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1 Introduction

Let (0,T) be a time-interval with a fixed constant 0 < T € R. Let 1 < N € Nbe a
fixed number, let O C RY be a bounded domain with a smooth boundary 9<, and let vaq
be the unit outer normal on 0. Besides, let us set @ := (0,7) x Q and ¥ := (0,T") x 09.

In this paper, a PDE model of a grain boundary motion, involving a solidification
effect, is considered. This mathematical model is denoted by (S), and formally described
in a form of the following system of parabolic equations.

(S):
( wy — Aw + 8l (w) — c(w —u) + (w — ) + vB'(w)|VE* 3 0 in Q,

§ Vw-ven =0 on %, (1.1)
\ U)(O, m) = wO(x)’ TE Q;

(e — An+ (n—w) +(n)|VO =0 in Q,

¢ Vn-vga=0 on X, (1.2)

\ 77(07'77) = 770(:1:)’ T € Q;

( . Vo :
ol m) 6 = iv aln) ggn + 28(w)0) =0 i Q.

a(n)-—vﬁ + 2V,[3(w)V9> ‘vsn =0 on X, (13)

VO]
L 0(0,z) = 6p(z), =€l




The system (8S) is derived as a gradient system of the following governing energy, called
“free-energy”:

w01 € BN > Fyfwn,6) = ) /Q Vuf s+ /Q V2 da
+/Q (1[0,1](11)) — g(w — u)2) dr + —;—/Q(w —n)?dz (1.4)
+/Qa(n)|V0| d:c+u/9ﬂ(w)lv0|2dx.

In the context, the unknowns w = w(t,z) and n = n(t, ) are order parameters, which
indicate, respectively, “the solidification order” and “the crystalline orientation order” in
a material, by using the values on [0,1]. Hence, the range constraint “0 < w,n < 17
is always imposed for these parameters, and in particular, the cases when [w,n] = [1,1]
and [w,n] = [0,0] are supposed to reproduce “solidified-oriented phase” and “liquefied-
disoriented phase”, respectively. In the meantime, the unknown 6 = 6(t,z) is an order
parameter to indicate the argument (mean-angle) of the crystalline orientation. The term
Al as in (1.1) is the subdifferential of the indicator function Ijp ;) built in (1.4), i.e.:

0, ifrelo,1],

00, otherwise.

reRe— I[g’l](’f‘) = { (1.5)

The components u € R,0 <c€ Rand 0 < v € R are fixed constants, and in particular,
the value of u is supposed to be associated with the degree of relative temperature.

The components ap = ag(w,n), @ = a(n), 8 = B(w), we = we(x), M = no(z) and
o = 0y(z) are given functions, which are supposed to fulfill the following conditions.

(A1) ap € Wi °(R?) is a given positive-valued function.

(A2) a,8 € C*(R) are given positive-valued convex functions, and the differentials o/, 3’ €
C(R) satisfy that o/(0) = #'(0) = 0. Hence, @ and 3 are non-decreasing on [0, c0).

(A3) There exists a constant 8, > 0 such that:
min{ ozo(w, 77),6\4(7)),,3(10) | [w’ 77] eR? } > Oy

(A4) wo, 10,60 € H(2) N L°(Q) are given initial data, and the triplet of the initial data
[wo, Mo, 6o] is supposed to belong to a class D, C [H1(Q) N L®(Q)]3, defined as:

D, := { [do, 7o, 00] € [H(Q) N LX) | 0< W <1and 0 < 7o < 1, ae. in N }.

The derivation of (S) is based on the modelling method of Kobayashi et al. [18, 20, 21],
and indeed, this system can be called a modified version of “¢-1-8 model” proposed in
[18]. The main difference from the ¢-7-6 model is in the choice of the double-well function,
that is to characterize the bi-stable situations in phase transitions. More precisely, the
double-well function as in the ¢-7-6 model is the standard polynomial type, while we
adopt another type of double-well function:

w € R — I qy(w) — g(w —u)? €0, 00, (1.6)
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in the formula (1.4) of free-energy. Incidentally, the above function has been one of
representative expressions of double-well functions, in the modelling of phase transitions
(cf. Visintin [31, Chapter VI]).

From the mathematical point of view, the indicator function Ijg;) as in (1.4) enables
the immediate derivation of the range constraint property “0 < w < 1”. But meanwhile,
we should note that the term vA3'(w)|Vé|? in (1.1) becomes nonstandard under the L*-
based setting in (1.4). So, we cannot expect to solve the system (S) by straightforward
applications of some existing general theories of evolution equations (e.g. [14, 24]), even
if we apply some generalized notions such as “L2-subdifferentials”.

Based on these, we set the goal in this paper to verify the existence of solutions to the
system (S), which is stated in the form of the following Main Theorem.

Main Theorem (Existence result for the system (S)) Under the assumptions (A1)-
(A4), the system (S) admits at least one solution [w,n, 8], which is defined by the following
conditions.

(S0) [w,n,8] € WH2(0,T; L3())® N Le(0, T; HYQ))? n L*(Q), n € L2(0,T; HX(Q));
0<w< 1, 0< n <1 and |01 < |90|Loo(9), a.e. in Q

(S1) w solves (1.1) in the following variational sense:
| () = ctw(®) = 0 + (w=m(®) (wit) - ) do
+ [ o) V(o) - p)dz+v [ ) - o) W) VoOP do
+ [ Ton(w®)do < [ Ton(e)de

for any ¢ € H{(Q)NL*®(Q) and a.e. t € (0,T),

with the initial condition w(0) = wo in L2(Q).

