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1 Introduction
The paper is devoted to a H\’enon type equation on the hyperbolic space. In particular,
we shall prove an existence of solutions to the elliptic equation. Furthermore we an-
nounce a Liouville theorem for the equation on the hyperbolic space, which is obtained
in [21]. In order to state a motivation of our research, first we mention known results
for semilinear elliptic equations.

To begin with, we introduce known results for the following elliptic equation in the
Euclidean space:

(E) $-\Delta u=|x|^{\alpha}|u|^{p-1}u$ in $\mathbb{R}^{N},$

where $\alpha>-2,$ $N\geq 3$ and $p>1$ . Here, $|x|^{\alpha}$ is called a weight. The equation (E)
was posed by J.H. Lane ([27]) for the case $\alpha=0$ in 1869 and is well known as Lane-
Emden-Fowler equation. The equation has been widely studied in the mathematical
literature ([6, 7, 15, 19, 20, 26, 30]). Moreover, the equation was appeared in the
astrophysical study of the structure of a singular star ([8, 14, 17]). In 1973, (E) for
the case $\alpha>-2$ was posed by M. H\’enon to study rotating stellar structures ([24]) and
(E) is called H\’enon equation. Although he defined the equation only in 3-dimensional
unit ball with Dirichlet boundary condition, the equation has been studied for more
general setting by mathematical interest ([11, 18, 28, 31, 32, 35, 36]).

Regarding the exponent $p$ in (E), there exist certain critical exponents which char-
acterize the structure of solutions to (E). $A$ typical exponent is Sobolev’s critical
exponent:

$p_{S}(N):= \frac{N+2}{N-2}.$

For example, $p_{S}$ characterizes the solution of (E) with respect to the positivity:

Theorem 1.1 (B. Gidas and J. Spruck [18, 19]). Let $1<p<p_{s}(N)$ and $p\neq(N+2+$
$2\alpha)/(N-2)$ . If the solution $u\in C^{2}(\mathbb{R}^{N})$ of (E) is nonnegative, then $u=0.$

Remark that Theorem 1.1 implies that there is no positive solution of (E) when
$\alpha>-2,1<p<p_{s}(N)$ and $p\neq(N+2+2\alpha)/(N-2)$ . Moreover, it is sufficient to
consider only the case $\alpha>-2$ and $p\geq p_{s}(N)$ , because the nonexistence of positive
solution of (E) for the case $\alpha<-2$ was showed by B. Gidas and J. Spruck ([19]).
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The other critical exponent, which characterizes the solution with respect to the
stability, has been attracting a great interest in recent years. Indeed, the following
results were proved by Farina in 2007 for $\alpha=0$ ([15]) and by Dancer, Du and Guo in
2011 for $\alpha>-2$ ([11]).

Theorem 1.2 ([11, 15]). Let $u\in C^{2}(\mathbb{R}^{N})$ be a stable solution of (E). If $p>1$ satisfies

$\{\begin{array}{ll}1<p<+\infty if N\leq 10+4\alpha,1<p<p(\alpha, N) if N>10+4\alpha,\end{array}$

then $u\equiv 0$ in $\mathbb{R}^{N}$ . Here, $p(\alpha, N)$ is given by the following:

$p( \alpha, N):=\frac{(N-2)^{2}-2(\alpha+2)(\alpha+N)+2\sqrt{2(\alpha+2)^{3}(\alpha+2N-2)}}{(N-2)(N-4\alpha-10)}.$

On the other hand, $ifp\geq p(\alpha, N)$ , then the equation (E) has stable, $p_{0\mathcal{S}}$ itive, and radial
solutions.

The assertion in Theorem 1.2 is called a Liouville type theorem. Remark that they
proved Theorem 1.2 without any other assumption except stability, such as positivity,
radial symmetry and so on. Moreover, Theorem 1.2 implies that $p(\alpha, N)$ is critical.
Here, we define the stability of solutions to (E) as follows:

Definition 1.1. $A$ solution $u\in C^{2}(\mathbb{R}^{N})$ of (E) is stable if the inequality

$\int_{\mathbb{R}^{N}}\{|\nabla\psi|^{2}-p|x|^{\alpha}|u|^{p-1}\psi^{2}\}dx\geq0$

holds for any $\psi\in C_{c}^{1}(\mathbb{R}^{N})$ .

We mention some remark on Definition 1.1. One can observe that the equation (E)
is formally derived as Euler-Lagrange equation for the functional

$E(u):= \int_{\mathbb{R}^{N}}\{\frac{1}{2}|\nabla u|^{2}-|x|^{\alpha}\frac{|u|^{p+1}}{p+1}\}dx.$

Recall that the stability is defined for $C^{2}$ solutions of (E) in Definition 1.1. Obviously
there exist $C^{2}$ solutions with infinite energy. However Definition 1.1 is available for
such solutions. Indeed, for each $R>0$ and any $C^{2}$ solution of (E), the functional

$E_{R}(u):= \int_{B_{R}}\{\frac{1}{2}|\nabla u|^{2}-|x|^{\alpha}\frac{|u|^{p+1}}{p+1}\}dx$

is finite, where $B_{R}=\{x\in \mathbb{R}^{N} : |x|<R\}$ . Then, the second variational formula for
$E_{R}$ , which is expressed as

$QR$ $[u]( \psi):=\int_{B_{R}}\{|\nabla\psi|^{2}-p|x|^{\alpha}|u|^{p-1}\psi^{2}\}dx,$ $\forall\psi\in C_{c}^{1}(B_{R})$ ,
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is well-defined for any $C^{2}$ solution $u$ of (E). Since $R>0$ is arbitrary, Definition 1.1
is equivalent to the following: “A solution $u\in C^{2}(\mathbb{R}^{N})$ of (E) is stable if $Q_{R}[u](\psi)$

. is non-negative for any $\psi\in C_{c}^{1}(B_{R}).$
” By making use of the concept of Definition

1.1, Liouville type theorems have been proved for many kinds of elliptic equations
([9, 10, 11, 12,13, 16,25,36]).

