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1 Introduction
In this article, we would like to mention the results of our paper [1], which is concemed with

the study of the quantum dynamics of a charged particle in the presence of crossed constant
magnetic and time-dependent electric fields.

We consider a quantum system of a charged particle moving in the plane $R^{2}$ in the presence
of the constant magnetic field $B$ which is perpendicular to the plane, and the time-dependent
electric field $E(t)$ which always lies in the plane. For the sake of simplicity, we write $B$

as $(0,0, B)$ with $B>0$ , and $E(t)=(E_{1}(t), E_{2}(t), 0)$ . Then the free Hamiltonian under
consideration is defined by

$H_{0}(t)=H_{0,L}-qE(t)\cdot x, H_{0,L}=(p-qA(x))^{2}/(2m)$ , (1.1)

where $m>0,$ $q\in R\backslash \{O\},$ $x=(x_{1}, x_{2})$ and $p=(p_{1},p_{2})=(-i\partial_{1}, -i\partial_{2})$ are the mass, the
charge, the position, and the usual momentum of the charged particle, respectively, and

$A(x)=(-Bx_{2}/2, Bx_{1}/2)$

is the vector potential in the symmetric gauge. Here we put $E(t)=(E_{1}(t), E_{2}(t))$ . $H_{0,L}$ is
called the free Landau Hamiltonian. It is well known that

$\sigma(H_{0,L})=\sigma_{pp}(H_{0,L})=\{|\omega|(n+1/2)|n\in N\cup\{0\}\}$

holds, where $\omega=qB/m.$ $|\omega|$ is called the Larmor frequency. Each eigenvalue of $H_{0,L}$ , which
is called a Landau level, is of infinite multiplicity (see e.g. Avron-Herbst-Simon [5]). In fact,
this can be seen as follows: First of all, we introduce the momentum $D$ and the pseudomo-
mentum $k$ of the charged particle in the presence of $B$ as

$D=p-qA(x) , k=p+qA(x)$ .

Writing $D$ and $k$ as $(D_{1}, D_{2})$ and $(k_{1}, k_{2})$ , respectively, we have

$(D_{1}, D_{2})=(p_{1}+qBx_{2}/2,p_{2}-qBx_{1}/2)$ , $(k_{1}, k_{2})=(p_{1}-qBx_{2}/2,p_{2}+qBx_{1}/2)$ .

One of the basic properties of $D$ and $k$ is that

$i[D_{1}, D_{2}]=-qB, i[k_{1}, k_{2}]=qB, i[D_{j}, k_{l}]=0(j, l\in\{1,2\})$ (1.2)
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Putting
$\tilde{U}=e^{iqBx_{1}x_{2}/2}e^{ip_{1}p_{2}/(qB)},$

we have
$\tilde{U}^{*}D_{1}\tilde{U}=qBx_{2}, \tilde{U}^{*}D_{2}\tilde{U}=p_{2},$

$\tilde{U}^{*}k_{1}\tilde{U}=p_{1}, \tilde{U}^{*}k_{2}\tilde{U}=qBx_{1}$

(see e.g. Skibsted [22]). In particular, we have

$\tilde{U}^{*}H_{0,L}\tilde{U}=$ Id $\otimes\{p_{2}^{2}/(2m)+m\omega^{2}x_{2}^{2}/2\}$

on $\tilde{U}^{*}L^{2}(R^{2})=L^{2}(R_{x_{1}})\otimes L^{2}(R_{x2})$, which implies the infinite multiplicity of each Landau
level. In order to deal with the one dimensional harmonic oscillator $p_{2}^{2}/(2m)+m\omega^{2}x_{2}^{2}/2$ , we
introduce the annihilation operator aand the creation operator $\tilde{a}^{*}$ as

$\tilde{a}=(|q|Bx_{2}+ip_{2})/\sqrt{2|q|B}, \tilde{a}^{*}=(|q|Bx_{2}-ip_{2})/\sqrt{2|q|B}.$

Then we have
$p_{2}^{2}/(2m)+m\omega^{2}x_{2}^{2}/2=|\omega|(\tilde{a}^{*}\tilde{a}+1/2)$ .

We also put

$\tilde{b}=(|q|Bx_{1}+ip_{1})/\sqrt{2|q|B}, \tilde{b}^{*}=(|q|Bx_{1}-ip_{1})/\sqrt{2|q|B},$

and introduce $a,$ $a^{*},$ $b$ and $b^{*}$ as
$a=\tilde{U}\tilde{a}\tilde{U}^{*}=(qD_{1}/|q|+iD_{2})/\sqrt{2|q|B},$ $a^{*}=\tilde{U}\tilde{a}^{*}\tilde{U}^{*}=(qD_{1}/|q|-iD_{2})/\sqrt{2|q|B},$

$b=\tilde{U}\tilde{b}\tilde{U}^{*}=(ik_{1}+qk_{2}/|q|)/\sqrt{2|q|B},$ $b^{*}=\tilde{U}\tilde{b}^{*}\tilde{U}^{*}=(-ik_{i}+qk_{2}/|q|)/\sqrt{2|q|B}.$

Then we obtain an complete orthonormal system $\{(b^{*})^{l}(a^{*})^{n}\phi_{0}/\sqrt{l!n!}\}_{(l,n)\in(N\cup\{0\})^{2}}$ of $L^{2}(R^{2})$ ,

which consists of eigenfunctions of $H_{0,L}$ , where $\phi_{0}(x)=\sqrt{|q|B}/(2\pi)e^{-|q|Bx^{2}/4}$ . In fact,
$(b^{*})^{l}(a^{*})^{n}\phi_{0}/\sqrt{l!n!}$ is an eigenfunction of $H_{0,L}$ belonging to the Landau level $|\omega|(n+1/2)$ .

We see that $H_{0}(t)$ is essentially self-adjoint on $C_{0}^{\infty}(R^{2})$ for any $t\in R$, by virtue of Kato’s
inequality associated with $H_{0,L}$ and Nelson’s commutator theorem (see e.g. Reed-Simon [19]

and G\’erard-Laba [15] $)$ . Its closure is also denoted by $H_{0}(t)$ . Then $H_{0}(t)$ can be wnitten as

$H_{0}(t)=D^{2}/(2m)-q(-qB^{2}/2)^{-1}E(t)\cdot A(k-D)$

$=D^{2}/(2m)-\alpha(t)\cdot D+\alpha(t)\cdot k$ (1.3)

$=(D-m\alpha(t))^{2}/(2m)+\alpha(t)\cdot k-m\alpha(t)^{2}/2$

where
$\alpha(t)=(\alpha_{1}(t), \alpha_{2}(t))=(E_{2}(t)/B, -E_{1}(t)/B)=-2A(E(t))/B^{2}$

is the instantaneous drift velocity of the charged particle. Here we used

$k-D=2qA(x) , A(A(x))=-(B/2)^{2}x, y\cdot A(x)=-A(y)\cdot x.$
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We note that
$(\alpha(t), 0)=E(t)\cross B/B^{2},$

and that $\alpha(t)$ is independent of the charge $q\in R\backslash \{O\}$ . We also see that when $\alpha(t)\neq 0,$

$\sigma(H_{0}(t))$ is purely absolutely continuous and

$\sigma(H_{0}(t))=R,$

by virtue of (1.3).