(1.7)

(S2) n solves (1.2) in the following variational sense:
| O+ @-we)vis+ [ Vo yds
Q Q
+ / $a!(n(£))|V6(t)| dx = 0, (18)
Q

for any v € HY(Q) and a.e. t €-(0,T),
with the initial condition n(0) = no in L*().

(S8) 0 solves (1.3) in the following variational sense:
/Q o, m)(t) 6u(t) (6(2) — w) d + 2 /n B () VO(E) - V(B(t) — w) da
+ /ﬂ (n(£))| V()| dz < /Q (n())| V| dz,

for any w € HY(Q) and a.e. t € (0,T),
with the initial condition 6(0) = 6p in L*(2).



Here is the content of this paper. In the next Section 2, some specific notations are
prepared as preliminaries. In Section 3, we prove the existence and uniqueness for the
approximating problems, which are prescribed as the time-discretization systems for (S).
On that basis, our Main Theorem will be proved in Section 4. Finally, we overview the
vision in the future of our study.

2 Preliminaries
First of all, we list the notations that are used throughout this paper.
Notation 1 (Notations-in real analysis) For any ag, by € [—00, 0], we define:
ag V bp := max{ap,bp} and ag A by := min{ag, bo}.

Let d € N be any fixed number. Then, we simply denote by |z| and z -y the Euclidean
norm of z € R? and the standard scalar product of z,y € R?, respectively, i.e.:

lz| = /22 +---+722 and T y:=z191 +  * + TaYa,

for all z = [z1,- -+ ,za],y = [y1, - , ya) € R%

The d-dimensional Lebesgue measure is denoted by .#¢. Also, unless otherwise spec-
ified, the measure theoretical phrases, such as “a.e.”, “dt” and “dz”, and so on, are with
respect to the Lebesgue measure in each corresponding dimension.

For a (Lebesgue) measurable function f : B — [—00, 00] on a Borel subset B C R?,
we denote by [f]T and [f]™, respectively, the positive part and the negative part of f, i.e.:

[f1T(z) :== f(z) VO and [f] (z):= —(f(z) AO), for a.e. T € B.

Notation 2 (Notations in convex analysis) For an abstract Banach space X, we de-
note by | - |x the norm of X, and when X is a Hilbert space, we denote by (-, - )x its
inner product.

For any proper lower semi-continuous (l.s.c. from now on) and convex function ¥
defined on a Hilbert space X, we denote by D(¥) its effective domain and by OV its
subdifferential. The subdifferential OV is a set-valued map corresponding to a weak
differential of ¥, and it has a maximal monotone graph in the product space X% := X x X.
More precisely, for each zy € X, the value 9¥(2p) is defined as a set of all elements 25 € X
which satisfy the following variational inequality:

(25,2 — 20)x < U(z) — U(2) for any z € D(¥).

The set D(O¥):={ 2€ X | 8¥(z) #0 } is called the domain of 9¥. We often use the
notation “[zp,25] € 0¥ in X?”, to mean that “z} € 0¥(2) in X with z, € D(9V)”, by
identifying the operator 8¥ with its graph in X2.

Remark 2.1 As a representative example, let us consider the following proper l.s.c. and

convex function on L%(Q):

1
= [ |V2|?dz, if z € H{(Q),
Z€L2(Q)'—)\I;0(Z) o 2\/9‘ Z' I, IL 2 ( )

00, otherwise,
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that is the so-called functional of Dirichlet integral. Then, the subdifferential ¥ of this
convex function is directly associated with the operator of Laplacian. More precisely, let

us set:
Dy:={ z€ HXQ) | Vz-vsq =0in L*(89) },

and let us denote by Ay the operator of Laplacian subject to the Neumann-zero boundary

condition, i.e.:
An:z€ Dy C L2(Q) — Az € L2(Q)

Then, it is known that (see Barbu [2] or Brézis (3], for example):
[z,2*] € 00 in L3(Q)?%, iff. (2%, ¢)r2) = (V2, V)2 for any ¢ € HY(Q), (2.1)

and moreover,

{—ANZ}, if z € Dy,

2.2
@, otherwise. 22)

z € L*(Q) — 0%y(2) = {

In this light, the operators 0¥, and —Ay are usually identified.
Also, as another example, we mention about the subdifferential 8lj;; C R? of the
indicator function Ijg;), defined in (1.5). In this example, the subdifferential 01, is

calculated as:
0, if r € (0,1),

[0,00), ifr=1,
(=00,0], ifr=-1,

0, otherwise.

reRe 6[[0,1](7‘) -

Remark 2.2 (Time-dependent subdifferentials) It is often useful to consider the
subdifferentials under time-dependent settings of convex functions. With regard to this
topic, certain general theories were established by a number of previous researchers (e.g.
Kenmochi [14] and Otani [24]). So, referring to some of these (e.g. [14, Chapter 2]), we
can see the following fact.

(Fact 0) Let Ej be a convex subset in a Hilbert space X, let I C [0, 00) be a time-interval,
and for any t € I, let ¥¢ : X — (—o0, 00| be a proper l.s.c. and convex function,
such that D(¥?) = F, for all ¢t € I. Based on this, let us define a convex function
W! . [2(I; X) — (—o00,00], by putting:

/ WHC(t)) dt, if BO(C) € LA(D),
I

oo, otherwise.

¢ e L3 X)— ¥(() = {

Here, if E, C D(¥7), i.e. if the function t € I — W!(z) is integrable for any z € Ey,
then it holds that:

[¢,¢*] € 8! in L3(I; X)?, iff.
¢ € D(¥T) and [(t),¢*(t)] € 0¥ in X2, ae. t € 1.
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Notation 3 (Specific notations) For the solution [w,7,6] to (S), we put v := [w,7)],
for a simplicity. As well as, for the initial data [wo, 10, 6] € Dx, we put vo := [wo, 7). In
this regard, we add some specific notations, prescribed below.