On the other hand, recently semilinear parabolic and elliptic equations in the hy-
perbolic space have been studied ([1, 2, 3, 4, 5, 22, 29, 33, 34]). For example, the
equation (E) for the case of $\alpha=0$ can be written as

($LH$) $-\triangle_{\mathbb{H}}u=|u|^{p-1}u$ in $\mathbb{B}^{N},$

where $p>1$ and $N\geq 3$ . Here, $\mathbb{B}^{N}$ denotes a unit ball $\{x\in \mathbb{R}^{N} : |x|<1\}$ endowed
with the following Riemannian metric:

$g_{ij}=( \frac{2}{1-|x|^{2}})^{2}\delta_{ij},$

where $\delta_{ij}$ is Kronecker’s delta. The geodesic distance from the origin to $x\in \mathbb{B}^{N}$ is
given by

$d_{\mathbb{H}}(0, x):= \int_{0}^{|x|}\frac{2}{1-s^{2}}ds=\log(\frac{1+|x|}{1-|x|})$ .

Furthermore, $\triangle_{\mathbb{H}}$ is the Laplace-Beltrami operator on $\mathbb{B}^{N}$ and is written by

$\triangle_{\mathbb{H}}u=(\frac{1-|x|^{2}}{2})^{2}\triangle u+(N-2)(\frac{1-|x|^{2}}{2})x\cdot\nabla u.$

Although it is obvious that the metric affects the geodesic distance and differential
operators, it might affect the structure of solutions. Indeed, [29] shows that there
exists at most one positive radial $H^{1}(\mathbb{B}^{N})$ solution for $1<p<p_{s}(N)$ by using the
variational method. Furthermore, Bonforte, Gazzola, Grillo, and V\’azquez proved the
existence of solutions with infinite energy for $1<p<p_{s}(N)$ :

Theorem 1.3 ([5, 29]). Let $1<p<p_{S}(N)$ . Then, there exists a positive radial solution
$u\in C^{2}(\mathbb{B}^{N})$ of ($LH$).

Although Theorem 1.1 showed the nonexistence of positive solution of (E) for $1<$

$p<p_{s}(N)$ , Theorem 1.3 shows the existence of positive solution of ($LH$) for $1<p<$
$p_{s}(N)$ . The difference is strongly related that Poincar\’e’s inequality in $L^{2}(\mathbb{B}^{N})$ holds
since the first eigenvalue of $-\triangle_{\mathbb{H}}$ is $((N-1)/2)^{2}$ , i.e., positive. Making use of the
positivity, Berchio, Ferrero, and Grillo showed the following result:

Theorem 1.4 ([3]). Let $p>1$ . Then, for each $\beta>0$ , there exists a unique radial
solution $u_{\beta}$ of ($LH$) satisfying the following conditions:

$u_{\beta}(0)=\beta, u_{\beta}’(0)=0.$

Moreover, there exists some positive constant $\beta_{0}$ such that $u_{\beta}$ is stable for any $\beta\leq\beta_{0}.$

36



Here, $r$ denotes the geodesic distance $d_{\mathbb{H}}(O, x)$ from the origin to $x\in \mathbb{B}^{N}$ . Regarding
$\beta_{0}$ , they proved that $\beta_{0}$ is bounded when $1<p<p(O, N)$ . In [3], the stability of
solutions of ($LH$) is defined by the same manner as in Definition 1.1:

Definition 1.2. The solution $u\in C^{2}(\mathbb{B}^{N})$ of ($LH$) is stable if the inequality

$\int_{B^{N}}\{|\nabla_{\mathbb{H}}\psi|_{\mathbb{H}}^{2}-p|u|^{p-1}\psi^{2}\}dV_{\mathbb{H}}\geq 0$

holds for any $\psi\in C_{c}^{1}(\mathbb{B}^{N})$ .

Here, $\nabla_{\mathbb{H}}$ and $dV_{\mathbb{H}}$ are the gradient operator and the volume element on the hyper-
bolic space, respectively. Also, $|\nabla_{\mathbb{H}}\psi|_{\mathbb{H}}^{2}$ denotes the inner product of $\nabla_{\mathbb{H}}\psi$ with itself,
where this inner product is induced from the metric on $\mathbb{B}^{N}a_{l}’s$ follows:

(1.1) $| \nabla_{\mathbb{H}}\psi(x)|_{\mathbb{H}}^{2}=\langle\nabla_{\mathbb{H}}\psi(x), \nabla_{\mathbb{H}}\psi(x)\rangle_{\mathbb{H}} :=(\frac{2}{1-|x|^{2}})^{2}(\nabla_{\mathbb{H}}\psi(x), \nabla_{\mathbb{H}}\psi(x))$.

Here $(\cdot, \cdot)$ denotes the usual inner product in $\mathbb{R}^{N}$ . Theorem 1.4 implies that there is no
critical exponent for ( $LH$) such as $p(\alpha, N)$ in Theorem 1.2. This fact also arises from
the structure of spectrum $of-\triangle_{\mathbb{H}}$ . Indeed, letting the value of origin less than the
first eigenvalue sufficiently, they first proved that the inequality in Definition 1.2 holds.
Furthermore they also constructed non-trivial stable solution. Comparing Theorem 1.4
with Theorem 1.2, we are interested in the following question:

Problem 1.1. Does Liouville theorem hold for the equation ($LH$) with some weight?

To consider this problem, first we introduce an typical weight for ($LH$). From the
analogue of the weight in (E), we can choose the power of geodesic distance as weight:

(1.2) $-\triangle_{\mathbb{H}}u=(d_{\mathbb{H}}(0, x))^{\alpha}|u|^{p-1}u$ in $\mathbb{B}^{N}.$

Actually, He and Wang proved the existence of solutions and its asymptotic behavior
for (1.2) ([22, 23]). However, any Liouville type theorem with respect to the stability
has not been proved yet. Indeed, we couldn’t prove the Liouville type theorem for (1.2)
although we make use of the same method as the proof of Theorem 1.2.

