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1. INTRODUCTION
A Markov process $\{X_{t}\}_{t>0}$ living on the state space X is called conservative 1 if

$P_{t}1(x)\equiv 1$ , for all t $>$ Oand any x $\in X,$

where $\{P_{t}\}_{t>0}$ is the transition function of the process. Namely, the conservation property means
that the process stays in the space forever and the total amount of the Brownian particles will
be preserved. For example, Brownian motion with no distortion on any Euclidean space $\mathbb{R}^{n}$ is
conservative since the heat kernel k, which serves as the transition function of the Brownian
motion, satisfies

$P_{t}1(x)= \int_{\mathbb{R}^{n}}k(t,$ x, $y)dy\equiv 1$ , for all t $>$ Oand any x $\in \mathbb{R}^{n}.$

The Brownian motion in a domain $\Omega\subset \mathbb{R}^{n}$ is not conservative (conservative, respectively) if we
impose absorbing (reflecting, respectively) boundary condition on $\partial\Omega$ . The same is true for the
Brownian motion $X_{t}$ in the Euclidean space punctured a closed set $\Gamma$ large enough so that $X_{t}$ will
hit $\Gamma$ , namely, $\Gamma$ is not polar. A striking fact is that the Brownian motion of a complete manifold
may fail to be conservative if the curvature rapidly goes to negative infinity [2] or the volume of
the concentric ball $B(x_{0},$ r) rapidly increases as r $arrow\infty$ , see, e.g., [16]. On the other hand, an
upper bound on $m(B(x_{0}, r))$ will imply the conservation property [14, 15, 26, 6, 25]. In particular,
Grigor’yan [15] obtained a sharp condition for a geodesically complete Riemannian manifold:

(1) $\int^{\infty}\frac{rdr}{\ln m(B(x_{0},r))}=\infty$ $\Rightarrow$ conservativeness.

$1_{It}$ is also called non-explosive or stochastically complete.
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CONSERVATION PROPERTY OF MARKOV PROCESSES

For example, $m(B(x_{0}, r))\leq\exp(cr^{2})$ will imply (1). This result was extended to a strongly local
Dirichlet form by Sturm [25], where he used the Carnot-Carath\’eodory distance associated to the
form (see Subsection 3.1). The investigation of this problem for a strongly local Dirichlet form
has been quite successful; however, it seems that until recently, there has been no such result for
more general Markov processes including jump processes.

On the other hand, it is well-known that a set $\Gamma\subset \mathbb{R}^{n}$ which will not be hit by the Brownian
motion should have the Hausdorff codimension at least 2, see, e.g., [1]. In more general setting of
a distance space $(X, d)$ , the set $\Gamma$ should be replaced by the Cauchy boundary

$\partial_{C}X=\overline{X}\backslash X$

where $\overline{X}$ is the completion of $X$ with respect to the distance $d$ . Of course, in this case, there is
no point in asking whether the Markov process $X_{t}$ hits $\partial_{C}X$ or not since we don’t know if $X_{t}$ can
be extended to $\overline{X}$ . Indeed, the topology of $\overline{X}$ can be quite rough. However, we may reformulate
the question of $X_{t}$ hitting $\partial_{C}X$

” to “ $W_{0}^{1,2}(X)\neq W^{1,2}(X)$ ” or, by extending the capacity of $X$

to X and ask when does $\partial_{C}X$ have capacity $0$ . Here, a natural question is:

If $\partial_{C}X$ has capacity $0$, namely, is polar, then should it have codimension at least $2’$?

In this note, we will survey the recent development in the research of the conservation property
of a Markov process $\{X_{t}\}_{t>0}$ along these two directions; namely, how small should be the volume
growth and the singularity of the space so that a symmetric Markov process is conservative.

The structure of the note is the following. Section 2 will be devoted for the preliminary. In
particular, we will first recall Einstein’s original idea about the relationships between the ran-
dom walk and the diffusion equation. His simple and beautiful observation will transparent our
argumentation because our approach will be based on the strong relationships between the sto-
chastic processes, the associated diffusion (or, heat) equations and its abstraction, the Dirichlet
form. We then proceed to our framework, the Dirichlet form theory. For further study about the
Dirichlet form theory, we refer the reader to [12]. In Chapter 3, we will discuss about three recent
developments:. $A$ distance associated to non local Dirichlet forms;. Volume growth conditions; and,. New examples of polar Cauchy boundaries.

2. PRELIMINARIES

The main approach taken in the recent developments regarding to the volume growth condition
for the conservation property is based on the strong relationships between the stochastic processes,
the associated diffusion (or, heat) equations, and the theory of Dirichlet forms.