For any pair of functions & = [, 7i] € L*(Q) x L?(Q); we denote by ®(¥;-) = ®(@, 7}; - )
a proper Ls.c. and convex function on L%(2), defined as:

()| V2| do + v / B()|V2]2 de,
€ IXQ) o B(5;2) = (W, 752) = { - ifze HIQ),
0o, otherwise,
and we denote by 0®(%; - ) the subdifferential of ®(#; - ) in the topology of L*(f2). Besides,
we define a quadratic function g : R? — R, by letting:
5= [,7] € B = 6(9) ( = g, 7)) 1= 50— i)? € R (23)

Remark 2.3 By using the notations in Notation 3, the variational inequalities (1.7)-(1.8)
can be reformulated as follows.

(vs(t), v(t) — w)Lz(Q)z + (Vo(t), V(u(t) - w))L2(9)2><N

—C (w(t) - U, w(t) - QO)Lz(Q) + ([Vg] (’U(t)), ’U(t) - w)Lz(Q)i’
n / (n(t) — )/ (n())|V6(8)| d + v / (wt) - @)B W) VOO Pdz  (2.4)

+ [ Tog(w)de < [ Toy(e)do,
for any @ = [p,¢] € [H}{(2) N L>(Q)] x H(Q),

where [Vg] denotes the gradient of the binary (quadratic) function g = g(@, 7).
Meanwhile, in the light of Notations 2-3 and Remarks 2.1-2.2, the variational inequal-
ities (1.8) and (1.9) can be reformulated to the following forms of evolution equations:

m(t) — Am(E) + (7 — w)(8) + &/ ) VD) = 0 in LA(Q), ae. t € (0,T),  (2.5)

and
ap(v(t))8s(t) + 8®(v(t); 6(t)) 2 0 in L%(Q), a.e. t € (0,T),
respectively, where for any & = [@, 7)] € R?, ag(?) is the abbreviation of (W, 7). However,

it must be noted that similar reformulations, by using the L%-subdifferentials, are not avail-
able for (1.7) and (2.4), due to the L-perturbation term 3'(w)|V6|* (€ L*(0,T; L'())).

Finally, we mention about the Mosco convergence, that is known as a representative
notion of the functional-convergence.

Definition 2.1 (Mosco convergence: cf. [23]) Let X be an abstract Hilbert space.
Let ¥ : X — (—o00, 00| be a proper l.s.c. and convex function, and let {¥, |n € N} be
a sequence of proper l.s.c. and convex functions ¥,, : X — (—00,00], n € N. Then, it
is said that ¥,, — ¥ on X, in the sense of Mosco [23], as n — oo, iff. the following two
conditions are fulfilled.
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1° (the condition of lower-bound): liminf ¥, (z}) > ¥(2'), if 2" € X, {2z} |n € N} C
X, and 2} — 2" weakly in X as n — oo;

2° (the condition of optimality): for any 2 € D(¥), there exists a sequence
{z} |n € N} C X such that z} — 2} in X and ¥,,(z}) — ¥(2}), as n — oo.

Remark 2.4 As a basic matter of the Mosco-convergence, we can see the following fact

(see [14, Chapter 2], for example).

(Fact1) Let X, ¥ and {¥, |n € N} be as in Definition 2.1. Besides, let us assume that:

¥, — ¥ on X, in the sense of Mosco, as n — oo,

and
{ [2,2*] € X2, [2n,2] € 0¥, in X2, n €N,

zn — zin X and 2z — 2" weakly in X, as n — oo.
Then, it holds that:

[z,2*] € O in X2, and ¥,(2,) — ¥(2), as n — oo.

3 Approximating problem

In this section, we prove the existence and uniqueness for approximating problems of
(S). As mentioned in Introduction, the approximating problems are settled as the time-
discretization systems for (S). Hence, we denote by 0 < h < 1 the index of time-step, and
we denote by (AP), the time-discretization systems for (S) prescribed as follows.

(AP),,: for the initial data [vg, Bo] = [wo, M0, 6o] € Ds with vy = [wp, 1], find a sequence:
{[’U,‘,ei] = [w,-,n,-,B,-] |Z € N} C }'{I(Q)3 with Vi = [wi,n,-], 1 E N,

such that:

1
E (’Ui — Vi—1,V; — W)Lz(g)z + (V'Uiy V(’Uz - w))LZ(Q)ZxN

—C (wi — U, w; — ‘P) L2(Q) + ([Vg] (U‘i)’ Vi — w)L2(9)2
+/(7h‘ — )o/ ()| VOi_a| dz + V/(wi = 9)B' (i)|V6; | dz (3.1)
o Q

+/§;I[0,1](w,~)d:c < /91[0,1](90),
for any w = [p, 9] € [H'(2) N L=(Q)] x H(),
O0<w;<land0< 7y <lae inQ, (3.2)

1
’_'I, (ao(vi)(ﬁi - 0,'_1), 0,; - w) L2(Q) + (D('Ui; 6,) < CI)(’U,', w), (33)
for any w € H(Q),
and
|0,| S |0i—1|L°°(Q) a.e. in Q, (34)

fori=1,2,3,---.



We call the sequence {[v;,8;] = [w;,m;,6]|¢ € N} C D, the solution to (AP),, or the
approximating solution in short. Due to (3.4), the range of approximating solution is
restricted into the following smaller class D,(6y) than D,:

D(HO -——{ w ED l|9|<|90|Loo(Q)ae II’IQ}

In what follows, we fix the time-step 0 < h < 1, and prove the following theorem,
concerned with the solvability of (AP),.