In order to give an affirmative answer to Problem 1.1, we consider the following
equation:

(H) $- \triangle_{\mathbb{H}}u=(\frac{2|x|}{1-|x|^{2}})^{\alpha}|u|^{p-1}u$ in $\mathbb{B}^{N},$

where $\alpha>0,$ $p>1$ and $N\geq 3$ . Remark that we can write the weight as follows:

$w(x):= \frac{2|x|}{1-|x|^{2}}=\sinh r,$

where $r=d_{\mathbb{H}}(O, x)$ . The reason why we choose this weight is that $\sinh r$ , which has
strong singularity in the infinity, arises in the volume element in the hyperbolic space.
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By making use of the fact, we can obtain an affirmative answer to Problem 1.1. Indeed,
we shall announce a Liouville theorem which is stated in concise form as follows: “For
sufficiently small $p>1$ , if $u$ is stable solution of (H), then $u=0.$” For the precise
thesis, see Section 3. As a first step of our study for (H), we start with an existence of
solution of (H) with small $p>1$ :

Theorem 1.5. The equation (H) admits a radial positive solution in $H^{1}(\mathbb{B}^{N})\cap C^{2}(\mathbb{B}^{N})$

if

$p \in(\frac{N-1+2\alpha}{N-1}, N+N2-+22\alpha)$

We shall construct this nontrivial solution by using variational methods. More-
over, Sobolev’s embedding implies that the solution obtained in Theorem 1.5 has finite
energy.

This paper is organized as follows. In Section 2, we shall prove Theorem 1.5. The
proof is a modification of the proof of Theorem 6 in [31]. Finally, in Section 3, we state
the Liouville theorem and asymptotic behavior of radial solutions of (H) for $p>1$ big
enough. We shall show you an outline of proof of the Liouville theorem. For the precise
proof, see [21].

2 Existence of solution
In this section, we shall prove an existence of solution to (H) in the class $H^{1}(\mathbb{B}^{N})$ . More-
over, the following Theorem 1.5 is proved by a modification of the proof of Theorem 6
in [31]. We prove Theorem 1.5 by making use of Mountain Pass Theorem:

Proposition 2.1 (Mountain Pass Lemma). Let $E$ be a Banach space and let $J\in$

$C^{1}(E, \mathbb{R})$ satisfy the Palais-Smale condition. Suppose that (A) $J(O)=0$ and $J(e)=0$

for some $e\neq 0$ in $E$ , and (B) there exists $\rho\in(0, |e|)$ and $\alpha>0$ such that $J\geq\alpha$ on
$S_{\rho}=\{u\in E:|u|=\rho\}$ . Then $J$ has a positive critical value

$c= inf\max J(h(t))\geq\alpha>0$
$h\in\Gamma t\in[0,1]$

where $\Gamma=\{h\in C([O, 1], E) : h(O)=0, h(1)=e\}.$

$J$ satisfies the Palais-Smale condition if any sequence $\{u_{n}\}\subseteq E$ with $\{J(u_{n})\}$

bounded and $J’(u_{n})arrow 0$ has a convergent subsequence.

Let $E$ be the completion of radially symmetric $C_{0}^{\infty}$ functions with respect to the
norm, where

$\Vert u\Vert_{E}^{2}=\int_{B^{N}}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}.$
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Since the bottom of the spectrum $of-\triangle_{\mathbb{H}}$ is given by

$\lambda_{1}(-\triangle_{\mathbb{H}}) := inf\underline{\int_{\mathbb{B}^{N}}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}}=\frac{(N-1)^{2}}{4},$

$u \in H^{1}(\mathbb{B}^{N})\backslash \{0\} \int_{\mathbb{B}^{N}}|u|^{2}dV_{\mathbb{H}}$

it is easy to verify that $\Vert\cdot\Vert_{E}$ is equivarent to the norm of $H^{1}(\mathbb{B}^{N})$ . Indeed we observe
that

$\Vert u\Vert_{E}^{2}\leq\int_{\mathbb{B}^{N}}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}+\int_{\mathbb{B}^{N}}|u|^{2}dV_{\mathbb{H}}$

$\leq(1+\frac{4}{(N-1)^{2}})\Vert u\Vert_{E}^{2}.$

In the following, we shall prepare the proposition which we need in order to show the
existence of solution of (H) in $H^{1}(\mathbb{B}^{N})$ :
Lemma 2.1. Let $u\in E$ . Then it holds that

(2.1) $|u(x)| \leq\frac{1|_{E}}{\sqrt{w_{N}(N-2)}(\sinh(2arnh|x|))^{\frac{N-2}{2}}},$

(2.2) $|u(x)| \leq\frac{1E}{\sqrt{w_{N}(N-1)}(\sinh(2arnh|x|))^{\frac{N-1}{2}}},$

where $w_{N}$ is the surface area of the unit ball in $\mathbb{R}^{N}.$

Proof. Since $u\in E$ , it holds that

$u(1)-u(|x|)= \int_{|x|}^{1}u’(t)dt.$

By H\’older’s inequality, we have
(2.3)

$|u(x)| \leq\int_{|x|}^{1}|u’(t)|dt$

$\leq(\int_{|x|}^{1}|u’(t)|^{2}t^{N-1}(\frac{2}{1-t^{2}})^{N-2}dt)^{\frac{1}{2}}(\int_{|x|}^{1}t^{-(N-1)}(\frac{2}{1-t^{2}})^{-(N-2)}dt)^{\frac{1}{2}}$

$:=I_{1}+I_{2}.$

First we estimate $I_{1}$ as follows:

$I_{1}= \frac{1}{w_{N}}\int_{\partial B(0,1)}(\int_{|x|}^{1}(\frac{1-t^{2}}{2})^{2}|u’|^{2}(\frac{2}{1-t^{2}})^{N}t^{N-1}dt)dS$

$= \frac{1}{w_{N}}\int_{|x|\leq|y|\leq 1}(\frac{1-|y|^{2}}{2})^{2}|\nabla u|^{2}(\frac{2}{1-|y|^{2}})^{N}dy$

$= \frac{1}{w_{N}}\int_{|x|\leq|y|\leq 1}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}(y)$

$\leq\frac{1}{w_{N}}\Vert u\Vert_{E}^{2}.$
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Regarding $I_{2}$ , we find

$I_{2}= \int_{2arc\tanh|x|}^{\infty}(\tanh\frac{s}{2})^{-(N-1)}(2\cosh^{2}\frac{s}{2})^{-(N-2)}(2\cosh^{2}\frac{s}{2})^{-1}ds$