When $E(t)\equiv(E_{1}, E_{2})$ , that is, $E(t)$ is independent of $t$ , Skibsted [22] essentially obtained
the following factorization of the unitary propagator $U_{0}(t, s)$ generated by $H_{0}(t)$ :

$U_{0}(t, 0)=U_{1}(t)e^{-itH_{0,L}}U_{1}(0)^{*}, U_{1}(t)=e^{itm\alpha^{2}/2}e^{-it\alpha\cdot p}e^{i(tqA(\alpha)+m\alpha)\cdot x}$ , (1.4)

where
$\alpha=(\alpha_{1}, \alpha_{2})=(E_{2}/B, -E_{1}/B)=-2A(E)/B^{2}$

is the drift velocity of the charged particle, where $E=(E_{1}, E_{2})$ . Since $H_{0}(t)$ is independent
of $t$ in this case, $U_{0}(t, s)$ can be represented as $e^{-i(t-s)H_{0}}$ by writing this time-independent
Hamiltonian $H_{0}(t)$ as $H_{0}=H_{0,L}-qE\cdot x.$ $U_{i}(t)$ is a version of the Galilei transform which
reflects the effect of the magnetic field $B$ . We note that $U_{1}(0)=e^{im\alpha\cdot x}\neq$ Id because of
$\alpha\neq 0.$

After that, for a general time-dependent electric field $E(t)$ , Chee [6] proposed the following
factorization of $U_{0}(t, s)$ :

$U_{0}(t, 0)=M(R(t))e^{-itH_{0,L}}J(u(t))^{*},$

$M(R(t))=e^{i\int_{0}^{t}R(s)\cdot qA(\dot{R}(s))ds}e^{-iR(t)\cdot qA(x)}e^{-iR(t)\cdot p}$ , (1.5)

$J(u(t))=e^{i\int_{0}^{t}u(s)\cdot qA(\dot{u}(s))ds}e^{iu(t)\cdot qA(x)}e^{-iu(t)\cdot p},$

where $R(t)=(R_{1}(t), R_{2}(t))$ and $u(t)=(u_{1}(t), u_{2}(t))$ are given by

$R(t)= \int_{0}^{t}\alpha(s)ds, (\begin{array}{l}u_{l}(t)u_{2}(t)\end{array})=\int_{0}^{t}(\begin{array}{ll}cos\omega s -sin\omega ssin\omega s cos\omega s\end{array}) (\begin{array}{l}\alpha_{1}(s)\alpha_{2}(s)\end{array})ds$ , (1.6)

with $\dot{R}(t)=dR(t)/dt$ and $\dot{u}(t)=du(t)/dt$ . Here we note that $\dot{R}(t)=\alpha(t)$ , and that one has
$R(t)=t\alpha$ when $E(t)\equiv E$ . What we emphasize here is that $e^{-i\int_{0}^{t}R(s)\cdot qA(\dot{R}(s))ds}M(R(t))$ and
$e^{-i\int_{0}^{t}u(s)\cdot qA(\dot{u}(s))ds}J(u(t))$ arejust the magnetic translations $T(R(t))$ and $S(u(t))$ generated by
$k$ and $D$ , respectively, where

$T(y)=e^{-iy\cdot qA(x)}e^{-iy\cdot p}=e^{-iy\cdot k}, S(y)=e^{iy\cdot qA(x)}e^{-iy\cdot p}=e^{-iy\cdot D}$
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for $y\in R^{2}$ (see e.g. [5] and [15]). For reference, we state one of the features which distinguish
between the Galilei transform $U_{1}(t)$ and the magnetic translation $T(t\alpha)$ , where $\alpha$ is the drift
velocity:

$U_{1}(t)^{*}xU_{1}(t)=x+t\alpha, U_{1}(t)^{*}DU_{1}(t)=D+m\alpha,$

$T(t\alpha)^{*}xT(t\alpha)=x+t\alpha, T(t\alpha)^{*}DT(t\alpha)=D.$

On the other hand, in the absence of the magnetic field $B$ , it is well known that the following
factorization of $U_{0}(t, s)$ , which is called the Avron-Herbst formula, holds (see e.g. Cycon-
Froese-Kirsch-Simon [7] $)$ :

$U_{0}(t, 0)=e^{-ia^{0}(t)}e^{ib^{0}(t)\cdot x}e^{-ic^{0}(t)\cdot\rho}e^{-itK_{0}}$ , (1.7)

where $K_{0}=p^{2}/(2m)$ , and

$b^{0}(t)= \int_{0}^{t}qE(s)ds, c^{0}(t)=\int_{0}^{t}b^{0}(s)/mds, a^{0}(t)=\int_{0}^{t}b^{0}(s)^{2}/(2m)ds$. (1.8)

Inspired by these two formulas (1.5) and (1.7), we have derived an Avron-Herbst type formula
for $U_{0}(t, s)$ :

Theorem 1.1 (Adachi-Kawamoto [1]). The following Avron-Herbst type formula for $U_{0}(t, 0)$

$U_{0}(t, 0)=e^{-ia(t)}e^{ib(t)\cdot x}T(c(t))e^{-itH_{0,L}}, T(c(t))=e^{-ic(t)\cdot qA(x)}e^{-ic(t)\cdot p}$ (1.9)

holds, where $b(t)=(b_{1}(t), b_{2}(t)),$ $c(t)=(c_{1}(t), c_{2}(t))$ and $a(t)$ are given by

$(\begin{array}{l}b_{1}(t)b_{2}(t)\end{array})=\int_{0}^{t}(\begin{array}{lll}s)cos\omega(t- sin\omega(t- s)s)-sin\omega(t- cos\omega(t- s)\end{array}) (\begin{array}{l}qE_{l}(s)qE_{2}(s)\end{array})ds$,
(1.10)

$c(t)= \int_{0}^{t}b(s)/mds, a(t)=\int_{0}^{t}\{b(s)^{2}/(2m)+b(s)\cdot qA(c(s))/m\}ds.$

Here we note that by taking $B$ as $0$ formally in (1.9) and (1.10), one can obtain the Avron-
Herbst formula (1.7) in the absence of the magnetic field $B$ because $\omega=0$ and $A(x)\equiv 0.$

Hence we have obtained a natural extension of the Avron-Herbst formula to the case of the
presence of the magnetic field $B$ , by virtue of the magnetic translation $T(c(t))$ .

From now on, we will discuss a scattering problem for the free Hamiltonian $H_{0}(t)$ and the
perturbed Hamiltonian $H(t)=H_{0}(t)+V(x)$ , where the time-independent potential $V(x)$

satisfies that $|V(x)|arrow 0$ as $|x|arrow\infty.$

Now we explain an advantage of the Avron-Herbst type formula (1.9) from the point of view
of the scattering theory: Put

$E_{\nu,\theta}(t)=E_{0}(\cos(\nu t+\theta), \sin(\nu t+\theta))$
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for $E_{0}>0,$ $\nu\in R$ and $\theta\in[0,2\pi)$ . We note that $|E_{\nu,\theta}(t)|\equiv E_{0}$ . Now we consider the case
where $E(t)=E_{\nu,\theta}(t)$ . By a straightforward calculation, we have

$R(t)=\{\begin{array}{ll}-E_{0}((\delta\cos)(vt), (\delta\sin)(\nu t))/(\nu B) , \nu\neq 0,E_{0}(t\sin\theta, -t\cos\theta)/B, \nu=0,\end{array}$