Theorem 1 (Solvability of the approx1mat1ng problem) There ezists a small con-
stant hJr € (0,1), such that if 0 < h < h}, then the approzimating problem (AP), admits
a unique solution {[v;, 6;] = [w;,n;, 0 ]|z € N} ¢ D,(6,). Moreover, under 0 < h < hj,
the approzimating solution {[v;,6;] = |w;, mi, 6;]} fulfills the following inequality of energy-
dissipation:

1
2h’ — Vi 1|L2(Q)2 _|Va0 vi)(0; — 61 ’L2 (3.5)
+ Cg.’u(vi) z) S yu(vi—lag’i—l)a 1= 1’2’37 R
where for any [9,0] = [@,7,0] € H(Q)3, Z.(5,0) is the abbreviation of F,(b,7,0).
For the proof of this theorem, we prepare some auxiliary lemmas.

Lemma 3.1 Let us fiz ) € HY(Q) and v} = [w},n] € H'(Q)?, and let us consider the
following auziliary problem, to find a pair of functions v = [w,n] € H*(2)? such that:

1
_}.i(fu — U(];, v — w)Lz(Q)2 =+ (V’U, V(’U - w))Lz(Q)sz
—c (w —u,w— 90) e T ([Vg](v), v- w) L2(Q)2
+ /Q (n — ) (n)| V8| dz + v /Q (w — )8 (w)|VE|* dz (3.6)
+ / Iip qy(w) dz < / T y(e),
Q Q

for any w = [p,¥] € [HY(2) N L=(Q)] x H(Q).

Then, there exists a small constant 0 < bl < 1, such that if 0 < h < hj, then the problem
(3.6) admits a unique solution v = [w,n] € H(Q)?.

Proof. Let us assume that: 1

1+c¢
Then, a functional ¥} : H'(Q)? — (—o0, 00|, defined as:

0<h<hj:= (3.7)

v=[w,n] € H(Q)? = ¥j(v) = Vj(w,n) = o
"§|w - U|L2(Q) + /Qg(v) dz + /Q 1[0’1](10) dx (3.8)
+ /Q (a(n)| V8| +vB(w)|VEY?) do

|’U Uo|%2(9)2 + IVU|%2(Q)2><N
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will be proper ls.c., coercive and strictly convex on H!(2)2. Additionally, the minimiza-
tion problem for \Il:‘) is equivalent to the problem (3.6). Therefore, the existence and
uniqueness for (3.6) will be a straightforward consequence of the general theory of convex
analysis (e.g. [7, Chapter 2]). ]

Lemma 3.2 For arbitrary 6} € H'(Q), w' € L*(Q) and 7o, 7o € H(), let 71,7 € H*(Q)
be functions, such that:

1 .
E(ﬁ — 7o) — A+ (7 — wf) + a'(ﬁ)|V0$| <0, a.e in 9, (3.9

and
(1 — o) — Anfy + (71 — w') + o' (H)| V)| > 0, a.e. in Q. (3.10)

S| =

Then, _
117 = A" 220y < [0 = 7] *[22(0)- (3.11)

Hence, in particular, if 1o < 7o a.e. in Q, then 7 <17 a.e. in Q.

Proof. Let us take the difference between (3.9) and (3.10), and multiply the both sides
of the result by [7 — 7j]*. Then, we have:

7= 1y 1 By + [ 7= 1% (@) — /I8 d
< %(ﬁo — 7o, [1 = A1) < l|["70 — 7o) 2@ [7 — M)t L2
Based on this, the assertion (3.11) is obtained by using (A2) and Young’s inequality. m
Corollary 3.1 Let us assume that 0 < h < h} with the constant b} € (0,1) given in

(9.7). For arbitrary 6} € HY(Q) and v} = [w},n}] € HY(Q)?, let v = [w, 5] € H(Q)? be
the unique solution to the auziliary problem (3.6). Here, if:

0<n <1ae inQ, (3.12)

then:
0<w<land0<n<1lae inQ, and n€ Dy C H*(Q).

Proof. Since v = [w,n] € H'(Q) is the minimizer of the convex function ¥}, given in
(3.8), the inequality of the range constraint:

0<w<1lae in, (3.13)

is immediately seen from the effect of the indicator function Ij;). So, putting ¢ = w in
(3.6), and having (2.1)-(2.2) in mind, we infer that n € Dy, and

1 .
=(n—=n§) = An + (n = w) + o/ (n) | VE]| = 0 in LA(Q).
On the other hand, it is easily checked from (A2) and (3.12)-(3.13) that:

%(0 —n8) — ANO + (0 — w) + o/ (0)|V6]| < 0, a.e. in €,
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and

1
21— nb) = Ayl + (1 —w) +/(1)|VO| 2 0, ae. in Q.

Now, the assertion “n > 0 a.e. in ©” (resp. “n <1 a.e. in Q”) will be obtained by
applying Lemma 3.2 as the case when 7y = Ay = ng, wl = w, % = 0 and % = 5 (resp.
o = Ao = mi, w! =w, =17 and /) = 1). -

Lemma 3.3 Let v! = [w, ] € [H'(Q) N L=(Q)] x HY() be a fized pair of functions,
and let 03 € HY(Q) be a fized function. Then, the following variational inequality:

1
- (ao(v) (6 —6}),6 - w)

admits a unique solution § € H'(1).

oy + B00156) S (W), for anyw € HYQ), (314

Proof. As easily seen, the variational inequality (3.14) is equivalent to the minimization
problem for a proper l.s.c. and convex function on L?(f2), defined as:

1
6 € L*(Q) — ﬁh/ ao(v1)(8 — 6)) 321 + ®(v1;6).

