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In this talk, we discussed spectral properties of a Schr\"odinger operator with
random potential

$H_{\omega}=-\kappa\Delta+V_{\omega}.$

The random potential is defined by

$V_{\omega}(x)= \sum_{i}v(x-\omega_{i})$

with $v$ a nonnegative and integrable function and $( \omega=\sum_{i}\delta_{\omega_{i}}, \mathbb{P})$ a Poisson
point process with unit intensity. In particular, we are interested in the case
$v(x)=|x|^{-\alpha}\wedge 1(\alpha>d)$ , which modek an electron receiving long range interaction
from randomly scattered impurities. (The truncation $\wedge 1$ is made for technical
reason and we shall neglect it except for the final subsection for simplicity.)

One of the quantity of interest in the theory of random operators is the inte-
grated density of states defined by

$N( \lambda)=\lim_{Rarrow\infty}\frac{1}{(2R)^{d}}\mathbb{E}[\neq\{k\in \mathbb{N};\lambda_{\omega,k}((-R, R)^{d})\leq\lambda\}]$ , (1)

where $\lambda_{\omega,k}((-R, R)^{d})$ is the k-th smallest eigenvalue of $H_{\omega}$ in $(-R, R)^{d}$ with the
Dirichlet boundary condition. For many random Schr\"odinger operators, $N(\lambda)$

decays exponentially fast as $\lambda$ approaches the bottom of the spectrum, which
stands in sharp contrast to the classical Weyl type asymptotics. This reflects
the fact that the low lying spectra come from spatially rare “pockets” where the
random potential takes atypically small value, and plays an important role in the
proof of the so-called Anderson localization.

The study of the integrated density of states for the Poisson Anderson model
dates back to Donsker and Varadhan [3] and Nakao [8]. They studied the case
$v(x)=o(|x|^{-d-2})$ and proved that

$N(\lambda)=\exp\{-c_{1}(d, \kappa)\lambda^{-\frac{d}{2}}(1+o(1))\}$ (2)

as $\lambda\downarrow 0$ , which verifies the exponential decay predicted by Lifshiz [7]. It is worth
mentioning that the above asymptotics is independent of the tail of $v$ . Thus as
long as $v(x)=o(|x|^{-d-2})$ , the interactions are of short-range nature.

On the other hand, if $v$ has a heavier tail, then it exhibits a long-range nature.
Indeed, Pastur [9] proved that when $v(x)\sim|x|^{-\alpha}(d<\alpha<d+2)$ ,

$N(\lambda)=\exp\{-c_{2}(d, \alpha)\lambda^{-\frac{d}{\alpha-d}}(1+o(1))\}$ (3)
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as $\lambda\downarrow 0$ . It is interesting that the asymptotics is determined by $d$ and $\alpha$ and is
independent of $\kappa$ . Pastur called it a classical behavior of the integrated density of
states. $A$ main result of this talk is the second order asymptotics of the integrated
density of states, which in particular shows that the quantum effect appears in
the second order term.

Theorem 1. ([4]) Suppose $v(x)=|x|^{-\alpha}\wedge 1$ with $d<\alpha<d+2$ . Then

$N(\lambda)=\exp\{-c_{2}(d, \alpha)\lambda^{-\frac{d}{\alpha-d}}-(c_{3}(d, \alpha, \kappa)+o(1))\lambda^{-\frac{\alpha+d-2}{2(\alpha-d)}}\}$ (4)

as $\lambda\downarrow 0.$

In the following sections, we review outlines of arguments both in light-tailed
and heavy-tailed cases. Let us first recall the following well known Feynman-Kac
representation of the Laplace transform of the integrated density of states (see,
e.g., [1], Theorem VI. 1.1):

$\int_{0}^{\infty}e^{-tl}dN(l)=(4\pi\kappa t)^{-\frac{d}{2}}\mathbb{E}\otimes E_{0,0}^{t}[\exp\{-\int_{0}^{t}V_{\omega}(X_{s})ds\}],$

where $E_{0,0}^{t}$ denotes the expectation with respect to the $\kappa\Delta$-Brownian bridge from
$0$ to $0$ in the time interval $[0, t]$ . In view of Tauberian theory, the first order
asymptotics of $N(\lambda)$ as $\lambda\downarrow 0$ follows once we know the asymptotics of the right-
hand side as $tarrow\infty$ . In fact, it turns out that the right-hand side have stretched
exponential asymptotics both in light and heavy tailed case and thus the prefactor
$(4\pi\kappa t)^{-\frac{d}{2}}$ is unimportant. Moreover, one can show that replacing the Brownian
bridge by the Brownian motion has only negligible effect on the asymptotics.