In order to illustrate these relationships, let us start off from reviewing the Einstein’s original
idea on the Brownian motion. Einstein discovered two different methods to relate the Brownian
motion and the associated equation. In 1905 [7], he succeeded to identify the Brownian motion
with the irregular movements which arise from thermal $mo$lecular movements, and proved that
the distribution of the Brownian motion solves the diffusion equation2. Of course, the classical
derivation of the diffusion equation is to combine Fick’s first law and the continuity equation. In
1908, Einstein [8] proved that the average of irregular movements satisfies both Fick’s first law and
the continuity equation, and, as a consequence, the diffusion equation. Since the argumentation
is important and illuminating, we will present it below.

2.1. Random walks, Fick’s laws and diffusion equation. We consider a random walk $\{X_{n}\}_{n\geq 0}$

in $\mathbb{R}$ modelling the following irregular thermal motion:. On the average, particles step to the right or to the left once every $\tau$ seconds, moving at
velocity $\pm v$ a distance $\delta=\pm v\tau$ . For the sake of simplicity, we assume that $\tau$ and $v$ are
constants3.

$2_{He}$ initially assumes that the distribution of the Brownian motion has compact support.
$3_{In}$ practice, they will depend on the size of particles, viscosity of the liquid, and the absolute temperature. The

average speed of water molecular is approximately 640 $m/s.$
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CONSERVATION PROPERTY OF MARKOV PROCESSES. The chances of the particles going to the right and the left are the same; namely, 1/2. The
particles forget what they did in the past.. The particles do not interact with each other.

If we denote the position of the ith particle after nth step by $X_{i}(n)$ , then
(2) $X_{i}(n)=X_{i}(n-1)\pm\delta.$

Suppose there are $N$ particles in the ensemble initially concentrated at the origin. The mean of
the displacement is

$\langle X (n)\rangle=\sum_{i}^{N}X_{i}(n)/N=0$

and the mean $\langle|X(n)|^{2}\rangle$ of the square of the displacement is

$\langle|X(n)|^{2}\rangle=\frac{1}{N}\sum_{i}^{N}X_{i}^{2}(n)=\langle|X(n-1)|^{2}\rangle+\delta^{2}=n\delta^{2}.$

Letting $t=n\tau$ , the time of the particle executing nsteps, we find that
(3) $\langle|X(t)|^{2}\rangle=2Dt,$

where $D=\delta^{2}/2\tau$ is called the diffusion coefficient. Let. $n(t, x)$ be the number of particles at time $t$ and at position $x.$. $\phi(t, x)$ be the flux at $(t, x)$ , that is the net number of the particles crossing $x$ from left to
right in the time interval $[t, t+\tau].$

After the next step, $t+\tau$ , half of the particles at $x-\delta/2$ will have stepped across $x$ from left to
right, and half of the particles at $x+\delta/2$ will have stepped across $x$ from right to left. Therefore,

$\phi(t, x)=\frac{1}{2}(\frac{n(t,x-\delta/2)-n(t,x+\delta/2)}{\tau})$

$= \frac{\delta^{2}}{2\tau}\frac{1}{\delta}(\frac{n(t,x-\delta/2)-n(t,x+\delta/2)}{\delta})$

$=D \frac{1}{\delta}(c(t, x-\delta/2)-c(t, x+\delta/2))$ ,

where $c(t, x)$ is the concentration. By letting $\deltaarrow 0$ , we obtain Ficks’ first law:

(4) $\phi(t, x)=-D\frac{\partial c}{\partial x}(t, x)$ .

Next, consider the interval $I=[x, x+\delta]$ . In the time interval $[t, t+\tau],$ $\phi(t, x)\tau$ particles will enter
$I$ from the left, and $\phi(t, x+\delta)\tau$ particles leave from the right. If particles are neither created nor
destroyed, the difference of the number of the particles $n(x, t+\tau)-n(x, t)$ at $x$ will be

$n(x, t+\tau)-n(x, t)=(\phi(t, x)-\phi(t, x+\delta))\tau.$

Dividing the both hand sides by $\delta$ and $\tau,$

$\frac{c(x,t+\tau)-c(x,t)}{\tau}=\frac{\phi(t,x)-\phi(t,x+\delta)}{\delta}.$

In the limit $\tau,$
$\deltaarrow 0$ , we obtain the continuity equation:

(5) $\frac{\partial c}{\partial t}=-\frac{\partial\phi}{\partial x}.$

If we consider a more general situation of creation (distortion, respectively) of particles, then we
need to add a nonnegative (nonpositive, respectively) potential $V(x)$ as

(6) $\frac{\partial c}{\partial t}=-\frac{\partial\phi}{\partial x}+V\cdot c.$

Combing this with (4), we get Fick’s second equation:

(7) $\frac{\partial c}{\partial t}=div(D\cdot\nabla c)+V\cdot c.$
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CONSERVATION PROPERTY OF MARKOV PROCESSES

2.2. Heat kernels, energy forms, and boundary conditions. The associated distribution $k,$

called the heat kernel, to (7) on $\mathbb{R}^{n}$ when $V\equiv 0$ is

(8) $k(t, x, y)= \frac{1}{(4\pi Dt)^{n/2}}\exp(-\frac{|x-y|^{2}}{4Dt})$ .