Here, by virtue of (A3), we can show that this convex function is coercive and strictly
convex on L?(Q).

Hence, this lemma will be obtained by applying the general theory of convex analysis
(e.g. [7, Chapter 2|), immediately. ]

Remark 3.1 Note that the variational inequality (3.14) can be reformulated to a form
of inclusion:

%\/W(e —6}) + 08 (vt;6) 3 0 in L3(Q),
with the use of the subdifferential & (vt; ).
Lemma 3.4 (T-monotonicity) Let v' = [wf,nf] € [H}(2)NL® ()] x H(Q) be a fized
pair of functions. Then, it holds that:
(97 = 395, [91 — 92| ) 12() 2 0,

3.15
if [0, 9%] € 0B(vt;-) in L3(Q)2, k =1,2. (3.15)

Proof. This lemma can be proved by applying the theory of T-monotonicity (cf. {3, 16]).
According to the general theory, we need to start with checking that:

D (vl wy Aws) + (vl wy Vwy)
= / a(n")|V(w Awy)|dz + u/ B(wh)|V(wr A wo)|? dz
Q Q

+/Qa(nT)IV(w1 V wo)| dz + V/Qﬂ(wJ’)IV(wl V ws)|? dx

2

= [ /Q a(n')|Vwg| dz + v /Q ﬂ(wT)IVkada:}

k=1
= ®(vh;w) + (vl wy), for all w, € HY(Q), k=1,2.
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Based on this, taking arbitrary [9x, 9] € 8®(v'; -) in L3(Q), k = 1,2, the assertion (3.15)
of this lemma is verified as follows.
(97 = 95, [0 — 2] ") 12) = (F1, % — 91 Aa) 12() + (95,92 — 91 V ¥2) 12
> O(vh;9;) + B(vh;9y) — (B(vh; 91 A ) + B(vT; 91 V) = 0.
]

~

and let 0,00 € H' () be fized functions. Let [0,6"),[8,6%] € L2(Q)? be pairs of functions,
such that:

Lemma 3.5 Let v’ = [w',nf] € [H1(Q) N L>(Q)] x HY(N) be a fized pair of functions,
[

[6,6%] € 8®(v1;-), [0,6*] € 88(vt;.) in L2(Q)?,

and 1
—ag(v) (0 —6p) +6* <0 ae. inQ,

" | (3.16)
an(vf)(e —6Gp)+0*>0ae inQ,

respectively. Then:

lvVaowD[f — 8*320) < [V ao(@h)[fo — o]t 32(q)-
Moreover, it follows from (A3) that if 6o < 6o a.e. in Q, then 6 < 6 a.e. in .

Proof. We can prove this lemma by taking the difference between the inequalities in
(3.16), multiplying the both sides of the result by [# — 6], and applying Lemma 3.4. m

Corollary 3.2 Let vt = [w,p'] € [H}(Q) N L®(Q)] x HY(Q) be a fized pair of functions,
and let 0} € H'(Q) be a fized function. Let & € H'(Q) be the solution to the variational
inequality (3.14). Then, it holds that:

0] < |8}l 1=() a-e. in Q.
Proof. As easily seen:
1681z, 0] € 9®(v; - ) and [~|6}|=(), 0] € I(v'; - ) in L)%,
and
~[Bol=(@) < 0 < |80|Le@) ae in Q.

Therefore, with (A3) and Remark 3.1 in mind, the condition “4 < |6} Lo(n) a.e. in "
(resp. “0 > —|03| L@ a.e. in 2”) will be verified by applying Lemma 3.5 as the case
when 8y = 6}, § = 6 and §, = § = |9$|Loo(n) (resp. 6y = 6 = —|05|Lw(9), 6o = 6} and
6=0). .

Proof of Theorem 1. Let us assume 0 < h < A}, with the constant given in (3.7).
Then, on the basis of the above lemmas, the existence and uniqueness for (AP), is verified
through the following steps.



(step0) let ¢ = 1, and fix [vo, 6p] = [wo, Mo, Bo] € Ds;

(step1) obtain a unique solution ¥; = [w;, 5;] € H(Q)? to (3.1), by applying Lemma, 3.1
as the case when 05 = 0;_; and vy = v;_1;

(step2) verify the range constraint property (3.2) with the regularity n; € Dy, by applying
Corollary 3.1 as the case when 8} = 6;_; and v} = v;_y;

(step 3) obtain a unique solution 6; € H'(Q) to (3.3), by applying Lemma 3.3 as the case
when vt = v; and 93 =0;_q;

(step4) verify the L>®-estimate (3.4), by applying Corollary 3.2 as the case when vt = v;,
98; = 91'_1 and 0 = Bi;

(step 5) let the value of the index i proceed to the next one, i.e. i «— ¢ + 1, and return to
(step1).

Next, we verify the inequality of energy-dissipation (3.5). Let us put w = v;_ in
(3.1). Then, by relying on the convexities of functionals, it is deduced that:

1 1 1
Elv,- - 'Ui—llii’(n)? + ElvviI%ﬂ(Q)ZXN - ilvvi—lliZ(Q)MN

—c/g(wi —u)(w; — wi—1) dz—f—/ﬂg(vi) dx—/s;g(vi_l)dx
+ [ ) osldo ~ [ atn)IV0:1lda
+v [)yﬂ(wz‘nvei—liz dr — V/Qﬂ(wi—l),vgz';ﬂQ dz

+/ I[Oyl](w,-) dx S / I[gyl](’wi_l)dli, fOI‘ 1= 1,2, 3,‘ te.
Q Q

Additionally, noting that:

—c(wi - u) (wz- - w,-_l)

c c c ,
= _Elwi —ul® + il’llh’—l —auf? ~ §|w, —w; 4%, ae. in Q,
for i=1,23,,
and having (2.3) and (3.7) in mind, we further compute that:

1

1 c 1
%Ivi - 'U,;__1|%2(Q)2 + §|Vvi|%2(g)2xN - 'z‘lwz - uliz(ﬂ) + Elwl - Thliz(ﬁ)

+ / ()| V6i 1| dz + v / B(w:)|V6s+|? dz + / Toy(ws) de
Q JQ Q

< ‘é!vvi—1|%2(ﬂ)2><1" — §|w,~_1 . u|%2(g) + §|wi—-1 - 771‘—1'%2(9) ( )

+/a(m_l)IVHi-_ﬂd:v—f—l//B(wi_1)|V0i_1|2dm+/I[o,ll(wi*l)d:c,
Q Q Q
fori=1,2,3,---.
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On the other hand, let us put w = 6;_; in (3.3). Then, we have:
1
Elw/ao(v,’)(ﬂi — 9,;1)!%2(9) + ‘/Q a(vi)IVB,-l dr + V/Q,B(vz)IVB,IZ dz

(3.18)
‘/ a(n;)| V1| dx — V/ B(w;)|Vi_1[*dz <0, fori=1,2,3, - .

Q Q
Now, the inequality of energy-dissipation (3.5) will be obtained by taking the sum of
(3.17) and (3.18). .

4 Proof of the Main Theorem

Throughout this section, we assume that 0 < h < h;‘, with the constant as in (3.7), and
we denote by {[vi,8;] = [wi,m,6:]|: € N} C H'(Q2)3 the solution to the approximating
problem (AP), with the initial data [vo, o] = [wo, N0, 6] € D..

Based on these, let us define three kinds of time-interpolations (v, 5;,] = [Wh, T, é\h] €
leoc([O,OO);L2(Q))3, [vh’gh} = [mhaﬁh’—éh] € leoc([()’ OO);Lz(Q))s’ [Qh’Qh] = [Lu—h’ﬂh’gh] €
L2,.([0,00); L*(2))® with the abbreviations Ty = [@n, Ty}, vy, = [w, 7, and By = [Dp, M),
by putting:

( ° [6h(t)’ah(t)] = [mh(t)’ﬁh(t)’ah(t)] = [vi70i] = [wiv_ni)oi] in L2(Q)37

if t € ((i — 1)h,ih] for some ¢ € N, and [U4(0),0,(0)] := [vo, bo)

in L2(Q)3,

{ o [un(®), a0 = [wa(t),m,(8),048)] = [vicr,6ia] = [wica, Mo, B3] (4.1)
in L2(Q)3, if t € [(i — 1)h,1h) for some i € N,

o [Bu(t), B ()] = [@(8), (1), B(D)] = [v3, B+ (f — ) [os—vi-n, Bi=6i]
in L2(Q)3, if t € [(¢ — 1)h,th) for some i € N,

\

for all ¢ > 0. Then, from (1.4), (3.2), (3.4) and (3.5), it is inferred that:

o {[Bn,0n] = [@n, 7 0n]|0 < h < h{} is bounded in
Wh2(0, T; L*())° N L*(0, T; H'Y())?,

° {[ﬂh,p—h] = [mh,ﬁh,—éh],[yhagh] = [wh’ﬂh’-@h] IO <h< ha}
is bounded in L*(0, T; H'(9))3,

(4.2)

and
{{ﬁh(t’z)ayh(t?w)’fl}h(tv 1‘) I 0< h < h(i;} - [07 1]2’
{Bn(t, ), 8,2, ©),0n(2,2) |0 < h < B} C [~16o| (e, B0l (a)], (4.3)
for a.e. £ € Q and any t € [0,T].
Therefore, by applying the compactness theory of Aubin’s type (cf. [29]), we find a

sequence:
h$>h1>~-->hn\,0asn—>oo,

and a triplet of functions [v, 8] = [w,n,6] € C([0,T}; L*(2))® with the abbreviation v =

[w, n], such that:
[v,0] € W0, T; L3(2))® N L*=(0, T; H'(Q))?, (4.4)



[U(t, I)a H(t? 93)] € [O’ 1]2 X [_|90|L°°(Q)1 IHOIL“’(Q)]’ (4 5)
for a.e. z € Q and any ¢ € [0, 7], '
( Ty = [, ) := Tp, — v
in C([0, T]; L*(2))?, weakly in W2(0,T; L?(2))?,
weakly-+ in L>(0,T; H'(Q))? and pointwise sense a.e. in Q, gg 5 — 00, (4.6)
Up = [Wn, 7,) := Up, — v and v,, = (W, ] = vy, — v
weakly-* in L*®(0,T; H!(2))? and pointwise sense a.e. in Q,

\
and

( §n:=§hn—+9

in C([0, T]; L*()), weakly in W12(0, T; L*(Q2)),

weakly-* in L>(0,T; H(2)) and pointwise sense a.e. in Q, asn — oo. (4.7)
0, = ghn —~60and g, :=6, —0

weakly-* in L>°(0,T; H'(2)) and pointwise sense a.e. in Q,

\

Now, for the proof of the Main Theorem, we prepare some additional lemmas.

Lemma 4.1 (Mosco convergence) Let I C (0,T) be any open interval. Let & .
L¥(I; L*(Q)) — [0,00] and ®L : L*(I; L*(Q)) —> [0,00], n € N, be functionals, de-
fined as:

¢ € LI LA(Q) o $1(C) = / B(u(t); ¢(0)) dt,

and
¢ € AL I3(R)) — $1(¢) = / S(a(t); (1) dt, n €N, (48)

by using v = [w,n] € L*(0,T; L2(Q))? and T, = [Wy,7,] € L*(0,T; L*(N))?, n € N, as in
(4.4)-(4.6). Then, the following two items hold.