1 Light-tailed case
When $\alpha>d+2$ , which is referred to as the light tailed case, Donsker and
Varadhan [3] determined the asymptotics

$\mathbb{E}\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(X_{s})ds\}]$

(5)
$= \exp\{-\inf_{U.\cdot open}\{\lambda_{1}(U)+|U|\}t^{\frac{d}{d+2}}(1+o(1))\}$

as $t$ goes to $\infty$ , where $|U|$ and $\lambda_{1}(U)$ stand for the volume of $U$ and the smallest
Dirichlet eigenvalue $of-\triangle/2$ in $U$ , respectively. It follows from Faber-Krahn’s
inequality that the unique minimizer of the above variational problem is the ball
with a certain radius $R_{0}$ , up to translation.

Let us start with the proof of the lower bound, which illustrates how the
variational problem comes into play. We assume $V_{\omega}(x)= \sum_{i}\infty\cdot 1_{B(\omega_{i},1)}$ for
simplicity. Then we have the following simple lower bound:

$\mathbb{E}\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(X_{s})ds\}]$

(6)
$\geq \mathbb{P}$( $\#\{\omega_{i}$ in 1-neighborhood of $U\}=0$ ) $P_{0}(X_{8}\in U for all s\in[0, t])$
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for any open set $U$ . Since

$\mathbb{P}$ ( $\#\{\omega_{i}$ in 1-neighborhood of $U\}=0$) $=\exp\{-|U|\}$ (7)

by definition and

$P_{0}(X_{s}\in U for all s\in[O, t])=\exp\{-t\lambda_{1}(U)(1+o(1))\}$ (8)

by the Kac formula, we have

$E\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(X_{S})ds\}]\geq\exp\{-|U|-t\lambda_{1}(U)(1+o(1))\}$ . (9)

Thus scaling $U=t^{1/(d+2)}U’$ and optimizing over $U’$ give us the correct lower
bound. Note that the lower bound comes from single event which is a maximizer
of probability among certain strategies.

The proof of upper bound requires more sophisticated tool called the large de-
viation principle for empirical measure. We still assume $V_{\omega}(x)= \sum_{i}\infty\cdot 1_{B(\omega 1)}:,$

and only explain outline of the argument. The empirical measure of process
$\{X_{S}\}_{0\leq s\leq t}$ is formally defined by $L_{t}= \int_{0}^{t}\delta_{X_{S}}ds$ . The starting point of the argu-
ment is

$\mathbb{E}\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(X_{s})ds\}]$

$=\mathbb{P}\otimes P_{0}$ ( $\#\{\omega_{i}$ in the 1-neighborhood of $suppL_{t}\}=0$ )
$=E_{0}[\exp\{-|supp(L_{t}*1_{B(0,1)})|\}]$

$=E_{0}[\exp\{-t^{d/(d+2)}|supp(L_{t^{d/(d+2)}}*1_{B(0,t^{-1}/(d+2))})|\}],$

where the last step is due to the Brownian scaling. Now we apply the following
large deviation principle and its consequence proved in [2].

Theorem 2. Let $N>0$ and $X$ be the $\kappa\Delta$ -Brownian motion on the torus $\mathbb{R}^{d}/N\mathbb{Z}^{d}.$

Then the mollified empirical measure $L_{S}*1_{B(0_{s^{-1/d}})}$ satisfies a large deviation
principle in the space $\mathcal{P}_{s}$ of probability measures with density, equipped with $L^{1_{-}}$

topology, with scale $s$ and rate function $I(\nu)=\kappa\Vert\nabla\sqrt{d\nu}/dx\Vert_{2}^{2}$ . Consequently,
for any functional $F$ on $\mathcal{P}_{s}$ which is upper semi-continuous in $L^{1}$ -topology,

