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1 Introduction
This is an announcement of the authors’ recent study on aggregation phenomena for the
two-dimensional Keller-Segel system:

$u_{t}=\triangle u-\nabla\cdot(u\nabla v)$ , $x\in \mathbb{R}^{2},$ $t>0$ , (l.la)
$0=\triangle v+u,$ $x.$

$\in \mathbb{R}^{2},$ $t>0$ , (l.lb)

supplemented with initial data $u(\cdot,.0)=u_{0}\in(C^{2}\cap L^{1})(\mathbb{R}^{2}),$ $u_{0}\geq 0(\not\equiv 0)$ satisfying:

$\int_{\mathbb{R}^{2}}|x|^{2}u_{0}(x)dx<\infty$ . (1.2)

Under these assumptions the Cauchy problem (1.1) admits a loca-in-time classical solution
satisfying

$u>0, \int_{\mathbb{R}^{2}}u(x, t)dx=\int_{\mathbb{R}^{2}}u_{0}(x)dx, 0<t<T$, (1.3)

where $T\leq+\infty$ stands for the maximal existence time of the solution. Here the solution
is unique up to addition of constant to $v$ . It is well known that if

$M:= \int_{\mathbb{R}^{2}}u_{0}(x)dx>8\pi$

and condition (1.2) is satisfied, then the solution $(u, v)$ of (1.1) blows up in a finite time
(cf. [7]). Namely, the maximal existence time $T$ is finite and there holds

$\lim_{t\nearrow}\sup_{T}\Vert u(\cdot, t)\Vert_{\infty}=+\infty,$

where $\Vert\cdot\Vert_{\infty}$ stands for the $L^{\infty}$ norm. The time $T$ is called blow-up time. $A$ point $x_{0}\in \mathbb{R}^{2}$

is called a blow-up point if there exist $\{(x_{n}, t_{n})\}$ with $x_{n}arrow x_{0}$ and $t_{n}\nearrow T$ such that
$u(x_{n}, t_{n})arrow\infty$ as $narrow\infty$ . Blow-up set $S$ is defined, as usual, as the set of all blow-up
points.
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System (1.1) was introduced in [6] as a simplified system of the original fully parabolic
system (1.1) with equation (l.lb) replaced by a paraboic equation:

$v_{t}=\Delta v+u, x\in \mathbb{R}^{2}, t>0.$

It is a classical model to describe aggregation phenomenon and has been intensively
studied by many researchers. In this model $u$ and $v$ denote the density of a biological
organism and the concentration of a chemical substance produced by the organism having
chemoattractant properties, respectively.

A remarkable features of system (1.1) is the existence of critical mass $m_{0}$ such that for
solutions with initial total mass of organism of $u_{0}$ larger than $m_{0}$ , a finite-time blow-up
takes place, whereas smaller values of $u_{0}$ yield global-in-time solutions. See [1,3,6, 8, 9].

An important aspect of the Keller-Segel system consists in the onset of chemotactic
aggregation (referred also as chemotactic collapse) cf. [2, 4]. This term refers to the fact
that concentration of biological organism happens in finite time. Mathematically, this
amounts to the question that whether or not Dirac mass would be produced in $u$ at the
blow-up time. The papers mentioned above don’t conclude that chemotactic aggregation
occurs as a consequence of blow-up. In fact, the description of such blow-up mechanisms
is far from obvious. The first example of a blow-up describing chemotactic aggregation
was obtained by Herrero and Vel\’azquez in [4] by matched asymptotic expansions and its
actual existence was rigorously proven in [5]. More precisely, they constructed a radial
blow-up solution satisfying:

$u(x, t)arrow 8\pi\delta+\psi$ in the sense of measures as $t\nearrow T,$

$\psi(x)=\frac{C}{|x|^{2}}\exp(-2\sqrt{|\log|x||})$ as $|x|arrow 0,$

where $T$ is the blow-up time and $C$ is a positive constant. We note that much more detailed
asymptotic behavior of the solution is obtained therein. As for the general case, Senba
and Suzuki [14] studied the Cauchy-Neumann problem on a bounded domain $\Omega\subset \mathbb{R}^{2}$ :

$u_{t}=\triangle u-\nabla\cdot(u\nabla v) , x\in\Omega, t>0$ , (1.4a)
$0=\triangle v-v+u, x\in\Omega, t>0$ , (1.4b)

$\partial u \partial v$

$\overline{\partial\nu}=\overline{\partial\nu}=0, t>0$ , (1.4c)

and obtained the following result: if a solution of (1.1) blows up in a finite time $T$ , then
its blow-up set $S$ consists of a finite number of points and there exist