$u(t)=\{\begin{array}{ll}-E_{0}((\delta\cos)(\tilde{v}t), (\delta\sin)(\tilde{\nu}t))/(\tilde{v}B) , \tilde{\nu}\neq 0,E_{0}(t\sin\theta, -t\cos\theta)/B, \tilde{\nu}=0,\end{array}$

where we put $\tilde{\nu}=\nu+\omega,$ $(\delta\cos)(s)=\cos(s+\theta)-\cos\theta$ and $(\delta\sin)(s)=\sin(s+\theta)-\sin\theta$

for the sake of brevity. Hence we see that $R(t)$ is growing of order $|t|$ when $\nu=0$ because
of $|R(t)|=E_{0}|t|/B$ although $R(t)$ is bounded in $t$ when $\nu\neq 0$ , and that $u(t)$ is growing
of order $|t|$ when $\tilde{\nu}=0$ because of $|u(t)|=E_{0}|t|/B$ although $u(t)$ is bounded in $t$ when
$\tilde{v}\neq 0$ . In consequence of (1.5) and the growth of $R(t)$ or $u(t)$ , the possibility of the existence
of scattering states for the system under consideration in the case where $v\tilde{v}=0$ is suggested:
In fact, it follows from

$(\begin{array}{ll}e^{-itH_{0,L}} D_{1}e^{itH_{0,L}}e^{-itH_{0,L}} D_{2}e^{itH_{0,L}}\end{array})=(\begin{array}{ll}cos\omega t -sin\omega tsin\omega t cos\omega t\end{array})(\begin{array}{l}D_{1}D_{2}\end{array}),$

which can be obtained by (1.2), that

$e^{-itH_{0,L}}S(u(t))^{*}=e^{-itH_{0,L}}e^{iu(t)\cdot D}=e^{i\tilde{u}(t)\cdot D}e^{-itH_{0,L}}=S(\tilde{u}(t))^{*}e^{-itH_{0,L}}$

holds, where $\tilde{u}(t)=(\tilde{u}_{1}(t),\tilde{u}_{2}(t))$ with

$(\begin{array}{l}\tilde{u}_{1}(t)\tilde{u}_{2}(t)\end{array})=(\begin{array}{ll}cos\omega t sin\omega t-sin\omega t cos\omega t\end{array})(\begin{array}{l}u_{1}(t)u_{2}(t)\end{array})$

$= \int_{0}^{t}(\begin{array}{llll}cos\omega(t- s) sin\omega(t- s)-sin\omega(t- s) cos\omega(t- s)\end{array}) (\begin{array}{l}\alpha_{1}(s)\alpha_{2}(s)\end{array})ds.$

Hence we obtain

$U_{0}(t, 0)=e^{i\int_{0}^{t}R(s)\cdot qA(\dot{R}(s))ds}e^{-i\int_{0}^{t}u(s)\cdot qA(\dot{u}(s))ds}T(R(t))S(\tilde{u}(t))^{*}e^{-itH_{0,L}}$ (1.11)

from (1.5) by a straightforward calculation. Let $\phi$ be an eigenfunction of $H_{0,L}$ belonging to
some Landau level $\lambda$ . Here we note that

$\Vert F(|x|\leq Ct)U_{0}(t, 0)\phi\Vert_{L^{2}(R^{2})}=\Vert F(|x+R(t)-\tilde{u}(t)|\leq Ct)\phi\Vert_{L^{2}(R^{2})}$

for $t>0$ , and $|\tilde{u}(t)|=|u(t)|$ , where $F(|x|\leq Ct)$ stands for the characteristic function of the
set $\{x\in R^{2}||x|\leq Ct\}$ . In the case where $v\tilde{\nu}=0,$ $|R(t)-\tilde{u}(t)|\geq 3E_{0}t/(4B)$ holds for
sufficiently large $t>0$ . Then, by taking $C$ as $E_{0}/(2B)$ , we obtain

$\Vert F(|x|\leq E_{0}t/(2B))U_{0}(t, 0)\phi\Vert_{L^{2}(R^{2})}\leq\Vert F(|x|\geq E_{0}t/(4B))\phi\Vert_{L^{2}(R^{2})}arrow 0$
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as $tarrow\infty$ , by virtue of the triangle inequality. This suggests the possibility of the existence
of scattering states in the case where $\nu\tilde{\nu}=0$ . As is well known, the case where $\tilde{\nu}=0$ , that
is, $\nu=-\omega$ , is closely related with the phenomenon of the cyclotron resonance. The formula
(1.11) can be also obtained by the idea of Enss-Veseli\v{c} [12]: We first introduce

$\hat{H}_{0}(t)=\hat{H}_{0,\hat{\omega}}-f(t)z+\hat{g}(t)p_{z}, \hat{H}_{0,\hat{\omega}}=p_{z}^{2}/(2m)+m\hat{\omega}^{2}z^{2}/2$

acting on $L^{2}(R_{z})$ , where $z\in R$ and $p_{z}=-id/dz$ . Then one can obtain a factorization of the
propagator $\hat{U}_{0}(t, s)$ generated by $\hat{H}_{0}(t)$ :

$\hat{U}_{0}(t, 0)=e^{-i\hat{a}(t)}e^{i\hat{b}(t)z}e^{-i\hat{c}(t)p_{z}}e^{-it\hat{H}_{0,\hat{\omega}}}.$

In fact, the differential equations which $\hat{a}(t),\hat{b}(t)$ and $\hat{c}(t)$ should obey are as follows:

$\{\begin{array}{l}[Matrix]=[Matrix][Matrix]+[Matrix],\hat{a}(t)=\hat{b}(t)\hat{c}(t)-\hat{b}(t)^{2}/(2m)-m\hat{\omega}^{2}\hat{c}(t)^{2}/2\end{array}$

with $\hat{a}(0)=\hat{b}(0)=\hat{c}(0)=0$ . Then one can obtain

$(\begin{array}{l}\hat{b}(t)\hat{c}(t)\end{array})=\int_{0}^{t}(\begin{array}{llll}cos\hat{\omega}(t- s) -m\hat{\omega}sin\hat{\omega}(t- s)s)/(m\hat{\omega})sin\hat{\omega}(t- s) cos\hat{\omega}(t- \end{array}) (\begin{array}{l}\hat{f}(s)\hat{g}(s)\end{array})ds$ (1.12)

by a straightforward calculation. Here we note that $H_{0}(t)=H_{0,L}-\alpha(t)\cdot D+\alpha(t)\cdot k$ holds
(see (1.3)). Using $\tilde{U}^{*}H_{0}(t)\tilde{U}=\hat{H}_{0,\omega}-\alpha(t)\cdot\tilde{D}+\alpha(t)\cdot\tilde{k}$ with $z=x_{2},\tilde{D}=(qBx_{2},p_{2})$ and
$\tilde{k}=(p_{1}, qBx_{1})$ , we obtain

$\tilde{U}^{*}U_{0}(t, 0)\tilde{U}=\check{T}(t, 0)e^{-i\hat{a}(t)}e^{i\hat{b}(t)x_{2}}e^{-i\hat{c}(t)p_{2}}e^{-it\hat{H}_{0,\omega}}$

with $\hat{f}(t)=qB\alpha_{1}(t)=qE_{2}(t),\hat{g}(t)=-\alpha_{2}(t)=E_{1}(t)/B$ and $R(t)= \int_{0}^{t}\alpha(s)ds$, where
$\check{T}(t, s)$ is the propagator generated by $\alpha(t)\cdot\tilde{k}=\alpha_{1}(t)p_{1}+qB\alpha_{2}(t)x_{1}$ . In the same way as
above, we obtain the following representation of $\check{T}(t, 0)$ :

$\check{T}(t, 0)=e^{-i\check{a}(t)}e^{-i\check{b}(t)x1}e^{-i\check{c}(t)p_{1}},$

$\check{b}(t)=qBR_{2}(t) , \check{c}(t)=R_{1}(t) , \check{a}(t)=-\int_{0}^{t}qBR_{2}(s)\alpha_{1}(s)ds.$