A direct calculation shows that for each $t>0$ and $y\in \mathbb{R}^{n},$

$k(t, \cdot, y)\in W^{1,2}(\mathbb{R}^{n})$ ,

where $W^{1,2}(\mathbb{R}^{n})=\{u\in L^{2}|\nabla u\in L^{2}\}$ . If the state space $X$ has boundary $\partial X$ , then the
typical boundary conditions are the homogenous Dirichlet and Neumann boundary conditions.
The Brownian particles associated to the Dirichlet boundary condition will be absorbed at the
boundary because the associated heat kernel $k^{D}$ satisfies $k^{D}(t,x, y)=0$ whenever $x$ or $y$ belongs
to the boundary. In particular,

$k^{D}(t, \cdot, y)\in W_{0}^{1,2}(X)$ , for each $t>$ Oand $y\in X,$

where $W_{0}^{1,2}(X)$ is the completion of the space $C_{0}^{\infty}(X)$ of smooth functions with compact support
with respect to the norm: $\Vert u\Vert_{1,2}=\Vert\nabla u\Vert_{2}+\Vert u\Vert_{2}$ , where $\Vert\cdot\Vert_{2}$ stands for the standard $L^{2}$-norm.

We can also consider the Brownian particles which will be pushed back into the space after they
hit the boundary, called the reflected Brownian motion. More precisely, they will be reflected sym-
metric to the boundary, therefore, the associated heat kernel $k^{N}$ satisfies the Neumann boundary
condition, and it satisfies

$k^{N}(t, \cdot, y)\in W^{1,2}(X)$ for each $t>0$ and $y\in X.$

Clearly, the former Brownian motion is not conservative whereas the latter is. We should also
point out that the former is regular in the sense that $C_{0}(X)\cap W_{0}^{1,2}(X)$ is dense in $W_{0}^{1,2}(X)$ with
respect to the $\Vert\cdot\Vert_{1,2}$ as well as dense in $C_{0}(X)$ with respect to the $\sup$-norm; while, the latter is
not.

The associated energy form $\mathcal{E}$ to (7) is

(9) $\mathcal{E}(u)=\int_{\mathbb{R}^{n}}D|\nabla u|^{2}dx-\int_{\mathbb{R}^{n}}V(x)\cdot u(x)^{2}dx.$

We will say that a process $X_{t}$ is associated to (9) or (7) if its distribution is the fundamental
solution to (7). By (6), if $V$ is negative then the associated process is not conservative. However,
we need $V\leq 0$ so that4

$P_{t}1(x)\leq 1.$

We should mention that the condition $V\leq 0$ will allow us to find the equilibrium potential for
any compact sets $K\subset X$ , see, e.g., [12]. Therefore, hereafter, we assume $V\equiv 0.$

2.3. Capacity. Let us consider the problem of determining either a compact set $K\subset \mathbb{R}^{n}$ will be
hit by the Brownian motion $B_{t}$ on $\mathbb{R}^{n}$ or not. This is related to the conservation property because
we will study the minimal Brownian motion $B_{t}$ and $B_{t}$ hitting $K$ will immediately imply that $B_{t}$

on the state space $X=\mathbb{R}^{n}\backslash K$ is not conservative. Denote by $k$ and $k_{X}$ the heat kernels of $\mathbb{R}^{n}$ and
$X$ with Dirichlet boundary condition. Then, this problem reduces to the problem of determining
the condition on $K$ so that

$k=k_{X},$

or, equivalently,

(10) $W^{1,2}(\mathbb{R}^{n})=W_{0}^{1,2}(X)$ .
Of course, (10) holds true if $K=\emptyset$ and $X=\mathbb{R}^{n}$ . We can completely characterize (10) by using
the capacity:

(11) Cap$(K)= \inf_{u\in \mathcal{L}}\Vert u\Vert_{1,2},$

where $\mathcal{L}=\{u\in W^{1,2}(\mathbb{R}^{n})|u|_{K}\geq 1\}$ . We say $K$ is polar if Cap$(K)=0$ . We state the following
well-known fact without proof:

$4_{Qtherwise}$ , the probability of a particle to be found in the space may exceed 1.
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CONSERVATION PROPERTY OF MARKOV PROCESSES

Proposition 1. Let $K\subset \mathbb{R}^{n}$ be a compact set and $X=\mathbb{R}^{n}\backslash K$ . The following conditions are
equivalent:

(1) $K$ is polar.
(2) $W^{1,2}(\mathbb{R}^{n})=W_{0}^{1,2}(X)$ .
(3) $B_{t}$ on $X$ is conservative.