$f\in L^{1}(\Omega)\cap C(\overline{\Omega}\backslash S),$ $m(q)\geq m^{*}(q):=\{\begin{array}{l}8\pi, q\in\Omega,4\pi, q\in\partial\Omega\end{array}$ (1.5)

such that
$u( \cdot, t)arrow\sum_{q\in S}m(q)\delta+f$

a$s$ $t\nearrow T$ (1.6)

in the sense of measures. It was also shown there that

$8\pi\#(S\cap\Omega)+4\pi\#(S\cap\partial\Omega)\leq\Vert u_{0}\Vert_{L^{1}(\Omega)}$ . (1.7)
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This estimate yields an upper bound for the number of blow-up points. Similar results
may be obtained for our system posed in the whole $\mathbb{R}^{2}$ . This is because most of the
argument in [14] is local in space and the term $-v$ in (1.4b) plays no important role on
the blow-up behavior.

Questions that naturally arise from the above results are:

1. Can the constant $m(q)$ in (1.6) be strictly larger than $8\pi$?

2. Can the number blow-up points be greater than one?

It is worth pointing out that the answers are negatiye for the both questions if only radial
blow-up solutions are concerned [13]. Therefore we have to study blow-up of non-radial
solutions to get affirmative answers to those questions. As for the first question, numerical
simulation by [11] shows that there exits a blow-up mechanism with $m(q)$ being a multiple
of $8\pi$ . Moreover, the authors have formally constructed such a blow-up solution by means
of matched asymptotics [12].

This announcement reports a positive answer to the second question. The result may
be roughly stated as follows:

Theorem 1.1. Given any positive integer $n$ , one may construct an initial datum such
that the corresponding solution of (1.1) blows up in a finite time at exactly $n$ -points in $\mathbb{R}^{2}.$

More precise statement of this theorem is to be given in \S 3. See Theorem 3.1.
The rest of this report consists of two sections. In \S 2 we consider a sufficient condition

that ensures a local bound near a given point in $\mathbb{R}^{2}$ . This is a key tool to prove Theorem
1.1. We introduce a sketch of the proof of Theorem 1.1 in \S 3.

2 $\epsilon$-regularity
The following $\epsilon$-regularity result was implicitly but essentially obtained by Senba and
Suzuki [14] for problem (1.4) on bounded domains. This result may be regarded as a
localized version of $L^{p}$ bounds obtained by Nagai, Senba, and Yoshida [10] for a fully
parabolic system. The idea of estimating $U$ norms goes back to J\"ager and Luckhaus [6].
The formulation of Proposition 2.1 below is due to Sugiyama [15], where the same type
of $\epsilon$-regularity result was established for a system of equations with degenerate diffusion
in the whole $\mathbb{R}^{2}$ that includes system (1.4) as a particular case.
Proposition 2.1. Assume that condition (1.2) holds. Let $T$ denote the blow-up time of
the solution $(u, v)$ with initial data $u_{0}$ . Then there exists a positive constant $\epsilon$ such that if

$\sup_{0<t<T}\int_{B_{R}(a)}u(x, t)dx<\epsilon$ (2.1)

for some $R>0$ and $a\in \mathbb{R}^{2}$ , then for every $R’<R$ there holds

$\sup_{0<t<T}\Vert u(\cdot, t)\Vert_{L^{\infty}(B_{R}(a))}\leq C^{*}$ (2.2)

for some positive constant $C^{*}$ depending only on $\epsilon,$ $T,$ $M,$ $R’$ , and R. In particular, the
point $a$ cannot be a blow-up point.
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Remark 2.2. The constant $\epsilon$ is given, for example, by $1/16K^{2}$ with $K$ being a positive
constant appearing in Gagliard-Nirenberg’s inequality:

$\Vert u\Vert_{L(\Omega)}q\leq K\Vert u\Vert_{W^{1,2}(\Omega)}^{1-\lambda}\Vert u\Vert_{L^{1}(\Omega)}^{\lambda},$

$\lambda=1-\underline{1} 1\leq q<+\infty,$

$q$

’

where $\Omega$ us a domain of $\mathbb{R}^{2}$ with $C^{1}$ boundary.
It is possible, however, to replace $\epsilon$ by an optimal constant $8\pi$ in (2.1), although the

constant $C^{*}$ in (2.2) may depend also on the center of the ball, i.e., $a$ in that case. Indeed,
Senba and Suzuki [14, Lemma 9] proves that if a solution of (1.4) blows up in a finite
time $T$ , then for every blow-up point $x_{0}$ and $0<R$ sufficiently small, we have