Noting that $qB=m\omega$ and using the Baker-Campbell-Hausdorff formula, we have

$U_{0}(t, 0)=e^{-i\check{a}(t)}e^{-i\check{b}(t)k_{2}/(qB)}e^{-i\check{c}(t)k_{1}}e^{-i\hat{a}(t)}e^{i\hat{b}(t)D_{1}/(qB)}e^{-i\hat{c}(t)D_{2}}e^{-itH_{0,L}}$

$=e^{-i(\check{a}(t)+\check{b}(t)\check{\v{c}}(t)/2)}e^{-i(\hat{a}(t)-\hat{b}(t)\hat{c}(t)/2)}T(R(t))S(\tilde{u}(t))e^{-itH_{0,L}}$
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with

$(\begin{array}{l}\tilde{u}_{1}(t)\tilde{u}_{2}(t)\end{array})=(\begin{array}{l}\hat{b}(t)/(qB)-\hat{c}(t)\end{array})=\int_{0}^{t}(\begin{array}{llll}cos\omega(t- s) sin\omega(t- s)-sin\omega(t- s) cos\omega(t- s)\end{array}) (\begin{array}{l}\alpha_{1}(s)\alpha_{2}(s)\end{array})ds.$

By a straightforward calculation, we also have

$- \frac{d}{dt}(\check{a}(t)+\check{b}(t)\check{c}(t)/2)=R(t)\cdot qA(\dot{R}(t))$ , $\frac{d}{dt}(\hat{a}(t)-\hat{b}(t)\hat{c}(t)/2)=u(t)\cdot qA(\dot{u}(t))$ ,

which yields (1.11).

Now we will make a similar calculation on $c(t)$ . In fact, we have

$b_{1}(t)=\{\begin{array}{ll}qE_{0}\{\sin(\nu t+\theta)-\sin(-\omega t+\theta)\}/\tilde{\nu}, \tilde{v}\neq0,qE_{0}t\cos(-\omega t+\theta) , \tilde{\nu}=0,\end{array}$

$b_{2}(t)=\{\begin{array}{ll}-qE_{0}\{\cos(vt+\theta)-\cos(-\omega t+\theta)\}/\tilde{\nu}, \tilde{\nu}\neq0,qE_{0}t\sin(-\omega t+\theta) , \tilde{\nu}=0,\end{array}$

as for $b(t)$ . Here we used $\tilde{v}-\omega=\nu$ . Hence we have

$c_{1}(t)=\{\begin{array}{ll}-(\omega/\tilde{\nu})E_{0}\{(\delta\cos)(\nu t)/v+(\delta\cos)(-\omega t)/\omega\}/B, \nu\tilde{\nu}\neq 0,E_{0}\{t\sin\theta-(\delta\cos)(-\omega t)/\omega\}/B, v=0,E_{0}\{-t\sin(-\omega t+\theta)+(\delta\cos)(-\omega t)/\omega\}/B, \tilde{\nu}=0,\end{array}$

$c_{2}(t)=\{\begin{array}{ll}-(\omega/\tilde{\nu})E_{0}\{(\delta\sin)(\nu t)/\nu+(\delta\sin)(-\omega t)/\omega\}/B, \nu\tilde{\nu}\neq 0,E_{0}\{-t\cos\theta-(\delta\sin)(-\omega t)/\omega\}/B, v=0,E_{0}\{t\cos(-\omega t+\theta)+(\delta\sin)(-\omega t)/\omega\}/B, \tilde{\nu}=0,\end{array}$

where we used $\omega=qB/m$ . Hence we see that $c(t)$ is growing of order $|t|$ when $v\tilde{\nu}=0,$

although $c(t)$ is bounded in $t$ when $v\tilde{v}\neq 0$ . We note that when $\nu=0,$

$c(t)-E_{0}(-(\delta\cos)(-\omega t), -(\delta\sin)(-\omega t))/(\omega B)=t\alpha$ (1.13)

holds by $(E_{1}, E_{2})=E_{0}(\cos\theta, \sin\theta)$ , and that when $\tilde{v}=0$ , that is, $\nu=-\omega,$

$c(t)-E_{0}((\delta\cos)(-\omega t), (\delta\sin)(-\omega t))/(\omega B)=-t\alpha(t)$ (1.14)

holds. In consequence of (1.9), the possibility of the existence of scattering states for the
system under consideration in the case where $v\tilde{v}=0$ is suggested by the growth of $c(t)$ only:
In fact,

$\Vert F(|x|\leq Ct)U_{0}(t, 0)\phi\Vert_{L^{2}(R^{2})}=\Vert F(|x+c(t)|\leq Ct)\phi\Vert_{L^{2}(R^{2})}$
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holds for some eigenfunction $\phi$ of $H_{0,L}$ , and in the case where $\nu\tilde{\nu}=0,$ $|c(t)|\geq 3E_{0}t/(4B)$

holds for sufficiently large $t>0$ . Thus, by the same argument as above, we see that $\Vert F(|x|\leq$

$E_{0}t/(2B))U_{0}(t, 0)\phi\Vert_{L^{2}(R^{2})}arrow 0$ as $tarrow\infty$ in the case where $v\tilde{\nu}=0$ . Here we note that

$(\begin{array}{l}c_{1}(t)c_{2}(t)\end{array})=(\begin{array}{l}R_{1}(t)R_{2}(t)\end{array})-(\begin{array}{l}\tilde{u}_{1}(t)\tilde{u}_{2}(t)\end{array})=\int_{0}^{t}(\begin{array}{lllll}1- cos\omega(t- s) -sin\omega(t- s) sin\omega(t-s) 1- cos\omega(t-s)\end{array}) (\begin{array}{l}\alpha_{l}(s)\alpha_{2}(s)\end{array})ds$

(1.15)
can be verified by a straightforward calculation. Moreover, it follows from (1.9) that

$U_{0}(t, s)=\mathscr{T}(t)e^{-i(t-\theta)H_{0,L}}\mathscr{T}(s)^{*}, \mathscr{T}(t)=e^{-ia(t)}e^{ib(t)\cdot x}T(c(t))$ , (1.16)

holds, although such a formula cannot be obtained from (1.5) easily. We note that $\mathscr{T}(0)=$ Id
by definition. These show an advantage of the Avron-Herbst type formula (1.9).

The existence of scattering states is equivalent to the existence of (modified) wave operators,
as is well known. In this article, we consider the case where $E(t)=E_{\nu,\theta}(t)$ with $\nu\in\{0, -\omega\}$

and $\theta\in[0,2\pi)$ only, give a short-range condition on the potential $V$ , which implies the ex-
istence of usual wave operators, and propose a rather simple modifier by which the modified
wave operators can be defined for some long-range potentials. Now we pose the following
assumption $(V1)$ on $V$ :
$(V1)V$ is written as the sum of real-valued functions $V^{sing},$ $V^{s}$ and $V^{1}$ , and that $V^{sing},$ $V^{s}$

and $V^{1}$ satisfy the following conditions: $V^{sing}$ is compactly supported, belongs to $L^{\rho}(R^{2})$ with
$2\leq p<\infty$ , and satisfies $|\nabla V^{sing}|\in L^{2p/(p+1)}(R^{2})$ . $V^{s}$ belongs to $C^{1}(R^{2})$ , and satisfies

$|V^{s}(x)|\leq C_{0}\langle x\rangle^{-\rho_{s,0}}, |(\nabla V^{s})(x)|\leq C_{1}\langle x\rangle^{-\rho_{\epsilon,1}}$ (1.17)

for some $\rho_{s,0}>1$ and $\rho_{s,1}>0$ , where $C_{0}$ and $C_{1}$ are non-negative constants. $V^{1}$ belongs to
$C^{1}(R^{2})$ , and satisfies

$|V^{1}(x)|\leq\tilde{C}_{0}\langle x\rangle^{-\rho I}, |(\nabla V^{1})(x)|\leq\tilde{C}_{1}\langle x\rangle^{-1-\rho_{1}}$ (1.18)

for some $0<\rho_{1}\leq 1$ , where $\tilde{C}_{0}$ and $\tilde{C}_{1}$ are non-negative constants.