$= \int_{2arctanh|x|}^{\infty}(\sinh s)^{-(N-1)}ds$

$\leq\int_{2arc\tanh|x|}^{\infty}(\sinh s)^{-(N-1)}\cosh sds$

$=- \frac{1}{N-2}[(\sinh s)^{-(N-2)}]_{2arctanh|x|}^{\infty}=\frac{1}{N-2}(\sinh(2arc\tanh|x|))^{-(N-2)}$

Then (2.1) is followed from this estimate and (2.3). Moreover, we can also estimate $I_{2}$

as follows:

$I_{2}= \int_{2arctanh|x|}^{\infty}(\frac{1}{\sinh s})^{N-1}ds$

$\leq\int_{2arctanh|x|}^{\infty}(\frac{1}{\sinh s})^{N-1}\frac{1}{\tanh s}ds$

$= \int_{2arc\tanh|x|}^{\infty}(\frac{1}{\sinh s})^{N}$ cosh $sds$

$=- \frac{1}{N-1}[(\sinh s)^{-(N-1)}]_{2arctanh|x|}^{\infty}=\frac{1}{N-1}(\sinh(2arc\tanh|x|))^{-(N-1)}$

Combining this estimate with (2.3), we find (2.2). $\square$

Lemma 2.2. Let $0<m<(N-1)/2$ . Then for any

$\tau\in(\frac{2(N-1)}{N-1-2m},\hat{m})$

there exists a constant $C=C(N, \tau, m)$ such that

(2.4) $\Vert w^{m}u\Vert_{L^{\tau}(B^{N})}\leq C\Vert u\Vert_{E}$

where

$\hat{m}=\{\begin{array}{ll}\frac{2N}{N-2-2m} when m<\frac{N-2}{2}.\infty when \frac{N-2}{2}\leq m<\frac{N-1}{2}.\end{array}$

Proof. Let

$0<m< \frac{N-1}{2}.$
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To prove (2.4), we divide the integral int$0$ two parts:

$\int_{B}w^{m\tau}|u|^{\tau}dV_{\mathbb{H}}=\int_{0\leq|x|\leq\frac{1}{2}}(\frac{2|x|}{1-|x|^{2}})^{m\tau}|u|^{\tau}(\frac{2}{1-|x|^{2}})^{N}dx$

$+ \int_{2}\leq|x|\leq 1(\frac{2|x|}{1-|x|^{2}})^{m\tau}|u|^{\mathcal{T}}(\frac{2}{1-|x|^{2}})^{N}dx$

$=:X+Y.$

First we estimate the term X. By (2.1), we have

$X \leq C\Vert u\Vert_{E}^{\tau}\int_{0\leq|x|\leq\frac{1}{2}}(\frac{2|x|}{1-|x|^{2}})^{m\tau}(\sinh(2arc\tanh|x|))^{-\frac{N-2}{2}\tau}(\frac{2}{1-|x|^{2}})^{N}dx$

$=C \Vert u\Vert_{E}^{\tau}\int_{0}^{2arctanh\frac{1}{2}}(\sinh s)^{m\tau+N-1-\frac{N-2}{2}\tau_{d_{S}}}$

$\leq C\Vert u\Vert_{E}^{\tau}\int_{0}^{2arctanh\frac{1}{2}}(\sinh s)^{m\tau+N-1-\frac{N-2}{2}\tau}\cosh sds$

$=C \Vert u\Vert_{E}^{\mathcal{T}}\int_{0}^{\sinh(2arc\tanh\frac{1}{2})_{t^{m\mathcal{T}+N-1-\frac{N-2}{2}\tau}}}dt.$

Since the relation

$m \tau+N-1-\frac{N-2}{2}\tau>-1$

holds if and only if $\tau<\hat{m}$ . Thus we see that if $\tau<\hat{m}$ then it holds that

$X\leq C\Vert u\Vert_{E}^{\mathcal{T}},$

where $C$ depends only on $N,$ $\tau$ and $m$ . On the other hand (2.2) gives us that

$Y \leq C\Vert u\Vert_{E}^{\tau}\int_{2}\leq|x|\leq 1(\frac{2|x|}{1-|x|^{2}})^{m\tau}(\sinh(2arc\tanh|x|))^{-\frac{N-1}{2}\mathcal{T}}(\frac{2}{1-|x|^{2}})^{N}dx$

$=C \Vert u\Vert_{E}^{\tau}\int_{2arctanh\frac{1}{2}}^{\infty}(\sinh s)^{m\tau+N-1-\frac{N-1}{2}\tau_{ds}}$

$\leq C\Vert u\Vert_{E}^{\tau}\int_{2arc\tanh\frac{1}{2}}^{\infty}(\sinh s)^{m\tau+N-1-\frac{N-1}{2}\tau}\frac{1}{\tanh s}ds$

$\leq C\Vert u\Vert_{E}^{\tau}\int_{2arc\tanh\frac{1}{2}}^{\infty}(\sinh s)^{m\tau+N-2-\frac{N-1}{2}\tau}$ cosh $sds$

$=C \Vert u\Vert_{E}^{\tau}\int_{\sinh(2arc\tanh\frac{1}{2})^{t^{m\tau+N-2-\frac{N-1}{2}\tau}}}^{\infty}dt.$

It is easy to verify that

$m \tau+N-2-\frac{N-1}{2}\tau<-1$
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is equivalent to

(2.5) $\tau>\frac{2(N-1)}{N-1-2m}.$

Hence we see that

$Y\leq C\Vert u\Vert_{E}^{\tau}$

if $\tau$ satisfies (2.5). Therefore we obtain the conclusion. $\square$

Making use of Lemma 2.2, we shall prove a compactness.

Lemma 2.3. Let $0<m<(N-1)/2$ . Let $\tau$ satisfy the condition given in Lemma 2.2.
Then the map $u\mapsto w^{m}u$ from $E$ to $L^{\tau}(\mathbb{B}^{N})$ is compact.