$E_{0}[ \exp\{-sF(L_{S}*1_{B(0_{s^{-1/d}})})\}]\leq\exp\{-s\inf_{\nu\in p_{S}}\{F(\nu)+I(v)\}(1+o(1))\}$

as $Sarrow\infty.$

This result is restricted to the Brownian motion on a torus but it is no problem
here since projecting on a torus only decrease volume. Also, after projecting on
a torus, $|supp(v)|$ is an upper semi-continuous in $L^{1}$ topology. Therefore we may
apply this result to obtain

$E_{0}[\exp\{-t^{d/(d+2)}|supp(L_{t^{d/(d+2)}}*1_{B(0,t^{-1/(d+2)}}))|\}]$

$\leq\exp\{-t^{d/(d+2)}\inf_{\Vert\phi||_{2}=1}\{\kappa\Vert\nabla\phi\Vert_{2}^{2}+|supp\phi|\}(1+o(1))\}$
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as $tarrow\infty$ which is easily seen to coincide with the desired bound. The above
argument extend to general light-tailed $v$ with little extra effort. Indeed, for the
lower bound it suffices to consider the same event as above, that is, there is no

$\omega_{i}$ in $B(O, R_{0}t^{1/(d+2)})$ and $\{X_{s}\}_{0\leq s\leq t}$ stays there. The potential $V_{\omega}$ takes positive
value inside the ball due to the tail but one can check that it is negligible. For
the upper bound, it suffices to consider compactly supported $v$ of finite height.
Then the $|supp(L_{t}*1_{B(0,1)})|$ above is replaced by more complicated functional of
$L_{t}$ but it turns out to behave very similar manner to the volume of support.

Finally, applying an exponential Tauberian theorem, e.g., the one in [6], one
finds the so-called Lifshitz tail

$N(\lambda)=\exp\{-c_{1}(d, \kappa)\lambda^{-\frac{d}{2}}(1+o(1))\}$ (10)

as $\lambda\downarrow 0$ . Note that the probability $\mathbb{P}(\#\{\omega_{i} in B(O, r\lambda^{-1/2})\}=0)$ has the same
asymptotics as the right-hand side for suitable $r>0$ and inspecting the above
argument, one finds that the lower bound is indeed proved by considering such
a event. So at a heuristic level, we see that in the light tailed case, “the Lifshitz
tail reflects the cost to lower the first eigenvalue by making large vacant region”

2 Heavy-tailed case
2.1 Earlier studies
Let us first explain what causes the difference between light and heavy tailed
cases. In [9], a two-sided bound

$\mathbb{E}[\exp\{-t\{\kappa\Vert\nabla\phi\Vert_{2}^{2}+\int V_{\omega}(x)\phi(x)^{2}dx\}\}]$

$\leq \mathbb{E}\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(X_{S})ds\}]$

$\leq \mathbb{E}[\exp\{-tV_{\omega}(O)\}]$

is proved for any nonnegative and smooth $\phi$ with unit $L^{2}$-norm. The first in-
equality relies on the so-called Peierls’ inequality but the reader may also find
a similarity to the large deviation principle in the last section. The second in-
equality is a consequence of Jensen’s inequality. Now, the both sides are simple
functionals of Poisson point process and can be computed as follows:

$\mathbb{E}[\exp\{-tV_{\omega}(O)\}]=\exp\{-a_{1}t^{d/\alpha}\},$

where $a_{1}=|B(0,1)|\Gamma((\alpha-d)/\alpha)$ and

$\mathbb{E}[\exp\{-t\{\kappa\Vert\nabla\phi\Vert_{2}^{2}+\int V_{\omega}(x)\phi(x)^{2}dx\}\}]$

$= \exp\{-t\kappa\Vert\nabla\phi\Vert_{2}^{2}-\int(1-e^{-\int v(x-y)\phi(y)^{2}dy})dx\}.$
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As long as $\alpha>d+2$ , this is larger than the Donsker-Varadhan bound. This is
consistent with the explanation in the last section that in the optimal strategy in
the light tailed case, the contribution from $V_{\omega}$ is negligible compared with $\Vert\nabla\phi\Vert_{2}^{2}.$

However, if $\alpha<d+2$ then the above upper bound is smaller than the Donsker-
Varadhan bound and in fact, one can show that the upper bound above is sharp.
(For instance, it suffices to choose $\phi$ in the lower bound as the first eigenfunction
of the Dirichlet Laplacian in $B(0, t^{1/\alpha-\epsilon})$ for a small $\epsilon>0.$ ) Pastur proved that