Under this assumption ( $V$ 1), we see that the propagator $U(t, s)$ generated by

$H(t)=H_{0}(t)+V$ (1.19)

exists uniquely, by virtue of the results ofYajima [23] and $\mathscr{T}(t)$ in (1.16). If the local singular-
ity of $V^{sing}$ is like $|x|^{-\gamma}$ , and that of $|\nabla V^{sing}|$ is like $|x|^{-1-\gamma}$ , then $\gamma$ should satisfy $0<\gamma<1/2.$

Then we obtain the following result about the existence of (modified) wave operators:
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Theorem 1.2 (Adachi-Kawamoto [1]). Suppose that ( $V$ 1) is satisfied, and that $E(t)=E_{\nu,\theta}(t)$

with $v\in\{0, -\omega\}$ and $\theta\in[0,2\pi)$ . If $V^{1}=0$ , then the wave operators

$W^{\pm}= s-\lim_{tarrow\pm\infty}U(t, 0)^{*}U_{0}(t, 0)$ (1.20)

exist. If $V^{1}\neq 0$ , then the modified wave operators

$W_{G}^{\pm}= s-\lim_{tarrow\pm\infty}U(t, 0)^{*}U_{0}(t, 0)e^{-i\int_{0}^{t}V^{1}(c(s))ds}$ (1.21)

exist.

Next we will consider the problem of the asymptotic completeness of wave operators when
$\nu=0$ , that is, $E(t)$ is independent of $t$ . Since the Hamiltonians under consideration are
independent of $t$ when $\nu=0$ , we write $H_{0}(t)$ and $H(t)$ as $H_{0}$ and $H$ , respectively. Then
$U_{0}(t, s)$ and $U(t, s)$ are represented as $e^{-i(t-s)H_{0}}$ and $e^{-i(t-s)H}$ , respectively. We need the
following assumption $(V2)$ on $V$ , which is stronger than ( $V$ 1) in terms of the regularity of $V$ :
$(V2)V$ is written as the sum of real-valued functions $V^{s}$ and $V^{1}$ , and that $V^{s}$ and $V^{1}$ satisfy
the following conditions: $V^{s}$ belongs to $C^{2}(R^{2})$ , and satisfies $|\partial^{\alpha}V^{s}(x)|\leq C_{2}$ with $|\alpha|=2$

in addition to (1.17), where $C_{2}$ is a non-negative constant. $V^{1}$ belongs to $C^{2}(R^{2})$ , and satisfies
$|\partial^{\alpha}V^{1}(x)|\leq\tilde{C}_{2}$ with $|\alpha|=2$ in addition to (1.18), where $\tilde{C}_{2}$ is a non-negative constant.

The result of the asymptotic completeness obtained in this article is as follows:

Theorem 1.3 (Adachi-Kawamoto [1]). Suppose that $(V2)$ is satisfied, and that $E(t)$ is written
as $E_{0,\theta}(t)\equiv E_{0}(\cos\theta, \sin\theta)$ with $\theta\in[0,2\pi)$ . Assume further the short-range condition
$V^{1}=0$ . Then $W^{\pm}are$ asymptotically complete, that is,

Ran $W^{\pm}=L_{c}^{2}(H)$ , (1.22)

where $L_{c}^{2}(H)$ is the continuous spectral subspace of the Hamiltonian $H.$

Unfortunately the long-range case cannot be dealt with by our analysis. The propagation
estimates obtained in this article (see e.g. Proposition 4.4) are not sufficient for the study of
the long-range case.

In considering the case where $\nu=-\omega$ , the rotating frame is useful: For $x=(x_{1}, x_{2})\in R^{2},$

we define $\hat{R}(\omega t)^{-1}x=((\hat{R}(\omega t)^{-1}x)_{1}, (\hat{R}(\omega t)^{-1}x)_{2})$ by

$(\begin{array}{l}(\hat{R}(\omega t)^{-1}x)_{1}(\hat{R}(\omega t)^{-1}x)_{2}\end{array})=(\begin{array}{ll}cos\omega t -sin\omega tsin\omega t cos\omega t\end{array})(\begin{array}{l}x_{1}x_{2}\end{array}),$

and put $L=x_{1}p_{2}-x_{2}p_{1}$ , which is called the angular momentum. Then $e^{-i\omega tL}$ can be repre-
sented as

$(e^{-i\omega tL}\phi)(x)=\phi(\hat{R}(\omega t)^{-1}x)$
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(see e.g. Enss-Kostrykin-Schrader [11]). Let $\Psi(t, x)$ be a solution of the Schrodinger equation

$i\partial_{t}\Psi(t)=H(t)\Psi(t) , H(t)=H_{0,L}-qE_{-\omega,\theta}(t)\cdot x+V(x)$ .

For such a $\Psi(t, x)$ , put

$\Phi(t, x)=(e^{-i\omega tL}\Psi(t))(x)=\Psi(t,\hat{R}(\omega t)^{-1}x)$ .

Then one can see that $\Phi(t, x)$ satisfies the Schr\"odinger equation

$i\partial_{t}\Phi(t)=\hat{H}(t)\Phi(t) , \hat{H}(t)=\omega L+e^{-i\omega tL}H(t)e^{i\omega tL}.$

By a straightforward calculation, we have

$\hat{H}(t)=\omega L+H_{0,L}-qE_{-\omega,\theta}(t)\cdot(\hat{R}(\omega t)^{-1}x)+V(\hat{R}(\omega t)^{-1}x)$

$=(p+qA(x))^{2}/(2m)-qE_{0,\theta}(t)\cdot x+V(\hat{R}(\omega t)^{-1}x)$

$=(p+qA(x))^{2}/(2m)-qE_{0}(\cos\theta, \sin\theta)\cdot x+V(\hat{R}(\omega t)^{-1}x)$

$=\hat{H}_{0}+V(\hat{R}(\omega t)^{-1}x)$ .

Here we used
$H_{0,L}=p^{2}/(2m)+m\omega^{2}x^{2}/8-\omega L/2.$

Hence we see that the problem under consideration can be reduced to the one in the case where
$\nu=0$ , the magnetic field is given $by-B$ , and the potential is given as the rotating potential
$V(\hat{R}(\omega t)^{-1}x)$ , which is periodic in time. In particular, in the case where the regular short-
range potential $V$ is radial, that is, $V$ depends on $|x|$ only, the asymptotic completeness can be
guaranteed by virtue of Theorem 1.3, because $V(\hat{R}(\omega t)^{-1}x)\equiv V(x)$ .

In the same way as above, the scattering problems for the Hamiltonian perturbed by the
rotating potential $V(\hat{R}(\omega t)x)$

$\tilde{H}(t)=H_{0,L}-qE_{-\omega,\theta}(t)\cdot x+V(\hat{R}(\omega t)x)$

can be reduced to the ones for the time-independent Hamiltonian

$\hat{H}=\hat{H}_{0}+V(x)$ .

Then the asymptotic completeness can be guaranteed by virtue of Theorem 1.3, even if the
regular short-range potential $V$ is not radial.

