[20] Sigal, I. M. and Soffer, A.: Long-range many body scattering: Asymptotic clustering for Coulomb type potentials, Invent. Math. 99 115-143 (1990)
[21] Skibsted, E.: Propagation estimates for N-body Schroedinger operators, Comm. Math. Phys. 142 67-98 (1991)
[22] Skibsted, E.: Asymptotic completeness for particles in combined constant electric and magnetic fields, II, Duke Math. J. 89 307-350 (1997)
[23] Yajima, K.: Schrödinger evolution equations with magnetic fields, J. Analyse Math. 56 29-76 (1991)