Proof. Let $0<m<(N-1)/2$ and arbitrarily fix $\tau$ satisfying the condition given in
Lemma 2.2. Then Lemma 2.2 asserts that

$\Vert w^{m}u\Vert_{L^{\tau}(B^{N})}\leq C\Vert u\Vert_{E}.$

This shows that the map $u\mapsto w^{m}u$ from $E$ to $L^{\tau}(\mathbb{B}^{N})$ is continuous. Now we shall
prove that the map is compact.

We first note that the embedding $H_{rad}^{1}(\mathbb{B}^{N})arrow L^{q}(\mathbb{B}^{N})$ is compact for any $q\in$

$(2,2N/(N-2))$ (see [29], Theorem3.1). Recalling that $E$ is equivalent to $H_{rad}^{1}(\mathbb{B}^{N})$

with respect to the norm $\Vert\cdot\Vert_{E}$ , we see that the embedding $Earrow L^{q}(\mathbb{B}^{N})$ is also compact
for any $q\in(2,2N/(N-2))$ .

Let us fix $q \in(2, \min\{\tau, 2N/(N-2)\})$ arbitrarily. By H\"older’s inequality, we have

(2.6) $|w^{m}u|_{L^{\tau}(B^{N})}=( \int_{B^{N}}|w^{m}u|^{\tau})^{\frac{1}{\tau}}$

$=( \int_{J\beta^{N}}w^{m\tau}|u|^{\tau-qa}|u|^{qa})^{\frac{1}{\tau}}$

$\leq(\int_{N}|u|^{q})^{\frac{a}{\tau}}(\int_{J\beta^{N}}(w^{m\tau}|u|^{\tau-qa})^{\frac{1}{1-a}})^{\frac{1-a}{\tau}}$

$=|u|_{L^{q}(B^{N})}^{\Delta}a\tau|w^{\frac{m\tau}{\tau-qa}}|u||_{\frac{-qa\tau-qa\tau}{1-a}}^{\frac{\tau}{L}}(B^{N})$

’

where $a\in(0,1)$ . In the following, setting

$m^{*}:= \frac{m\tau}{\tau-qa}, \tau^{*}:=\frac{\tau-qa}{1-a},$

and making use of Lemma 2.2, we shall verify that

(2.7) $\Vert w^{m^{*}}u\Vert_{L^{\tau^{*}}(B^{N})}\leq C\Vert u\Vert_{E}$
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holds. If $m\geq(N-2)/2$ , then the relation $m<m^{*}$ implies $m^{*}\geq(N-2)/2$ . Since

$\frac{2(N-1)}{N-1-2m^{*}}<\tau^{*}\Leftrightarrow\frac{2(N-1)+(q-2)(N-1)a}{N-1-2m}<\tau$

for sufficiently small $a>0$ , Lemma 2.2 asserts that (2.7) holds for each $\tau>2(N-$
$1)/(N-1-2m)$ . Regarding the case of $0<m<(N-2)/2$ , it is sufficient to consider
the case of $0<m^{*}<(N-2)/2$ since the case of $m^{*}\geq(N-2)/2$ is contained in the
above case. Recalling

$\tau^{*}<\frac{2N}{N-2-2m^{*}}\Leftrightarrow\tau<\frac{qa(N-2)+2N(1-a)}{N-2-2m}$

and $2N-(N-2)q>0$ , we observe from Lemma 2.2 that for $a\in(0,1)$ small enough
(2.7) holds for each $\tau$ satisfying

$\frac{2(N-1)}{N-1-2m}<\tau<\frac{2N}{N-2-2m}.$

Combining (2.6) with (2.7), we obtain

(2.8) $\Vert w^{m}u\Vert_{L^{\mathcal{T}}(\mathbb{B}^{N})}\leq C\Vert u\Vert_{Lq(\mathbb{B}^{N})}^{\tau}\underline{a}q\Vert u\Vert_{E^{\mathcal{T}}}\underline{\tau}g^{-}\underline{a}$

for sufficiently small $a\in(O, 1)$ . Thus the map $u\mapsto w^{m}u$ from $E$ to $L^{\tau}(\mathbb{B}^{N})$ is continu-
ous.

Finally we show that the map $u\mapsto w^{m}u$ is compact. Let $\{u_{n}\}$ be bounded sequence
in $E$ . Since $Earrow L^{q}(\mathbb{B}^{N})$ is compact, there exists a subsequence $\{u_{nj}\}\subset\{u_{n}\}$ and a
function $u\in E$ such that

$u_{nj}arrow u$ in $L^{q}(\mathbb{B}^{N})$ .

By (2.8), we see that

$|w^{m}(u_{nj}-u)|_{L^{\tau}(\mathbb{B}^{N})}\leq|u_{nj}-u|_{L^{q}(\mathbb{B}^{N})}^{\tau}|\nabla_{\mathbb{H}}(u_{nj}-u)|_{L^{2}(B^{N})}^{\tau}\underline{a}q\underline{\tau}-p\underline{a}$

$\leq C|u_{nj}-u|_{L^{q}(\mathbb{B}^{N})}^{\tau}(|u_{nj}|_{E^{\tau}}a\Delta\underline{\tau}-\Delta^{\underline{a}}+|u|_{E^{\tau}})\underline{\mathcal{T}}-L^{a}$

$\leq C|u_{nj}-u|_{L^{q}(\mathbb{B}^{N})}^{\tau}a\Delta$

Therefore, we complete the proof. $\square$

We are in a position to prove the following theorem by using above propositions:

Theorem 2.1. Let

$p \in(\frac{N-1+2\alpha}{N-1}, \frac{N+2+2\alpha}{N-2})$ .