2 Avron-Herbst type formula
We first give the differential equations which $a(t),$ $b(t)$ and $c(t)$ in (1.9) should satisfy with

the initial conditions $a(O)=0$ and $b(O)=c(O)=0$, by formal observation: Suppose that (1.9)

holds. By differentiating (1.9) in $t$ formally, one can obtain

$i\dot{U}_{0}(t, 0)=e^{-ia(t)}e^{ib(t)\cdot x}T(c(t))H_{0,L}e^{-itH_{0,L}}$
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$+e^{-ia(t)}e^{ib(t)\cdot x}e^{-ic(t)\cdot qA(x)}(\dot{c}(t)\cdot p)e^{-ic(t)\cdot p}e^{-itH_{0,L}}$

$+(\dot{a}(t)-\dot{b}(t)\cdot x+\dot{c}(t)\cdot qA(x))U_{0}(t, 0)$ .

Here we note that $H_{0,L}=D^{2}/(2m)$ commutes with $T(c(t))$ since the magnetic translation
$T(c(t))$ is generated by the pseudomomentum $k$ which commutes with $D$ as mentioned before,
and that $e^{-ic(t)\cdot qA(x)}pe^{ic(t)\cdot qA(x)}=p-qA(c(t))$ since $c(t)\cdot qA(x)=-qA(c(t))\cdot x$ . Thus one
has

$H_{0}(t)=(p-b(t)-qA(x))^{2}/(2m)+\dot{c}(t)\cdot(p-b(t)-qA(c(t)))$

$+\dot{a}(t)-\dot{b}(t)\cdot x+\dot{c}(t)\cdot qA(x)$

$=H_{0,L}+(-b(t)/m+\dot{c}(t))\cdot(p-qA(x))-(\dot{b}(t)+2qA(\dot{c}(t)))\cdot x$

$+\dot{a}(t)-\dot{c}(t)\cdot(b(t)+qA(c(t)))+b(t)^{2}/(2m)$

since $i\dot{U}_{0}(t, 0)=H_{0}(t)U_{0}(t, 0)$ and $\dot{c}(t)\cdot qA(x)=-qA(\dot{c}(t))\cdot x$ . It follows from this that

$-b(t)/m+\dot{c}(t)=0, \dot{b}(t)+2qA(\dot{c}(t))=qE(t)$ ,
$\dot{a}(t)-\dot{c}(t)\cdot(b(t)+qA(c(t)))+b(t)^{2}/(2m)=0.$

Thus one obtain the differential equations

$\{\begin{array}{l}\dot{b}(t)+2qA(b(t))/m=qE(t) ,\dot{c}(t)=b(t)/m,\dot{a}(t)=b(t)^{2}/(2m)+b(t)\cdot qA(c(t))/m,\end{array}$ (2.1)

for $a(t),$ $b(t)$ and $c(t)$ . The first equation of (2.1) is written as

$\frac{d}{dt}(\begin{array}{l}b_{1}(t)b_{2}(t)\end{array})+(\begin{array}{ll}0 -\omega\omega 0\end{array}) (\begin{array}{l}b_{1}(t)b_{2}(t)\end{array})=(\begin{array}{l}qE_{1}(t)qE_{2}(t)\end{array})$ (2.2)

with $\omega=qB/m$ . Thus, by putting

$(\begin{array}{l}\tilde{b}_{1}(t)\tilde{b}_{2}(t)\end{array})=(\begin{array}{ll}cos\omega t -sin\omega tsin\omega t cos\omega t\end{array})(\begin{array}{l}b_{1}(t)b_{2}(t)\end{array}),$

the equation (2.2) can be reduced to

$\frac{d}{dt}(\begin{array}{l}\tilde{b}_{1}(t)\tilde{b}_{2}(t)\end{array})=(\begin{array}{ll}cos\omega t -sin\omega tsin\omega t cos\omega t\end{array}) (\begin{array}{l}qE_{1}(t)qE_{2}(t)\end{array})$ (2.3)

as is well known. Therefore the solution of (2.1) with the initial conditions $a(O)=0$ and
$b(O)=c(0)=0$ is given by (1.10). This fact yields Theorem 1.1. As for the detailed proof,
see [1].
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Remark2.1. Recently Asai [2] has used the Avron-Herbst type formula in Theorem 1.1 in the
study of the existence of the wave operators in the case where $E(t)$ is given by

$E(t)=E_{0}(1+|t|)^{-\mu}(\cos(\nu t+\theta), \sin(\nu t+\theta))+\overline{E}(t)$ ,

where $0<\mu<1,$ $\nu\in\{0, -\omega\}$ , and $\overline{E}(t)=(\overline{E}_{1}(t),\overline{E}_{2}(t))$ satisfies

$| \int_{0}^{t}(\begin{array}{llll}c1-os\omega(t- s) -sin\omega(t- s)s)sin\omega(t- 1- cos\omega(t-s)\end{array}) (\begin{array}{l}\overline{\alpha}_{1}(s)\overline{\alpha}_{2}(s)\end{array})ds|\leq C_{\overline{E}}\min\{|t|, |t|^{1-\mu_{1}}\}$ (2.4)

with some $\mu_{1}$ such that $\mu<\mu_{1}\leq 1$ , where $\overline{\alpha}(t)=(\overline{\alpha}_{1}(t),\overline{\alpha}_{2}(t))=(\overline{E}_{2}(t)/B, -\overline{E}_{1}(t)/B)$ .
Then, by virtue of (1.15), one can see that $|c(t)|$ is growing of order $|t|^{1-\mu}$ , which implies that
the potential $V(x)$ satisfying $|V(x)|\leq C\langle x\rangle^{-\rho}$ with $\rho>1/(1-\mu)$ is of short-range. One of
the typical examples of such $\overline{E}(t)$ ’s is the one satisfying $|\overline{E}(t)|\leq C(1+|t|)^{-\mu_{2}}$ with $\mu_{2}>\mu.$

However, $\overline{E}(t)=E_{\nu,\theta}(t)$ with $\nu\in R\backslash \{0, -\omega\}$ also satisfies (2.4) with $\mu_{1}=1$ as is seen
above, which implies that the perturbation” term $\overline{E}(t)$ is not necessarily decaying faster than
the“leading” term $E_{0}(1+|t|)^{-\mu}(\cos(\nu t+\theta), \sin(\nu t+\theta))$ of $E(t)$ .

3 Existence of wave operators
In the present and next sections, we sometimes use the following convention for smooth

cut-off functions $F_{\delta}$ with $0\leq F_{\delta}\leq 1$ for sufficiently small $\delta>0$ : We define

$F_{\delta}(s\leq d)=1$ for $s\leq d-\delta,$ $=0$ for $s\geq d,$

$F_{\delta}(s\geq d)=1$ for $s\geq d+\delta,$ $=0$ for $s\leq d,$

and $F_{\delta}(d_{1}\leq s\leq d_{2})=F_{\delta}(s\geq d_{1})F_{\delta}(s\leq d_{2})$ .
Throughout this section, we suppose that $(V1)$ is satisfied, and that $E(t)=E_{\nu,\theta}(t)=$

$E_{0}(\cos(\nu t+\theta), \sin(vt+\theta))$ with $\nu\in\{0, -\omega\}$ and $\theta\in[0,2\pi)$ . Then it follows from (1.13)

and (1.14) that
$|c(t)|\geq 9E_{0}|t|/(10B)$

for $|t|\geq 20/|\omega|$ , because

$|E_{0}((\delta\cos)(-\omega t), (\delta\sin)(-\omega t))/(\omega B)|=2E_{0}|\sin(-\omega t/2)|/(|\omega|B)\leq 2E_{0}/(|\omega|B)$

and $|\alpha|=E_{0}/B.$

The following propagation estimate for $U_{0}(t, 0)$ is useful for the proof of Theorem 1.2.