$E\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(X_{S})ds\}]=\exp\{-a_{1}t^{d/\alpha}(1+o(1))\}$ (11)

as $tarrow\infty$ for $\alpha<d+2$ in this way and derived

$N(\lambda)=\exp\{-c_{2}(d, \alpha)\lambda^{-d/(\alpha-d)}(1+o(1))\}$

as $\lambda\downarrow 0$ by a Tauberian theorem. As is expected from the fact that this is derived
from $E[\exp\{-tV_{\omega}(O)\}]$ , the probability $\mathbb{P}(V_{\omega}(O)\leq\lambda)$ has the same asymptotics as
the right-hand side. Thus at a heuristic level, “the (leading term of) Lifshitz tail
reflects the cost to lower the first eigenvalue by making $V_{\omega}$ small at one point”

2.2 Second order asymptotics of the Wiener functional
Recently, the author [4] studied the second order asymptotics of (11) to get better
understanding of the Brownian motion in the random potential $V_{\omega}$ . (See also [5]
for more recent progress.) One of the main theorem in [4] is the following.

Theorem 3. For $d<\alpha<d+2,$

$\mathbb{E}\otimes E_{0}[\exp\{-\int_{0}^{t}V_{\omega}(B_{s})ds\}]=\exp\{-a_{1}t^{\frac{d}{\alpha}}-(a_{2}+o(1))t^{\frac{\alpha+d-2}{2\alpha}}\}$ (12)

as $tarrow\infty$ , where

$a_{2}=( \frac{\kappa\alpha|\partial B(0,1)|}{2}\Gamma(\frac{2\alpha-d+2}{\alpha}))^{\frac{1}{2}}$

Moreover, the constant $a_{2}$ admits a variational expression

$a_{2}= \inf_{\Vert\phi||_{L^{2}}=1}\{\int\kappa|\nabla\phi|(x)^{2}+C(d, \alpha)|x|^{2}\phi(x)^{2}dx\}$ (13)

with some explicit constant $C(d, \alpha)$ .

The intuition behind this result is that the best strategy in the heavy tailed
case should be to make $V_{\omega}(0) \sim a_{1}\frac{d}{\alpha}t^{-(\alpha-d)/\alpha}$ , whose probability is

$\mathbb{P}(V_{\omega}(0)\sim a_{1}\frac{d}{\alpha}t^{-\frac{\alpha-d}{\alpha})}=\exp\{-a_{1}\frac{\alpha-d}{\alpha}t^{\frac{d}{\alpha}}(1+o(1))\},$

126



and force $\{X_{s}\}_{0\leq s\leq t}$ to stay in $B(0, t^{(\alpha-d+2)/(4\alpha)})$ . This means that the process
stays around the bottom of the “valley” of the potential. Since the potential
locally looks like a quadratic function around the bottom due to the strong corre-
lation, we are naturally lead to the above variational expression of $a_{2}$ . See also [5]
for more recent progress, where it is proved in a sense that the above strategy is
indeed the best one.

The proof of Theorem 3 is essentially based on the large deviation theory and
we refrain from presenting the detail. Instead, we shall focus on how to find the
second term of the Lifshitz tail.

Remark 1. In [4], the proof of Theorem 1 is partly embedded in the proof of
almost sure asymptotics of

$E_{0}[ \exp\{-\int_{0}^{t}V_{\omega}(B_{s})ds\}],$

which is another main result. If one is interested only in the second term of
Lifshitz tail, then the argument given in the next subsection is a bit simpler and
easier to read.

2.3 Second term of the Lifshitz tail
The upper bound in Theorem 1 follows from Theorem 3 by the same way as the
Tauberian theory. As a result, one finds that the constants in Theorem 1 are

$c_{2}(d, \alpha)=\frac{\alpha-d}{\alpha}(\frac{d}{\alpha})^{\frac{d}{\alpha-d}}a^{\frac{\alpha}{1\alpha-d}},$

$c_{3}(d, \alpha, \kappa)=a_{2}(\frac{da_{1}}{\alpha})^{\frac{\alpha+d-2}{2(\alpha-d)}}$

However, it seems difficult to derive the second order lower bound from Theo-
rem 3 by Tauberian argument. We show how to derive the lower bound in this
subsection. For some technical reason, we restrict ourselves to the case $\alpha\geq 2.$