$\lim_{t\nearrow}\inf_{T}\int_{B_{R}(xo)\cap\Omega}u(x, t)dx\geq m^{*}$, (2.3)

where $m^{*}$ is the constant in (1.5). Hence condition (2.1) with $\epsilon=8\pi$ implies that the
solution is locally bounded in a neighborhood of $x_{0}$ provided that $x_{0}$ is not on the boundary
$\partial\Omega.$

Remark 2.3. The following proof is nothing but a modification of the argument in [14]
so as to work for system (1.1) in unbounded domains. If equation (l.lb) is replaced
by $0=\Delta v-v+u$ , function $v$ may be represented by the Bessel kernel that decays
exponentially as $|x|arrow\infty$ . On the other hand, the Newtonian kernel grows logarithmically
as $|x|arrow\infty$ . This is a main difference from the previous articles mentioned above.

Proof. $A$ key point of [14] is to prove the uniform bound of $\int_{\Omega}u\log udx$ in $(0, T)$ implies
a local $L^{\infty}$ bound of $u$ , where $\Omega$ is a bounded domain under consideration. To this aim
uniform If bounds of $v$ play essential roles. Since our problem for (1.1) is posed on the
whole $\mathbb{R}^{2}$ , we need to take into account of the logarithmic growth of the Newtonian kernel
at spatial infimity.

We only have to prove:

$\sup_{0<t<T}\Vert v(\cdot, t)\Vert_{L^{p}(\Omega)}<+\infty$ (2.4)

for any bounded domain $\Omega$ of $\mathbb{R}^{2}$ , since there is no change from [14] in remaining argu-
ments. Let $L>0$ be a constant such that the ball $B=B_{L}$ $:=\{|x|<L\}$ contains $\Omega.$

Since we know $v=G*u$ with $G=-(1/2\pi)\log|x|$ being the Newtonian kernel, we may
write

$v(x, t)= \int_{\mathbb{R}^{2}}G(x-y)u(y, t)dy$

$=( \int_{|y|\leq L}+\int_{|y|\geq L})G(x-y)u(y, t)dy=:v_{1}(x, t)+v_{2}(x, t)$.

Application of Young’s inequality for convolution to $v_{1}$ readily yields

$\Vert v_{1}(., t)\Vert\leq\Vert G\Vert_{Lp(B)}\Vert u(\cdot, t)\Vert_{L^{1}(\Omega)}\leq C(p, L, M)$
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for $0<t<T$ . To estimate $v_{2}$ , let us write

$v_{2}(x, t) \leq\int_{|y|\geq L}\frac{|G(x-y)|}{1+|x-y|^{2}}(1+|x-y|^{2})u(y, t)dy$

$\leq C(L)(\tilde{G}*f_{t})(x)$ (2.5)

with $C(L)=1+2L^{2},\tilde{G}(x)=|G(x)|/(1+|x|^{2})$ , and $f_{t}(x)=(1+2|x|^{2})u(x, t)\chi_{\{|x|>L\}}$ is
the indicator function of the set $\{x\in \mathbb{R}^{2};|x|>L\}$ . An elementary computation shows

$\sup_{0<t<T}\Vert\tilde{G}\Vert_{L^{p}(B)}<+\infty$ for every $p>1.$

On the other hand, the uniform estimate

$\sup_{0<t<T}\Vert f_{t}\Vert_{L^{1}(B)}<+\infty$

follows from a standard symmetrization argument if the second moment of $u_{0}$ is finite, that
is, condition (1.2) holds. The desired bound for $v_{2}$ thus follows from Young’s inequality
for convolution. We therefore obtain (2.4). Once estimate (2.4) is established, we may
obtain a uniform local $L^{1}$ estimate for $u\log u$ by using an argument in [14] and thus get
a uniform local $L^{\infty}$ estimate as in (2.2) by Moser’s iteration scheme. $\square$

3 Multiple points blow-up
In this section we state our result on the construction of a blow-up solution having multiple
blow-up points and introduce some ideas of the proof. Given an integer $n\geq 2$ , we set an
initial datum as follows:

$u_{0}(x)=u_{0,n}(x) := \sum_{k=0}^{n-1}\phi_{\rho}(x-a_{k})$ , (3.la)

$\phi_{\rho}(x)=\frac{1}{\rho^{2}}\phi_{1}(\frac{x}{\rho}) , \rho>0$ , (3.lb)