Proposition 3.1. Let $\phi\in \mathscr{D}((p^{2}+x^{2})^{N})$ with $N\in N,$ $\epsilon>0$ and $\sigma>0$ . Then

$\Vert F_{\epsilon}(t^{-\sigma}|x-c(t)|\geq\epsilon)U_{0}(t, 0)\phi\Vert_{L^{2}(R^{2})}=O(t^{-2N\sigma})$ (3.1)

holds as $tarrow\infty.$
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In the proof, we have only to use

$U_{0}(t, 0)^{*}F_{\epsilon}(t^{-\sigma}|x-c(t)|\geq\epsilon)U_{0}(t, 0)=e^{itH_{0,L}}F_{\epsilon}(t^{-\sigma}|x|\geq\epsilon)e^{-itH_{0,L}}$

by virtue of the Avron-Herbst type formula (1.9). As for the detailed proof, see [1].

Now we state the outline of the proof of Theorem 1.2. We first consider the case where
$V^{1}=0$ . By density argument, one has only to prove the existence of $W^{+}\phi$ for $\phi\in \mathscr{S}(R^{2})$ .
Let $f\in C_{0}^{\infty}(R^{2})$ be such that $0\leq f\leq 1,$ $f(x)=1$ for $|x|\leq 1$ and $f(x)=0$ for $|x|\geq 2$ , and
$\sigma$ be such that $0<\sigma<1$ . Put $g=1-f$ . Then we see that

$\lim_{tarrow\infty}U(t, 0)^{*}g(t^{-\sigma}(x-c(t)))U_{0}(t, 0)\phi=0$ (3.2)

by virtue of Proposition 3.1. Thus we have only to prove the existence of

$\lim_{tarrow\infty}U(t, 0)^{*}f(t^{-\sigma}(x-c(t)))U_{0}(t, 0)\phi$ . (3.3)

Here we note that on the support of $f(t^{-\sigma}(x-c(t)))$ ,

$|x|\geq|c(t)|-|x-c(t)|\geq|c(t)|-2t^{\sigma}$

holds, and that $|c(t)|\geq 9E_{0}t/(10B)$ for $t\geq 20/|\omega|$ as mentioned above. Thus we see that

$Vf(t^{-\sigma}(x-c(t)))=O(t^{-\rho_{s,0}})$

as $tarrow\infty$ by the assumption on $V$ and $\sigma<1$ . By virtue of this and Proposition 3.1, one can
obtain

$\frac{d}{dt}(U(t, 0)^{*}f(t^{-\sigma}(x-c(t)))U_{0}(t, 0)\phi)=O(t^{-\rho_{s,0}})+O(t^{-(2N+1)\sigma})$.

By taking $N\in N$ so large that $(2N+1)\sigma>1$ , one can show the existence of (3.3) because
of $\rho_{s,0}>1$ and $(2N+1)\sigma>1$ , by virtue of the Cook-Kuroda method.

We next consider the case where $V^{1}\neq 0$ . By density argument, one has only to prove the
existence of $W_{G}^{+}\phi$ for $\phi\in \mathscr{S}(R^{2})$ . Let $\sigma$ be such that $0<\sigma<\rho_{1}\leq 1$ . In the same way as in
the case where $V^{1}=0$ , we see that

$\lim_{tarrow\infty}U(t, 0)^{*}g(t^{-\sigma}(x-c(t)))U_{0}(t, 0)e^{-i\int_{0}^{t}V^{1}(c(s))ds}\phi=0$ (3.4)

by virtue of Proposition 3.1. Here we note that the modifier $e^{-i\int_{0}^{t}V^{1}(c(s))ds}$ commutes with
$U_{0}(t, 0)$ . Thus we have only to prove the existence of

$\lim_{tarrow\infty}U(t, 0)^{*}f(t^{-\sigma}(x-c(t)))U_{0}(t, 0)e^{-i\int_{0}^{t}V^{1}(c(s))ds}\phi$ . (3.5)

To this end, we will estimate $(V^{1}(x)-V^{1}(c(t)))f(t^{-\sigma}(x-c(t)))U_{0}(t, 0)e^{-i\int_{0}^{t}V^{1}(c(s))ds}\phi$ . We
put $V_{1}(t, x)=V^{1}(x)g(5Bx/(2E_{0}t))$ . Then

$(V^{1}(x)-V^{1}(c(t)))f(t^{-\sigma}(x-c(t)))=(V_{1}(t, x)-V_{1}(t, c(t)))f(t^{-\sigma}(x-c(t)))$
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holds for $t \geq\max\{20/|\omega|, (20B/E_{0})^{1/(1-\sigma)}\}$, since $g(5Bx/(2E_{0}t))=$ lfor $|x|\geq 4E_{0}t/(5B)$ ,

and $|c(t)|\geq 9E_{0}t/(10B)$ for $t\geq 20/|\omega|$ as mentioned above. By rewriting $V_{1}(t, x)-$

$V_{1}(t, c(t))$ as

$V_{1}(t, x)-V_{1}(t, c(t))= \int_{0}^{1}(\nabla V_{1})(t, c(t)+\tau(x-c(t)))\cdot(x-c(t))d\tau$

and taking account of $\sup_{y\in R^{2}}|(\nabla V_{1})(t, y)|=O(t^{-1-\rho l})$ by the definition of $V_{1}$ and the as-
sumption on $V^{1}$ , we have

$(V^{1}(x)-V^{1}(c(t)))f(t^{-\sigma}(x-c(t)))U_{0}(t, 0)e^{-i\int_{0}^{t}V^{1}(c(s))ds}\phi=O(t^{-1-\rho_{1+}\sigma})$ .

Therefore, in the same way as in the case where $V^{1}=0$ , we obtain

$\frac{d}{dt}(U(t, 0)^{*}f(t^{-\sigma}(x-c(t)))U_{0}(t, 0)e^{-i\int_{0}^{t}V^{1}(c(s))ds}\phi)$

$=O(t^{-\rho_{\epsilon,0}})+O(t^{-(2N+1)\sigma})+O(t^{-(1+\rho_{1}-\sigma)})$

for any $N\in N$ . By taking $N\in N$ so large that $(2N+1)\sigma>1$ , one can show the existence
of (3.5) because of $\rho_{s,0}>1,$ $(2N+1)\sigma>1$ and $1+\rho_{1}-\sigma>1$ , by virtue of the Cook-Kuroda
method. As for the detailed proof of Theorem 1.2, see [1].

4 Asymptotic completeness
Throughout this section, we suppose that $E(t)=E_{0,\theta}(t)\equiv E_{0}(\cos\theta, \sin\theta)$ . Then we write

$E(t),$ $H_{0}(t)$ and $H(t)$ as

$E=(E_{1}, E_{2}) , H_{0}=H_{0,L}-qE\cdot x, H=H_{0}+V,$

respectively, because $E(t),$ $H_{0}(t)$ and $H(t)$ are independent of $t$ in this case. Since $H_{0}=$

$(D-m\alpha)^{2}/(2m)+\alpha\cdot k-m\alpha^{2}/2$ (see (1.3)) and $V$ is $H_{0}$ -compact under the assumption
( $V$ 1), we see that

$\sigma(H_{0})=\sigma_{ess}(H_{0})=R, \sigma(H)=\sigma_{ess}(H)=R$

because of $\alpha\neq 0$ , by virtue of the Weyl theorem. The following result can be obtained by
virtue of the Mourre theory:

Proposition 4.1. Suppose that $(V1)$ is satisfied. Then the pure point spectrum $\sigma_{pp}(H)$ of $H$

is at most countable, and has no accumulation point. Each eigenvalue of $H$ has at mostfinite
multiplicity.
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In fact, putting $\tilde{A}=qE\cdot k$ , we have the Mourre estimate

$f(H)i[H,\tilde{A}]f(H)=q^{2}|E|^{2}f(H)^{2}+K_{f}$ , (4.1)

where $f\in C_{0}^{\infty}(R;R)$ and $K_{f}=-f(H)qE\cdot(\nabla V)f(H)$ , which is compact on $L^{2}(R^{2})$ .
In obtaining some useful propagation estimates for $e^{-itH}$ , we need the assumption $(V2)$ .