Then, the equation (H) has a positive radial solution $u\in H^{1}(\mathbb{B}^{N})\cap C^{2}(\mathbb{B}^{N})$ .
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Proof. Instead of the equation (H), we prove that

$\{\begin{array}{ll}-\triangle_{\mathbb{H}}u=w^{\alpha}(u^{+})^{p} in \mathbb{B}^{N}\lim_{|x|arrow 1}u=0 \end{array}$

has a nontrivial solution in $H^{1}(\mathbb{B}^{N})$ by using Mountain Pass Theorem.
Let

$J(u):= \frac{1}{2}\int_{B^{N}}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}-\int_{B^{N}}w^{\alpha}F(u)dV_{\mathbb{H}},$

where

$F(u) := \frac{1}{p+1}(u^{+})^{p+1} u^{+}:=\max\{u, 0\}.$

To begin with, we verify that the functional $J$ is well-defined. Since

$\frac{2N-2}{N-1-2\frac{\alpha}{p+1}}<p+1\Leftrightarrow\frac{N-1+2\alpha}{N-1}<p,$

and

$p+1< \frac{2N}{N-2-2\frac{\alpha}{p+1}}\Leftrightarrow p<\frac{N+2+2\alpha}{N-2},$

Lemma 2.3 implies that

(2.9) $\int_{B^{N}}w^{\alpha}F(u)dV_{\mathbb{H}}\leq C\int_{\mathbb{B}^{N}}|w^{\frac{\alpha}{p+1}}u|^{p+1}dV_{\mathbb{H}}\leq C\Vert u\Vert_{E}^{p+1}$

Next we show that $J$ satisfies the hypothesis of the Proposition 2.1. The relation
(2.9) yields that

$J(u)= \frac{1}{2}\int_{B^{N}}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}-\int_{B^{N}}w^{\alpha}F(u)dV_{\mathbb{H}}$

$\geq\frac{1}{2}\Vert u\Vert_{E}^{2}-C\Vert u\Vert_{E}^{p+1}$

Thus, setting

$f( \rho):=\frac{1}{2}\rho^{2}-C\rho^{p+1},$

we see that for $\rho>0$ sufficiently small

$f(\rho)>f(0)=0.$
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Therefore, (B) is fulfilled. We turn to the condition (A). It is clear that $J(O)=0.$
Since

$J(tu)= \frac{t^{2}}{2}\int_{\mathbb{B}^{N}}|\nabla_{\mathbb{H}}u|_{\mathbb{H}}^{2}dV_{\mathbb{H}}-t^{p+1}\int_{\mathbb{B}^{N}}w^{\alpha}F(u)dV_{\mathbb{H}}arrow-\infty$ as $tarrow\infty$

we observe that there exists $e\in E$ such that $J(e)=0$ . Thus, (A) is fulfilled.
Next we prove that $J$ satisfies the Palais-Smale condition. Define a map $T$ : $Earrow E$

by

$(Tu, v)_{E}= \int_{B^{N}}w^{\alpha}(u^{+})^{p}v, v\in E.$

$T$ may be decomposed as follows:

$T:u\mapsto w^{\frac{\alpha}{p}}u\mapsto w^{\frac{\alpha}{p}}u^{+}\mapsto(w^{\frac{\alpha}{p}}u^{+})^{p}\mapsto w^{\alpha}(u^{+})^{p}\mapsto Tu$

$Earrow L^{pq}\tau_{1}arrow L^{pq}\tau_{2} arrow L^{q}\tau_{3} arrow H^{-1}\tau_{4} arrow E\tau_{5},$

where

$q= \{\begin{array}{lll}\frac{2N}{N+2} if p\in 2 if p\in\end{array}\}\frac{N+2}{2\alpha^{N}},\frac{N+2.+2\alpha}{-22\alpha N-2).=I_{2}}.):=I_{1},$

In the following we shall show that the map $T$ is compact. To begin with, we verify
that $T_{1}$ is compact by using Lemma (2.3). To do so, setting $\tilde{m}=\alpha/p$ and $\tilde{\tau}=pq$ , we
check that $\tilde{m}=\alpha/p$ and $\tilde{\tau}=pq$ satisfy the condition in Lemma (2.3). Remark that
$p>(N-1+2\alpha)/(N-1)$ implies $\tilde{m}<(N-1)/2$ . To begin with, we check that

(2.10) $\frac{2N-2}{N-1-2\tilde{m}}<\tilde{\tau}.$

When $p\in I_{1}$ , one can verify that (2.10) is equivalent to

$\frac{2\alpha}{N-1}+\frac{N+2}{2}<p.$

On the other hand, (2.10) is equivalent to

$\frac{N-1+2\alpha}{N-1}<p,$

if $p\in I_{2}$ . Hence (2.10) is satisfied. Since $\tilde{\tau}<+\infty$ , it is sufficient to show that if
$\tilde{m}<(N-2)/2$ then

(2.11) $\tilde{\tau}<\frac{2N}{N-2-2\tilde{m}}.$
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For the case of $p\in I_{1},$ $(2.12)$ is equivalent to

$p< \frac{N+2+2\alpha}{N-2},$

and while if $p\in I_{2}$ , then (2.12) is equivalent to

$p<^{\underline{N+2\alpha}}$

$N-2$

Therefore we can apply Lemma 2.3 to the map $T_{1}$ . Then Lemma 2.3 asserts that
$T_{1}$ is compact. The map $T_{2}$ is clearly continuous. Regarding $T_{3}$ , since the map is a
Nemitski operator, we see that $T_{3}$ is continuous. Next we turn to $T_{4}$ . Let us define
$T_{4}:L^{q}arrow(L^{\hat{q}})^{*}$ by

$(T_{4}(w^{\alpha}(u^{+})^{p}))(v)= \int_{B^{N}}w^{\alpha}(u^{+})^{p}v, v\in L^{\hat{q}},$

where

$\hat{q}=\{\begin{array}{lll}\frac{2N}{N-2} if p\in 2 if p\in\end{array}\},$

H\"older’s inequality yields that $T_{4}$ : $L^{q}arrow(L^{\hat{q}})^{*}$ is continuous. Since $H^{1}arrow L^{\hat{q}}$ implies
$(L^{\hat{q}})^{*}arrow H^{-1}$ , we see that $T_{4}$ : $L^{q}arrow H^{-1}$ is also continuous. Therefore, $T_{4}$ : $L^{q}arrow H^{-1}$

is continuous. Finally we show that $T_{5}$ is continuous. Define $T_{5}:H^{-1}arrow H^{1}$ by