(1) &7 and &I n € N, are proper l.s.c and convex functions on L*(I; L*(Q2)), such that
D(®%) = D(®}) = L*(I; HY(Q)), for alln € N.

(II) ®L — & on L2(I; L*(R2)), in the sense of Mosco, as n — oo.

Proof. Since the item (I) is a straightforward consequence from (A2)-(A3), Notation 3
and (4.2)-(4.5), we can concentrate to the proof of the item (II).

For the verification of the condition of lower-bound, let us take a sequence {!|n €
N} © L*(I; L*(Q)) with a function ¢t € L2(I; L*(2)) and a subsequence {¢i |keN}C
{¢1}, to suppose the following non-trivial situation:

¢ — ¢ weakly in L*(I; L*(Q2)) as n — oo,
{ “9)

. 27 . 2
lim inf &1(¢f) = lim &1, (¢f,) < co.

Then, due to (A3) and (4.8)-(4.9), the subsequence {6}, } must be bounded in L? (I; HY(Q)).

So, taking a subsequence if necessary, we may also suppose that:

¢ — ¢ weakly in L2(I; HY(Q)) as k — oo.
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Additionally, having (A3), (4.3) and (4.5)-(4.6) in mind, we can see that:

{ a(Tn, )V };k — a(v)V{T,
VB(@,) VL, — BV,

From the above convergence, the condition of lower-bound is confirmed as follows.

weakly in L%(I; L2(Q)VN) as k — oo.

lim inf &1(¢}) = lim &7, (¢f,)
= l]_m lnf (Ia(vnk)vcnlel(l LI(Q)N) +v |\/ 'U’nk

> |e(v) V¢t |L1(IL1(Q)N +V‘\/ CT
= &I(¢h.

In the meantime, taking into account (4.3), (4.5)-(4.6) and Lebesgue’s dominated
convergence theorem, it is inferred that:

1B1(Ch) — 1(¢H)
/ / a7, — a(n)||V¢!| dzdt + v / / 1B(@n) — B@)| [V dads

— 0 as n — oo, for any ¢t € D(®!(-)).

o2 L"’(Q)"))

L2(L,L2()N)

This implies the validity of the condition of optimality, for the Mosco convergence éf, —
®! on L?(I; L*(Q)), as n — oo. [

Lemma 4.2 In addition to the assumptions as in Lemma 4.1, let us assume that ¢* €
L(I; HY(Q)), {¢} |n € N} C L*(I; H(Q)), and

¢t o ¢tin LA(I; L3(Q)) and ®L(¢}) — &1(¢Y), asn — oo. (4.10)
Then, ¢ — ¢t in L3(I; H(Q)) as n — 0.
Proof. This lemma is proved by using the following elementary fact:

(1) if m' € N, a} € R, {ag,nl‘n € N} C R, li,{{lggfal,n > a), for £ = 1,---,m!, and

mi mt
llmsupZaen < Zae, then hm aen a}, for¢=1,-.-,mt
T =1 =1

In the light of (A3) and (4.10), we may suppose that:
¢t — ¢* weakly in L2(I; HY()), as n — oo, (4.11)

by taking a subsequence if necessary. Subsequently, from (A3), (4.3), (4.5)-(4.6) and
(4.11), we can see that:

V(i — VE,
(a(Tn) — 6,) V¢ — (av) — 6,)V¢H,  weakly in L2(I; L2(Q)V) as n — oo.

V ﬁ(ﬁn) - 6*VC711 -V /B(U) - 5*VC1,



Based on this, it is observed that:

lim inf / / Ve @) dadt > / / IV (8) dadt,
n—oo Jrin 1Ja
lim inf / / |V 2 dodt > / f [VEHD)|? dzdt,
n—e JrJa 1JQ

it [ [ (3 a0 - 1) 1960 wat

> [ [ (Ji alut) ~1) 1960 dodt

< (4.13)
liminf /1 /Q (%-ﬁ(wn(t))»—l) Ve ()2 dadt

=] (5 - B 1) VG0 dade
Additionally, it follows from (4.10) that:
imsup | [ [ 196i@laoae+ [ [ (3-ata0) ~1) V60 dad
+y//;vgi |2dxdt+z///(  B(@at ))—1> |V§}L(tv)|2da:dt]
— o Jim @(¢) = £(¢Y (4.14)
_ / Jvcendsacs [ [ (% -atao)-1) 960 dad
oo [ [1vcepases [ (5 0) -1) V6P dsa

By virtue of (4.12)-(4.14), we can apply the fact () to infer that:

(4.12)

and

vIVG I ra@yy = VIVEH T2y 8sn — 0. (4.15)

The strong convergence of {¢}} in L%(I; H*(2)) will be obtained as a consequence of
(4.10), (4.15) and the uniform convexity of the topology. |

Proof of the Main Theorem. Note that (4.4)-(4.5) imply that the triplet [w,7, 6]
mostly fulfills the condition (SO) in the Main Theorem, except for the regularity n €
L?*(0,T; H*(2)). So, our objective is to verify that the limiting triplet [v,6] = [w,, ]
fulfills the conditions (S1)-(S3) with the remaining regularity n € L2(0, T; H2()).
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Let us fix any open interval I C (0,T). Then, due to (3.1)-(3.3) and (4.1), the triplets
[On, On] = [@n, T, Onl, [Uns O] = [Wes 1+ 8,y [y On] = [@, Thn, O] must fulfill that:

/I((an)t(t)"ﬁn(t) B w)L2(9)2 at + /I (Vﬁn(t)’ V(wn(t) — w))Lz(Q)sz dt
/ (@) = 0, T(t) = ) oy 6 + / (V81 (1)), Tnlt) = ) e
# [ [ (@00 - D O T80+ v@a(0) ~ )8 @) V8, )F) dds 415)

//I[()l](’wn )d:cdt<// T0,1)(p) dzdt,

for any w = [p, 9] € [H}(2) N L*®(R)] x H'(2) and any n € N,

and
[Bn, —00(Ta)(B)e) € AL in L2(I; L%(2))?, for any n € N.