Also, we do need the truncation $v(x)=|x|^{\alpha}\wedge 1$ in this subsection and write
$\overline{v}(x)=|x|^{-\alpha}$ . The truncation makes a slight difference

$\mathbb{E}[\exp\{-tV_{\omega}(O)\}]=\exp\{-a_{1}t^{d/\alpha}+o(1)\}$

but since this has little effect, we neglect the above $o(1)$ in the sequel.
Our starting point to obtain the lower bound is a well-known bound

$N( \lambda)=\sup_{N\geq 1}\frac{1}{(2N)^{d}}E[\#\{k\geq 1:\lambda_{k}^{\omega}((-N, N)^{d})\leq\lambda\}]$

$\geq\sup_{N\geq 1}\frac{1}{(2N)^{d}}\mathbb{P}(\lambda_{1}^{\omega}((-N, N)^{d})\leq\lambda)$ .

This reduces the problem to finite volume and we choose $N=2M\lambda^{-\frac{\alpha-d+2}{4(\alpha-d)}}$ with
sufficiently large $M>0$ so that the factor $(2N)^{-d}$ is negligible.
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Let us briefly explain the outline of the argument before going into detail.
We are going to bound $\mathbb{P}(\lambda_{1}^{\omega}((-N, N)^{d})\leq\lambda)$ from below by constructing a
specific event. As explained above, we expect that $\mathbb{P}(\lambda_{1}^{\omega}((-N, N)^{d})\leq\lambda)$ is
asymptotically close to $\mathbb{P}(V_{\omega}(O)\leq\lambda)$ and hence we consider an event like $\{V_{\omega}(O)\leq$

$\lambda\}$ . But conditioned on $\{V_{\omega}(O)\leq\lambda\}$ , the potential $V_{\omega}$ locally $10$oks like parabola
(see the discussion after Theorem 3) and thus $\lambda_{1}^{\omega}((-N, N)^{d})$ becomes slightly
larger than $V_{\omega}(O)$ . This means that we have to make $V_{\omega}(O)$ slightly smaller than
$\lambda$ and this gives rise to the second term. We need to show how much $\lambda_{1}^{\omega}((-N, N)^{d})$

is larger than $\lambda$ conditioned on $\{V_{\omega}(O)\leq\lambda\}$ . Since conditional probability is not
very easy to deal with, we will use a transformed measure instead.

Now let us introduce a transformed measure defined by

$\frac{d\tilde{\mathbb{P}}_{\rho}}{d\mathbb{P}}(\omega)=e^{a_{1\rho^{d/\alpha}}-\rho V_{\omega}(0)}.$

This is a substitute for the conditional measure since $V_{\omega}( O)\sim-\frac{a}{\alpha}\rho$ under $\tilde{\mathbb{P}}_{\rho}$

when $\rho$ is large. By taking $\rho=(\frac{da}{\alpha\lambda})^{\alpha/(\alpha-d)}$ and $\lambda\downarrow 0$ , we have $V_{\omega}(O)\sim\lambda$ under
$\tilde{\mathbb{P}}_{\rho}.$

We collect several properties of the measure $\tilde{\mathbb{P}}_{\rho}$ which we shall use later.

Lemma 1. (i) $(\omega,\tilde{\mathbb{P}}_{\rho})$ is a Poisson point process with intensity $e^{-pv(y)}dy.$

(ii) $\tilde{\mathbb{E}}_{\rho}[V_{\omega}(x)]=\frac{da}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}}+C(d, \alpha)\rho^{-\frac{\alpha-d+2}{\alpha}}|x|^{2}+o(\rho^{-\frac{\alpha-d+2}{2\alpha})}$ as $\rhoarrow\infty$ , uniformly
in $x\in B_{M}(\rho)$ $:=B(0, M \rho\frac{\alpha-d+2}{4\alpha})$ .
(iii) $\rho\frac{2\alpha-d}{2\alpha}(V_{\omega}(0)-\frac{da}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}})$ under $\tilde{\mathbb{P}}_{\rho}$ converges in law to a non-degenerate

Gaussian random variable.