$(T_{5}(f), v)_{E}=f(v)$ for $f\in H^{-1}$ and $v\in H^{1}.$

Then we have

$|(T_{5}(f), v)_{E}|\leq\Vert f\Vert_{H^{-1}}\Vert v\Vert_{H^{1}}\leq C\Vert f\Vert_{H^{-1}}\Vert v\Vert_{E},$

so that,

$|T_{5}(f)|_{H^{1}}\leq\hat{C}\Vert f\Vert_{H^{-1}}.$

Therefore $T_{5}$ is continuous. In particular, we observe that

$(T_{5}(T_{4}(w^{\alpha}(u^{+})^{p})), v)_{E}=(T_{4}(w^{\alpha}(u^{+})^{p}))(v)=\int_{B^{N}}(w^{\alpha}(u^{+})^{p})v=(Tu, v)_{E}.$

Thus, $T=T_{5}oT_{4}oT_{3}oT_{2}\circ T_{1}$ is compact from $E$ to $E.$

Let $\{u_{n}\}\subset E$ be a sequence satisfying $|J(u_{n})|\leq d$ and $J’(u_{n})arrow 0$ . For $n\in \mathbb{N}$

large enough, we have

$d+ \Vert u_{n}\Vert_{E}\geq J(u_{n})-\frac{1}{\tau+1}J’(u_{n})(u_{n})$

$=( \frac{1}{2}-\frac{1}{\tau+1})\Vert u_{n}\Vert_{E}^{2}.$
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This implies that $\Vert u_{n}\Vert_{E}^{2}$ is bounded. Then there exists a subsequence $u_{n_{j}}\subset u_{n}$ and a
function $u\in E$ such that

(2.12) $u_{n_{j}}arrow u$ in $E.$

Furthermore, since $T$ is compact operator, it follows from (2.12) that

$Tu_{n_{j}}arrow\hat{u}$ in $E$

for a function $\hat{u}\in E$ up to a subsequence. Recalling that

$(u_{n}-Tu_{n}, v)_{E}=J’(u_{n})(v)arrow 0$ as $narrow\infty$

for any $v\in E$ , it must hold $\hat{u}=u$ . In the following we write $u_{n}$ instead of $u_{n_{j}}$ for
short. By a simple calculation, we have

(2.13) $\Vert u_{n}-u\Vert_{E}=J’(u_{n})(u_{n}-u)-J’(u)(u_{n}-u)+(Tu_{n}-Tu, u_{n}-u)_{E}$

$=:I_{1}+I_{2}+I_{3},$

and then

$I_{1}\leq\Vert J’(u_{n})\Vert_{E^{*}}\Vert u_{n}-u\Vert_{E}\leq\Vert J’(u_{n})\Vert_{E^{*}}(\Vert u_{n}\Vert_{E}+\Vert u\Vert_{E})arrow 0,$

$I_{2}=J’(u)(u_{n}-u)arrow 0,$

$I_{3}=(Tu_{n}-u, u_{n}-u)_{E}+(u-Tu, u_{n}-u)_{E}$

$\leq\Vert Tu_{n}-u\Vert_{E}(\Vert u_{n}\Vert_{E}+1u\Vert_{E})+(u-Tu, u_{n}-u)_{E}arrow 0.$

Therefore (2.13) yields that

$u_{n}arrow u$ in $E.$

This implies that $\{u_{n}\}$ has a convergent subsequence, i.e., $J$ satisfies the Palais-Smale
condition. Then, the Mountain Pass Lemma assures that $J$ has a nontrivial critical
value, hence, a nontrivial critical point $u\in E$ . In particular, function $u$ satisfies

(2.14) $J’(u)(v)= \int_{B^{N}}\langle\nabla_{\mathbb{H}}u,$ $\nabla_{\mathbb{H}}v\rangle_{\mathbb{H}}dV_{\mathbb{H}}-\int_{B^{N}}w^{\alpha}(u^{+})^{p}vdV_{\mathbb{H}}=0$ for $v\in E.$

Taking $u^{-}$ as $v$ in (2.14), we have

$0= \int_{\mathbb{B}^{N}}\langle\nabla_{\mathbb{H}}u, \nabla_{\mathbb{H}}u^{-}\rangle_{\mathbb{H}}dV_{\mathbb{H}}-\int_{B^{N}}w^{\alpha}(u^{+})^{p}u^{-}dV_{\mathbb{H}}=\Vert u^{-}\Vert_{E},$

so that $u^{-}=0$ a.e. in $\mathbb{B}^{N}$ . Therefore, combining this fact with (2.14), we see that $u$ is
a nonnegative and nontrivial $H^{1}(\mathbb{B}^{N})$ solution of (H).

By an elliptic regularity theorem, $u\in C^{2}$ . Finally we shall prove that $u$ is a positive
solution. Suppose not, there exists $x_{0}\in \mathbb{B}^{N}$ such that $u(x_{0})=0$ . For any $r>0$ , it
holds that

$-\triangle_{\mathbb{H}}u=w^{\alpha}(u^{+})^{p}\geq 0$ in $B_{\mathbb{H}}(\xi_{0}, r)$ ,

where $B_{\mathbb{H}}(x_{0}, r)=\{x\in \mathbb{B}^{N} : d_{\mathbb{H}}(x, x_{0})<r\}$ . Then the strong maximum principle
implies that $u\equiv 0$ in $B_{\mathbb{H}}(x_{0}, r)$ . Since $r>0$ is arbitrary, we see that $u\equiv 0$ in $\mathbb{B}^{N}.$

This leads a contradiction. $\square$
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3 Liouville Theorem
In this section, we prove a Liouville theorem corresponding to (H). First, in order to
state the result, we define the stability of solutions. The stability of solutions of (H) is
defined by the same manner as in Definition 1.1:

Definition 3.1. The solution $u\in C^{2}(\mathbb{B}^{N})$ of (H) is stable if the inequality

$Q[u]( \psi):=\int_{B^{N}}\{|\nabla_{\mathbb{H}}\psi|_{\mathbb{H}}^{2}-pw^{\alpha}|u|^{p-1}\psi^{2}\}dV_{\mathbb{H}}\geq 0$

holds for any $\psi\in C_{c}^{1}(\mathbb{B}^{N})$ .