$a_{k}=S(k\theta_{n})a, a\in \mathbb{R}^{2}\backslash \{0\}, k=1,2, \ldots, n-1$ (3.lc)

with
$S( \theta)=(\begin{array}{ll}cos\theta -sin\thetasin\theta cos\theta\end{array}) \in SO(2) , \theta_{n}=\frac{2\pi}{n}$, (3.ld)

where $\phi\in C_{0}^{2}(\mathbb{R}^{2})$ is a radially symmetric nonnegative function satisfying

$8 \pi<\int_{\mathbb{R}^{2}}\phi_{1}(x)dx<(8+\frac{1}{n})\pi, supp\phi_{1}=\overline{B_{1}(0)}$ (3.2)

and $a$ is a point on the horizontal axis. Under the particular choice of initial da-
tum as in (3.lc), the solution of (1.1) with $u_{0}=u_{0,n}$ is $2\pi/n$-rotation invariant, i.e.,
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$(u(x, t), v(x, t))=(u(S(\theta_{n})x, t), v(S(\theta_{n})x, t))$ for any $x\in \mathbb{R}^{2}$ and $t\in(O, T)$ due to unique-
ness of classical solution. As a matter of fact, the solution blows up in a finite time $T$

since
$8n\pi<M=\Vert u_{0,n}\Vert_{L^{1}(\mathbb{R}^{2})}<(8n+1)\pi$. (3.3)

Notice that the last inequality of (3.3) implies that the number of blow-up point cannot
be greater than $n$ (cf. (1.7)). We are going to choose $\rho$ sufficiently small and $|a|$ large
enough in order that the solution may blow up at exactly $n$ points. Indeed, the blow-up
set of the solution consists of either

a singleton at the origin

or

$n$ distinct points at the vertexes of a regular $n$-sided polygon if $n\geq 3$ ;
two points at the ends of a line segment if $n=2.$

We want to select the free constants $\rho$ and $|a|$ so appropriately that the former possibility
is ruled out. To state our theorem, we set

$\epsilon_{0}:=8n\pi-M>0.$

We may now state the claim of Theorem 1.1 in a quantitative manner.

Theorem 3.1. Let $n$ be a positive integer and let $u_{0,n}$ be the function as in (3.lc). Con-
sider the solution of (1.1) with initial datum $u_{0}=u_{0,n}$ . Then there exist positive constants

$\rho^{*}$ and $\alpha^{*}$ depending only on $\epsilon,$ $\epsilon_{0}$ , and $M$ such that if $|a|\geq\alpha^{*}$ and $0<\rho<\rho^{*}$ , then the
blow-up set of the solution consists only of $n$ distinct points.

Let us introduce a way of constructing the blow-up solution. The essence of Theorem
3.1 may be explained as follows. We shall consider the case $n=2$ for simplicity, for which
the blow-up set $S$ is of the form: $S=\{\pm a’\}$ for some $a’\in \mathbb{R}^{2}$ . To prove the desired result
it suffices to see $a’\neq 0$ , i.e., $0\not\in S$ . Proposition 2.1 works well for this aim. In order to
estimate a local mass around the origin, we pick a constant $R>1$ such that

$2R<|a|\sqrt{2(1-\cos\theta_{n})}-\rho$ (3.4)

and consider a cut-off function $\zeta_{R}\in C_{0}^{2}(\mathbb{R}^{2})$ such that

$0\leq\zeta_{R}\leq 1$ , (3.5a)
$\zeta_{R}\equiv 1$ for $|x|\leq L:=\sqrt{R}$ , (3.5b)
$\zeta_{R}\equiv 0$ for $|x|\geq R$ , (3.5c)

$| \nabla\zeta_{R}|\leq\frac{A}{R}, |\nabla^{2}\zeta_{R}|\leq\frac{A}{R^{2}}, (3.5d)$

where $A>0$ is a universal constant. We then multiply the function $\zeta_{R}$ to equation (l.la)
and integrate in $x$ over $\mathbb{R}^{2}$ . Having $\int_{\mathbb{R}^{2}}u_{0,n}(x)\zeta_{R}(x)dx=0$ from the definition of $\zeta_{R}$ , we
easily obtain

$\sup_{0<t<T}\int_{\mathbb{R}^{2}}u(x, t)\zeta_{R}(x)dx\leq\frac{A(M+M^{2})}{R^{2}}T$ (3.6)
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by using a symmetrization argument. Proposition 2.1 now becomes relevant. Notice that
as $|a|arrow+\infty$ , the constant $R$ may be chosen as large as we want to. We are then led to
the question that if the blow-up time $T$ would be much smaller than $R^{2}$ as $|a|arrow+\infty.$