The proof of this lemma is essentially of computational nature and we omit
the detail. The following elementary lemma is useful to prove the above lemma
and also in the sequel. We say that a function $f(\rho)$ is of order $o(\rho^{-\infty})$ if it decays
faster than any polynomial of $\rho^{-1}.$

Lemma 2. (i) For any $M>0,$

$\sup_{||u||_{\infty}\leq 1}|\int_{B_{2M}(\rho)}u(y)e^{-\mu_{J}(y)}dy|=o(\rho^{-\infty})$

as $\rhoarrow\infty.$

(ii) For any $M>0$ and $\gamma>0,$

$\int_{B_{2M}(\rho)}|y|^{-\gamma}e^{-\rho v(y)}dy=o(\rho^{-\infty})$

as $\rhoarrow\infty.$

(iii) For any $M>0$ and $\gamma>d,$

$\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}|y|^{-\gamma}e^{-pv(y)}dy=O(\rho^{\frac{d-}{\alpha}f})$

as $\rhoarrow\infty.$
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The following is the key lemma to prove Theorem 3.

Lemma 3. Suppose $\alpha\geq 2$ . Then for any $\epsilon>0$ and $M>0,$

$\mathbb{P}(\sup_{x\in B_{M}(\rho)}|V_{\omega}(x)-Q_{\rho}(x)|\leq\epsilon\rho^{-\frac{\alpha-d+2}{2\alpha}})\geq\exp\{-a_{1}\frac{\alpha-d}{\alpha}\rho^{d/\alpha}\}$ (14)

when $\rho$ is sufficiently large.

Remark 2. The event on the left-hand side includes $\{V_{\omega}(0)\lessapprox\frac{da}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}}\}$ whose
probability is asymptotic to the right-hand side. Thus this lemma says that
conditioned on this event, $V_{\omega}$ locally looks like a parabola.

Proof In view of Lemma l-(ii), we have an inclusion

$\{$
$\sup_{x\in B_{M}(\rho)}|V_{\omega}(x)-Q_{\rho}(x)|\leq\epsilon\rho^{-}\overline{2\alpha}$

$\alpha-d+2\}$

$\supset\{V_{\omega}(0)-\frac{da_{1}}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}}\in(0, \frac{\epsilon}{2}\rho^{-\frac{\alpha-d+2}{2\alpha}})\}\backslash$

$\{\sup_{x\in B_{M}(\rho)}|V_{\omega}(x)-V_{\omega}(0)-\tilde{\mathbb{E}}_{\rho}[V_{\omega}(x)-V_{\omega}(0)]|\geq\frac{\epsilon}{4}\rho^{-\frac{\alpha-d+2}{2\alpha}}\}$

$=:E_{1}\backslash E_{2}$

for sufficiently large $\rho$ . From this it follows that

the left hand side of (14)
$\geq e^{-a_{1}\rho^{d/\alpha}}\tilde{\mathbb{E}}_{\rho}[e^{\rho V_{\omega}(0)}:E_{1}\backslash E_{2}]$

$\geq\exp\{-a_{1}\rho^{d/\alpha}+\rho(\frac{da_{1}}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}})\}\tilde{\mathbb{P}}_{\rho}(E_{1}\backslash E_{2})$

$\geq\exp\{-a_{1}\frac{\alpha-d}{\alpha}\rho^{d/\alpha}\}(\tilde{\mathbb{P}}_{\rho}(E_{1})-\tilde{\mathbb{P}}_{\rho}(E_{2}))$ .

It remains to show that $\tilde{\mathbb{P}}_{\rho}(E_{1})-\tilde{\mathbb{P}}_{\rho}(E_{2})$ is bounded from below. The first term
is rather easy since

$\tilde{\mathbb{P}}_{\rho}(E_{1})=\tilde{\mathbb{P}}_{\rho}(\rho^{\frac{2\alpha-d}{2\alpha}}(V_{\omega}(0)-\frac{da_{1}}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}})\in(0, \frac{\epsilon}{2}\rho^{\frac{\alpha-2}{2\alpha}}))$ , (15)

which is bounded from below by a positive constant for $\alpha\geq 2$ because of
Lemma l-(iii). To estimate $\tilde{\mathbb{P}}_{\rho}(E_{2})$ , we use an well-known expectation formula
for the Poisson point process to see

$V_{\omega}(x)-V_{\omega}(0)-\tilde{\mathbb{E}}_{\rho}[V_{\omega}(x)-V_{\omega}(O)]$

$= \int(v(x-y)-v(-y))(\omega(dy)-e^{-\rho v(y)}dy)$ .
(16)
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For abbreviation, we write $\overline{\omega}_{\rho}(dy)$ for $\omega(dy)-\nu e^{-\rho v(y)}dy$ in this proof. This is a
slight abuse of notation since $\overline{\omega}_{\rho}(dy)$ has infinite total variation. But we will only
consider functions which are $e^{-pv(y)}dy$-integrable and therefore all the integrals
appearing below make sense.