Here we note that $[H,\tilde{A}]$ and $[[H,\tilde{A}],\tilde{A}]$ are bounded under the assumption $(V2)$ :

Proposition4.2. Suppose that $(V2)$ is satisfied. Let $c_{0},$ $c_{1}\in R$ be such that $c_{0}<c_{1}<q^{2}|E|^{2},$

and let $\epsilon>0$ . Then for any real-valued $f\in C_{0}^{\infty}(R\backslash \sigma_{pp}(H))$, there exists $C>0$ such that

$\int_{1}^{\infty}\Vert F_{\epsilon}(c_{0}\leq\tilde{A}/t\leq c_{1})f(H)e^{-itH}\psi\Vert_{L^{2}(R^{2})}^{2}\frac{dt}{t}\leq C\Vert\psi\Vert_{L^{2}(R^{2})}^{2}$ (4.2)

for any $\psi\in L^{2}(R^{2})$ . Moreover,

$\int^{\infty}\Vert F_{\epsilon}(\tilde{A}/t\leq c_{1})f(H)e^{-itH}\psi\Vert_{L^{2}(R^{2})}^{2}\frac{dt}{t}<\infty$ (4.3)

for any $\psi\in \mathscr{D}(\langle\tilde{A}\rangle^{1/2})$.

Proposition 4.3. Suppose that $(V2)$ is satisfied. Let $c_{1}\in R$ be such that $c_{1}<q^{2}|E|^{2}$, and let
$\epsilon>0$ . Then for any real-valued $f\in C_{0}^{\infty}(R\backslash \sigma_{pp}(H))$,

$s-\lim_{tarrow\infty}F_{\epsilon}(\tilde{A}/t\leq c_{1})f(H)e^{-itH}=0$ (4.4)

holds.

These can be shown in the same way as in Sigal-Soffer [20].

Taking account of

$qE\cdot(k-D)=2q^{2}E\cdot A(x)=-2q^{2}A(E)\cdot x=q^{2}B^{2}\alpha\cdot x,$

we have
$\{F_{\epsilon}(c_{0}\leq\tilde{A}/t\leq c_{1})-F_{\epsilon}(c_{0}\leq q^{2}B^{2}\alpha\cdot x/t\leq c_{1})\}f(H)=O(t^{-1})$,

(4.5)
$\{F_{\epsilon}(\tilde{A}/t\leq c_{1})-F_{\epsilon}(q^{2}B^{2}\alpha\cdot x/t\leq c_{1})\}f(H)=O(t^{-1})$ .

Hence the next proposition follows from (4.5), Propositions 4.2 and 4.3 immediately:

Proposition4.4. Suppose that $(V2)$ is satisfied. Let $c_{0},$ $c_{1}\in R$ be such that $c_{0}<c_{1}<q^{2}|E|^{2},$

and let $\epsilon>0$ . Then for any real-valued $f\in C_{0}^{\infty}(R\backslash \sigma_{pp}(H))$, there exists $C>0$ such that

$l^{\infty} \Vert F_{\epsilon}(c_{0}\leq q^{2}B^{2}\alpha\cdot x/t\leq c_{1})f(H)e^{-itH}\psi\Vert_{L^{2}(R^{2})}^{2}\frac{dt}{t}\leq C\Vert\psi\Vert_{L^{2}(R^{2})}^{2}$ (4.6)

for any $\psi\in L^{2}(R^{2})$ . Moreover,

$s-\lim_{tarrow\infty}F_{\epsilon}(q^{2}B^{2}\alpha\cdot x/t\leq c_{1})f(H)e^{-itH}=0$ (4.7)

holds.
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Now we will state the outline of the proof of Theorem 1.3: We put $\epsilon=|\alpha|/10=|E|/(10B)$

and $\hat{\alpha}=\alpha/|\alpha|$ . Since $|c(t)-t\alpha|\leq 2|E|/(|\omega|B)$ (see \S 1), we see that $\hat{\alpha}\cdot t\alpha/t=|\alpha|=10\epsilon$

and
$\hat{\alpha}\cdot c(t)/t\geq|\alpha|-2|E|/(|\omega|Bt)\geq 9\epsilon$ (4.8)

for $t\geq 20/|\omega|$ , which is important for understanding the behavior of the charged particle.
Here we note that besides $(V2)$ , the short-range condition $V^{1}=0$ is assumed in Theorem

1.3. As is well known, one has only to prove the existence of

$s-\lim_{tarrow\infty}e^{itH_{0}}e^{-itH}P_{c}(H)$ , (4.9)

where $P_{c}(H)$ is the spectral projection onto the continuous spectral subspace $L_{c}^{2}(H)$ of the
Hamiltonian $H$ . To this end, we will show the existence of

$s-\lim_{tarrow\infty}e^{itH_{0}}f(H)e^{-itH}$ (4.10)

for any real-valued $f\in C_{0}^{\infty}(R\backslash \sigma_{pp}(H))$ . By virtue of (4.7), we have

$s-\lim_{tarrow\infty}e^{itH_{0}}F_{\epsilon}(\hat{\alpha}\cdot x/t\leq 8\epsilon)f(H)e^{-itH}=0$ . (4.11)

Taking account of that $1-F_{\epsilon}(\hat{\alpha}\cdot x/t\leq 8\epsilon)$ may be written as $F_{\epsilon}(\hat{\alpha}\cdot x/t\geq 7\epsilon)$ by definition,
we have only to prove the existence of

$s-\lim_{tarrow\infty}e^{itH_{0}}F_{\epsilon}(\hat{\alpha}\cdot x/t\geq 7\epsilon)f(H)e^{-itH}$ . (4.12)

By taking $f_{1}\in C_{0}^{\infty}(R)$ such that $f_{1}(s)f(s)=f(s)$ , one has only to show the existence of

$s-\lim_{tarrow\infty}e^{itH_{0}}f_{1}(H_{0})F_{\epsilon}(\hat{\alpha}\cdot x/t\geq 7\epsilon)f(H)e^{-itH}$ , (4.13)

which can be proved by Proposition 4.4 and

$V^{s}(x)F_{\epsilon}(\hat{\alpha}\cdot x/t\geq 7\epsilon)=O(t^{-\rho_{\epsilon,0}})$ (4.14)

with $\rho_{s,0}>1$ . This yields the asymptotic completeness of $W^{+}.$

In dealing with the long-range case, one needs the propagation estimates for $e^{-itH}$ analogous
to Proposition 3.1, which is much sharper than Proposition 4.4. One of the keys in the proof
of Theorem 1.2 is that $\sigma$ in Proposition 3.1 can be taken as $0<\sigma<\rho_{l}\leq 1$ . Unfortunately
such shalp estimates have not been obtained for $e^{-itH}$ yet.
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