Then we state the Liouville theorem corresponding to the equation (H):

Theorem 3.1 ([21]). Let $u\in C^{2}(\mathbb{B}^{N})$ be a stable solution of (H). If $p>1$ satisfies

$\{\begin{array}{ll}1<p<+\infty if N\leq 1+4\alpha,1<p<p_{c}(\alpha, N) if N>1+4\alpha,\end{array}$

then $u\equiv 0$ in $\mathbb{B}^{N}$ . Here, $p_{c}(\alpha, N)$ is given by the following:

$p_{c}( \alpha, N):=\frac{(N-1)^{2}-2\alpha(N-1)-2\alpha^{2}+2\alpha\sqrt{2\alpha(N-1)+\alpha^{2}}}{(N-1)(N-4\alpha-1)}.$

Theorem 3.1 gives us an affirmative answer to Problem 1.1. And if we find a non-
trivial stable solution when $p\geq p_{c}$ , then $p_{c}$ is critical. Although we have not proved
this fact yet, we obtained the following result which suggests that $p_{c}$ is critical:

Theorem 3.2 ([21]). Let $p>(N+2+2\alpha)/(N-2)$ . Then, there exists a positive
radial solution $u=u(r)$ of (H) satisfying

$\lim_{rarrow+\infty}u(r)(\sinh r)^{\frac{\alpha}{p-1}}=\{\frac{\alpha}{p-1}(N-1-\frac{\alpha}{p-1})\}^{\frac{1}{p-1}} :=L.$

Now, using Theorem 3.2, we can give some consideration to $p_{c}(\alpha, N)$ . Let $p\geq$

$p_{c}(\alpha, N)$ and $N>1+4\alpha$ . We assume that there exists a radial solution $u=u(r)$ of
(H) satisfying

(3.1) $u(r)(\sinh r)^{\frac{\alpha}{p-1}}\leq L (\forall r>0)$ .

Then, by some calculations, we see that the solution $u$ satisfying (3.1) is stable. From
Theorem 3.2, one can notice that the condition 3.1 is valid. Therefore we can expect
that the exponent $p_{c}(\alpha, N)$ is critical.

Next, we state the outline of proof of Theorem 3.1. First, we prepare the following
proposition:
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Proposition 3.1. Let $u\in C^{2}(\mathbb{B}^{N})$ be a stable solution of (H). Then, for any $\gamma\in$

$[1,2p+2\sqrt{p(p-1)}-1)$ and for any integer $m \geq\max\{_{p-1}E^{+}\Delta,2\}$ , there exists some
positive constant $C=C(p, m, \alpha, \gamma)$ such that for any $\psi\in C_{c}^{2}(\mathbb{B}^{N})$ with $|\psi|\leq 1,$

$\int_{\mathbb{B}^{N}}w^{\alpha}|u|^{p+\gamma}\psi^{2m}dV_{\mathbb{H}}\leq C\int_{\mathbb{B}^{N}}w^{p^{\frac{+1}{-1}\alpha}}-f|\nabla_{\mathbb{H}}\psi|_{\mathbb{H}}^{2_{p-1}^{L+:f}}dV_{\mathbb{H}}.$

We can prove this assertion by a modification of the proof in Proposition 1.4 of
[10] and Proposition 1.7 of [11]. In the following, we prove Theorem 3.1 by using
Proposition 3.1.

Proof. Here, the essential matter of Proposition 3.1 is that one can estimate the integral
of $u$ by the integral being independent of $u$ . Therefore, we expect that the stable
solution $u$ can be characterized by the test function. Indeed, in order to prove Theorem
3.1, we set the following test function $\psi_{R}$ for each $R>0$ :

$\psi_{R}(x):=\varphi(\frac{\sinh(d_{\mathbb{H}}(0,x))}{R})$ ,

where $\varphi\in C_{C}^{2}(\mathbb{R})$ satisfies $0\leq\varphi\leq 1$ and

$\varphi(t)=\{\begin{array}{ll}1 if |t|\leq 1,0 if |t|\geq 2.\end{array}$

In the following, we write

$q= \frac{p+\gamma}{p-1}, \overline{q}=\frac{\gamma+1}{p-1}$

for short and we set

$A(R)=$ arc $\sinh R,$ $B(R)=$ arc sinh $2R.$

Then, notice that

$\psi_{R}(x)=\{\begin{array}{l}1 if d_{\mathbb{H}}(O, x)\leq A(R) ,0 if d_{\mathbb{H}}(O, x)\geq B(R) .\end{array}$

Since the change of variable $r=d_{\mathbb{H}}(0, x)$ yields $w(x)=\sinh r$ and $dV_{\mathbb{H}}=(\sinh r)^{N-1}dr,$

it follows from Proposition 3.1 that

(3.2) $\int_{d_{\mathbb{H}}(0,x)\leq A(R)}w^{\alpha}|u|^{p+\gamma}dV_{\mathbb{H}}\leqC\int_{A(R)\leq d_{\mathbb{H}}(0,x)\leq B(R)}w^{-\overline{q}\alpha}|\nabla_{\mathbb{H}}\psi_{R}|_{\mathbb{H}}^{2q}dV_{\mathbb{H}}$

$\leq\frac{C}{R^{2q}}\int_{A(R)}^{B(R)}(\sinh r)^{N-1-\overline{q}\alpha+2q}dr$

$\leq CR^{N-1-\overline{q}\alpha}.$
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On the other hand, $p<p_{c}(\alpha, N)$ if and only if there exists some $\gamma\in[1,2p+$

$2\sqrt{p(p-1)}-1)$ such that

(3.3) $N-1-\overline{q}\alpha<0.$

Hence, we can choose $\gamma\in[1,2p+2\sqrt{p(p-1)}-1)$ satisfying (3.3). And then, (3.2)
implies that

$\int_{d_{H}(0,x)\leq A(R)}w^{\alpha}|u|^{p+\gamma}dV_{\mathbb{H}}arrow 0$ as $Rarrow+\infty.$

Since $A(R)arrow+\infty$ as $Rarrow+\infty$ , we see that $u$ must be identically equal to $0$ . This
completes the proof of Theorem 1.2. $\square$

Here, in order to obtain the estimate just as (3.2) in this proof, we have to select the
weight $w$ and test function $\psi_{R}$ in terms of the volume element $dV_{\mathbb{H}}$ . Hence, since the
weight of the equation (1.2) is the power of the geodesic distance, the above argument
does not work for the equation (1.2). This is the reason why we choose the weight of
(H).
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