We divide the integral in (16) into $y\in B_{2M}(\rho)$ and $y\not\in B_{2M}(\rho)$ and show that
each part has order $o(\rho^{-(\alpha-d+2)/2\alpha})$ with probability close to 1. Fix an arbitrary
small $\epsilon>0$ . Let us begin with

$\sup_{x\in B_{M}(\rho)}|\int_{B_{2M}(\rho)}(v(x-y)-v(-y))\overline{\omega}_{\rho}(dy)|$

$\leq\sup_{x\in B_{M}(\rho)}\{\int_{B_{2M}(\rho)}|v(x-y)-v(-y)|\omega(dy)$

$+ \int_{B_{2M}(\rho)}|v(x-y)-v(-y)|e^{-pv(y)}dy\}$

$\leq\int_{B_{2M}(\rho)}\overline{\omega}_{\rho}(dy)+2\int_{B_{2M}(\rho)}e^{-\rho v(y)}dy.$

The $\tilde{\mathbb{P}}_{\rho}$-mean of the first term is zero. Moreover, its variance and the second term
are both of $o(\rho^{-\infty})$ by Lemma 2-(i). Hence we obtain

$\tilde{\mathbb{P}}_{\rho}(\sup_{x\in B_{M}(\rho)}|\int_{B_{2M}(\rho)}(v(x-y)-v(-y))\overline{\omega}_{\rho}(dy)|>\epsilon\rho^{-\frac{\alpha-d+2}{2\alpha})=o(\rho^{-\infty})}$

as $\rhoarrow\infty$ using Chebyshev’s inequality.
Now we turn to the remaining part. Since $v(x-y)=\overline{v}(x-y)(=|x-y|^{-\alpha})$

for $x\in B_{M}(\rho)$ and $y\not\in B_{2M}(\rho)$ , we can use Taylor’s theorem to see

$\sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}(v(x-y)-v(-y))\overline{\omega}_{\rho}(dy)|$

$= \sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\langle x, \nabla\overline{v}(-y)\rangle\overline{\omega}_{\rho}(dy)|$

(17)
$+ \sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\frac{1}{2}\langle x, Hess_{\overline{v}}(-y)x\rangle\overline{\omega}_{\rho}(dy)|$

$+ \sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\int_{0}^{1}\frac{(1-\theta)^{2}d^{3}}{2d\theta^{3}}\overline{v}(\theta x-y)d\theta\overline{\omega}_{\rho}(dy)|.$

The first term on the right-hand side is bounded as

$\sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\langle x,$ $\nabla\overline{v}(-y)\rangle\overline{\omega}_{\rho}(dy)|\leq M\rho\frac{a-d+2}{4\alpha}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\nabla\overline{v}(-y)\overline{\omega}_{\rho}(dy)|.$

The integral on the right hand side has zero $\tilde{\mathbb{P}}_{\rho}$-mean and its variance is

$\overline{\mathbb{V}ar}_{\rho}(\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\nabla\overline{v}(-y)\omega(dy))=\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}|\nabla\overline{v}(-y)|^{2}e^{-pv(y)}dy$

$=O( \rho\frac{d-2\alpha-2}{\alpha})$
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due to Lemma 2-(iii). Hence Chebyshev’s inequality yields

$\tilde{\mathbb{P}}_{\rho}(\sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\langle x, \nabla\overline{v}(-y)\rangle\overline{\omega}_{\rho}(dy)|>\epsilon\rho^{-\frac{\alpha-d+2}{2\alpha})=0}(\rho^{-\frac{\alpha+d-2}{2\alpha})}$ (18)

as $\rhoarrow\infty$ . For the second term on the right hand side of (17), we can employ
the same argument as above to obtain