Here, from (Fact 1) in Remark 2.4, (4.6)-(4.8) and Lemma 4.1, it follows that:
[0, —ao(v)8y] € 89! in L3(I; L*())2, (4.17)

and o )
®!(6,) — @'(9) as n — oo. (4.18)

In the light of (Fact0) of Remark 2.2, (I) of Lemma 4.1 and (4.17), we can see that the
triplet [v, ] = [w, 7, 4] fulfills the condition (S3).

Next, from (4.6)-(4.7), (4.18) and Lemma 4.2, it is inferred that:

6, — 6, 6, — 0 and 6, — 6 in L2(I; H'(Q)), as n — oo. (4.19)

In addition, with (2.3), (4.3)-(4.7) and (4.19) in mind, letting n — oo in (4.16) yields
that:

/I (vt(t)v u(t) — w)L'z(Q)z dt + /I (V’U(t), V(v(t) — w))m(g)sz dt
—c\/f (’lll(t) - u,w(t) - QO)LZ(Q) dt + [ ([Vg]('u(t)),v(t) - w)Lz(Q)z dt
+ /1 /Q ((7(8) — 0) (7)) V)] + w(w(t) — £)B (w(2))|VO()?) derdt
+ /1 /Q Toy(w(t)) ddt < /1 /Q Lo () dadt,

for any w = [p, 9] € [H}(Q) N L*(Q)] x H(Q).

Since the choice of the open interval I C (0,T) is arbitrary, we can verify the remaining
conditions (S1) and (S2) on the basis of the above inequality and Remark 2.3.

The regularity n € L2(0, T; H2(S2)) will be seen by taking into account the reformula-
tion (2.5) in Remark 2.3. (]



5 Vision in the future

Finally, we mention about the vision in the future of our study. As the future prospec-
tive, we have two research issues, listed below.

1. Unification of the solving method. As mentioned in Introduction, the system (S)
is a modified version of “¢-7-6 model”, proposed in [18], that is aimed to reproduce the
grain boundary motion involving the solidification effect. Hence, the system (S) consists
of two parts: the part of the so-called Allen-Cahn type equation (1.1) for the solid-liquid
phase transition; the part of Kobayashi-Warren-Carter type system {(1.2)-(1.3)} for the
grain boundary motion, originated from [20, 21].

Naturally, this study is a part of the previous works [9, 11, 12, 13, 17, 18, 19, 20,
21, 22, 27, 28, 33, 34], that dealt with the Kobayashi-Warren-Carter type systems. In
particular, we note that the time-discretization approach as in Section 3 comes from the
ideas conceived in [22], and we further note that this approach include a strong possibility
to unify the solving methods for various problems, associated with the Kobayashi-Warren-
Carter type system.

In the meantime, it should be noted that there are now a number of previous works
concerned with the mathematical studies of phase transitions (cf. [1, 4, 5, 6, 8, 10, 15, 25,
26, 30, 31]), and most of these adopted the double-well functions that belonged to either
of the following three cases.

(Case1) The standard polynomial type (cf. [1, 4, 8, 31]):

1, ) w w?
> cww—12—u (L Y ) eRr
weR 4w(,w 1) u(B 5 ) €

(Case2) The case with logarithmic constraint (cf. [10, 30]):
1
w e (0,1) — % (wlogw + (1 — w)log(1 — w)) — i(w —u)? eR.

(Case 3) The case with nonsmooth constraint (cf. [5, 6, 15, 26, 31]): thisis just
the case adopted in our paper, i.e. the case when the double-well function is provided
by (1.6).

In view of these, we are thinking that we need to develop some mathematical theory
which provides a unified solving method of a wide scope of coupled systems, including the
Allen-Cahn type equations in (Case.1)-(Case3) and the Kobayashi-Warren-Carter type
systems.

2. Extension of the theory to non-isothermal situations. In the systems based
on ¢-n-6 model, the (relative) temperature u is fixed as a constant. It implies that any
¢-n-0 type model, including our system (S), can respond to only restricted situation, i.e.
the isothermal situation.

In this light, the next stage of this study will be on the following non-isothermal
mathematical model, originated from Warren-Kobayashi-Lobkovski-Carter [32]:
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(u—w);— Au=0in Q, (5.1)
wy — Aw + w(w — 1)(w —u— 1/2) + ' (w){ VO] + vB' (w)| V> =0 in Q, (5.2)
ap(w)b; — div (a(w)% + 2Vﬁ(w)V0) =0in Q, (5.3)

subject to the suitable initial-boundary condition.

The above model can be said as an enhanced (generalized) version of ¢-n-6 model,
because it is formulated as a coupled system of the heat equation (5.1), the Allen-Cahn
type equation (5.2), and the singular type diffusion equation (5.3) similar to (1.3). How-
ever, we must note the point that the orientation order n disappears in the non-isothermal
model, because it is identified with the solidification order w.

From physical point of view, the identification 7 = w could be a possible and reasonable
simplification. But, from mathematical point of view, it might be better to develop a
powerful theory which provide the unified solving method for non-isothermal models,
regardless of the simplification n = w.
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