In other word, the graph of function $x\mapsto u(x, t)$ has two peaks initially located at
$x=\pm a$ and they would approach each other as $tarrow T$ . One may expect that if $|a|$ is
large enough, that is, the distance between these peaks are very far, then the blow-up
would occur before these peaks collapse, whence the blow-up takes place at two points.
This heuristic argument would sound canonical, but ignores how the blow-up time $T$ can
be large when $|a|$ is made large. Indeed, a standard argument using the second moment
of function $u$ proves that a finite-time blow-up does occur whenever $M>8\pi$ and gives
simultaneously an upper bound of the blow-up time by virtue of initial data. This rather
standard estimate is, however, insufficient for our aim. Indeed, we have

$\int_{\mathbb{R}^{2}}|x-b|^{2}u(x, t)dx-\int_{\mathbb{R}^{2}}|x-b|^{2}u_{0}(x)dx=-\frac{M}{2\pi}(M-8\pi)t$ (3.7)

for every $0<t<T$ and any $b\in \mathbb{R}^{2}$ , whence

$T \leq D^{-1}\inf_{b\in \mathbb{R}^{2}}\int_{\mathbb{R}^{2}}|x-b|^{2}u_{0}(x)dx$ , (3.8)

where $D=M(2\pi)^{-1}(M-8\pi)>0$ . Substituting $u_{0}(x)=u_{0,n}(x)$ in (3.8), we obtain

$T \leq D^{-1}\inf_{b\in \mathbb{R}^{2}}\sum_{k=0}^{n-1}\int_{|x-a_{k}|<\rho}|x-b|^{2}\phi_{\rho}(x-a_{k})dx=O(|a|^{2})$ (3.9)

as $|a|arrow\infty$ . Estimate (3.9) is too rough and doesn’t imply $T/R^{2}\ll 1$ as $|a|arrow\infty$ so that
Proposition 2.1 may not apply.

A better estimate for the blow-up time may be obtained by introducing a local second
moment:

$F_{k}(t):= \int_{\mathbb{R}^{2}}|x-a_{k}|^{2}u(x, t)\zeta(x-a_{k})dx, k=0,1, \ldots, n-1$ , (3.10)

where $\zeta=\zeta_{R}$ is as before. Thanks to the cut-off function $\zeta$ , we have

$F_{k}(0)= \int_{|x-a_{k}|<\rho}\phi_{\rho}(x-a_{k})|x-a_{k}|^{2}dx\leq(8+\frac{1}{n})\pi\rho^{2},$ $k=0,1,$ $\ldots,$ $n-1$ . (3.11)

A bit long computation then reveals that

$\frac{dF_{k}(t)}{dt}=4\int_{\mathbb{R}^{2}}u(x, t)\zeta(x-a_{k})dx-\frac{1}{2\pi}(\int_{\mathbb{R}^{2}}u(x, t)\zeta(x-a_{k})dx)^{2}+\mathcal{E}_{k,R}(t)$ (3.12a)

with
$| \mathcal{E}_{k,R}(t)|\leq\frac{C_{M}}{R^{1/4}}(1+t^{2}) , 0<t<T$, (3.12b)

where $C_{M}$ is a positive constant depending only on $M.$
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By a similar argument to that leading to (3.6), we may obtain

$\int_{\mathbb{R}^{2}}u(x, t)\zeta(x-a_{k})dx\geq 8\pi+\frac{\epsilon_{0}}{n}-\frac{A(M+M^{2})}{R^{2}}t, 0<t<T$ . (3.13)

We are now ready for proving $T=O(1)$ as $|a|arrow\infty$ by contradiction. Suppose that
we have $T>1$ , which implies that the solution is defined at least for $0\leq t\leq 1$ . It then
follows from (3.13) that $\int_{\mathbb{R}^{2}}u(x, t)\zeta(x-a_{k})dx\geq 8\pi+\epsilon_{0}/(2n),$ $0<t\leq 1$ , whence, by
(3.11), (3.12a), and (3.12b),

$F_{k}(t) \leq(8+\frac{1}{n})\pi\rho^{2}-\frac{\epsilon_{0}}{8n\pi}(8\pi+\frac{\epsilon_{0}}{2n})+\frac{13C_{M}}{24R^{1/4}}<0$ at $t= \frac{1}{2}$ , (3.14)

if $R$ is chosen appropriately large and $\rho$ is taken sufficiently small. We have thus arrived
at a contradiction.
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