$\tilde{\mathbb{P}}_{\rho}(\sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\langle x, Hess_{\overline{v}}(-y)x\rangle\overline{\omega}_{\rho}(dy)|>\epsilon\rho^{-\frac{\alpha-d+2}{2\alpha})=O(\rho^{-d/\alpha})}$

Finally, we bound the third term on the right hand side of (17) as

$\sup_{x\in B_{M}(\rho)}|\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\int_{0}^{1}\frac{(1-\theta)^{2}}{2}\frac{d^{3}}{d\theta^{3}}\overline{v}(\theta x-y)d\theta\overline{\omega}_{\rho}(dy)|$

$\leq\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\sup_{x\in B_{M}(\rho),\theta\in[0,1]}|\frac{d^{3}}{d\theta^{3}}\overline{v}(\theta x-y)|\overline{\omega}_{\rho}(dy)$ (19)

$+2 \nu\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\sup_{x\in B_{M}(\rho),\theta\in[0,1]}|\frac{d^{3}}{d\theta^{3}}\overline{v}(\theta x-y)|e^{-\rho\overline{v}(y)}dy.$

One can easily see that the second term is of $o(\rho^{-(\alpha-d+2)/2\alpha})$ by using Lemma 2-
(iii). Furthermore, it also follows that the variance of the first term on the
right hand side of (19) is of $O(\rho^{-(\alpha+d+6)/2\alpha})$ . Then we can conclude by use of
Chebyshev’s inequality that

$\tilde{\mathbb{P}}_{\rho}(\int_{\mathbb{R}^{d}\backslash B_{2M}(\rho)}\sup_{x\in B_{M}(\rho),\theta\in[0,1]}|\frac{d^{3}}{d\theta^{3}}\overline{v}(\theta x-y)|\overline{\omega}_{\rho}(dy)>\epsilon\rho^{-\frac{\alpha-d+2}{2\alpha})}$

$=O( \rho\frac{\alpha-3d+2}{2\alpha})=o(1)$

as $\rhoarrow\infty$ and the proof of Lemma 3 is completed. $\square$

This lemma imphes that for any $\epsilon>0$ one can choose large $M>0$ so that

$\mathbb{P}(\lambda_{\omega}^{1}(B_{M}(\rho))\leq\frac{da_{1}}{\alpha}\rho^{-\frac{\alpha-d}{\alpha}}+(a_{2}+\epsilon)\rho^{-\frac{\alpha-d+2}{2\alpha}})\geq\exp\{-a_{1}\frac{\alpha-d}{\alpha}\rho^{d/\alpha}\}.$

holds for all sufficiently large $\rho$ . Finally, if one choose $\rho$ to be the solution to

$\lambda=\rho\overline{\alpha}$

$da_{1}- \frac{\alpha-d}{\alpha}+(a_{2}+\epsilon)\rho^{-\frac{\alpha-d+2}{2\alpha}},$

the right-hand side above becomes

$\exp\{-c_{1}(d, \alpha)\lambda^{-\frac{\alpha}{\alpha-d}}-(c_{2}(d, \alpha, \kappa)+\epsilon’)\lambda^{-\frac{\alpha+d-2}{2(\alpha-d)}}\}$

for some $\epsilon’$ which goes to $0$ as $\epsilonarrow 0$ , as well as $B_{M}(\rho)\subset(-N, N)^{d}$ . Therefore
we arrive at the desired bound

$\mathbb{P}(\lambda_{\omega}^{1}((-N, N)^{d})\leq\lambda)\geq\exp\{-c_{1}(d, \alpha)\lambda^{-\frac{\alpha}{\alpha-d}}-(c_{2}(d, \alpha, \kappa)+o(1))\lambda^{-\frac{\alpha+d-2}{2(\alpha-d)}}\}.$

as $\lambda\downarrow 0$ . (Note that $\lambda\downarrow 0$ implies $\rhoarrow\infty.$ )

131



Remark 3. In the case $\alpha<2$ , the estimate of $\tilde{\mathbb{P}}_{\rho}(E_{1})$ in the proof of Lemma 3
requires a local central limit theorem and we also need a finer estimate on $\tilde{\mathbb{P}}_{\rho}(E_{2})$ .
As a result, only a modified version of Lemma 3 is proved in [4]. See Subsection 4.2
of [4] for detail.
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