2.4. Dirichlet forms. We will generalize the classical Dirichlet integral on $\mathbb{R}^{n}$ to Dirichlet forms
on more general setting. In this subsection, we collect the necessary concepts and properties
regarding to the Dirichlet forms in this note without proofs.

Throughout, $X$ is a sigma finite topological space with Radon measure $m$ . Let $(\mathcal{E}, \mathcal{F})$ , where
$\mathcal{F}=D(\mathcal{E})$ in $L^{2}=L^{2}(X, m)$ , be a densely defined, closed symmetric positive quadratic form. The
form $(\mathcal{E}, \mathcal{F})$ is called a symmetric Dirichlet form if it satisfies the Markov $property^{5}$ :
(12) $u\in \mathcal{F}$ $\Rightarrow$ $v=(u\wedge 1)_{+}\in \mathcal{F}$ and $\mathcal{E}(v)\leq \mathcal{E}(u)$ ,
where $\mathcal{E}(u)=\mathcal{E}(u, u)$ .

The generator $A$ of a Dirichlet form $(\mathcal{E}, \mathcal{F})$ is the unique self-adjoint operator in $L^{2}$ defined as
(13) $\mathcal{E}(u, v)=(-Au, v)_{2}$ , for all $u\in \mathcal{F}$ and $v\in D(A)$ .
The associated $L^{2}$-semigroup

$P_{t}=\exp(tA)$ : $L^{2}arrow L^{2}$

is called Markovian if
$P_{t}1(x)\leq 1$ for a.e. $x\in X$ and every $t>0.$

The semigroup $P_{t}$ is Markovian if and only if the associated Dirichlet form $(\mathcal{E}, \mathcal{F})$ is Markovian.
Due to the Markov property, this $L^{2}$-semigroup can be uniquely extend to a $L^{\infty}$ -semirgroup.

We assume that our Dirichlet form is regular, namely, $C_{0}(X)\cap \mathcal{F}$ is dense in $C_{0}(X)$ with respect
to the $\sup$-norm and dense in $\mathcal{F}$ with respect to the $\sqrt{\mathcal{E}}1$-norm, where

$\mathcal{E}_{1}(u)=\mathcal{E}(u)+\Vert u\Vert_{2}^{2}.$

We will denote the completion of a space $C\subset L^{2}$ with respect to $\sqrt{\mathcal{E}_{1}}$-norm by $\overline{C}^{\mathcal{E}_{1}}$

$A$ regular
Dirichlet form $(\mathcal{E}, \mathcal{F})$ has the following unique decomposition:

$\mathcal{E}(u)=\int_{X}\mu^{c}(u)+\int\int_{X\cross X\backslash }$

diag
$( \tilde{u}(x)-\tilde{u}(y))^{2}J(dxdy)+\int_{X}\tilde{u}dk,$

where $\mu^{c}(u)$ is the strongly local measure, $J$ is the jumping measure, $k$ is the killing measure, and
$\tilde{u}$ is a $q.e$ .-modification of $u$ . We aesume6 that $k\equiv 0$ . We say that $(\mathcal{E}, \mathcal{F})$ is strongly local if $J\equiv 0,$

and $(\mathcal{E}, \mathcal{F})$ is non-local or (pure) jump type if $\mu^{c}\equiv 0.$

Below, we present some typical examples of regular Dirichlet forms.

Example 1 (Heat equations). The phenomena of heat flow and diffusion are basically the same.
However, the heat equation has an additional parameter, namely, the heat capacity7. Let $X\subset \mathbb{R}^{n}$

be a domain. Let $D=(D_{ij})_{1\leq ij\leq n}$ be the heat conductivity, and, $\sigma$ be the heat capacity per
volume. The heat equation is

$Au= \frac{1}{\sigma}div(D\cdot\nabla u)=\frac{\partial u}{\partial t},$

where $u$ is the temperature. The Hilbert space is $L^{2}(X, \sigma dx)$ , and the Dirichlet form is

$\mathcal{E}(u)=\int_{X}-Au\cdot u\sigma dx=\int_{X}D\nabla u\cdot\nabla udx, \mathcal{F}=\overline{C_{0}^{\infty}(X)}^{\epsilon_{1}}$

$5_{The}$ terminology “Markov property” is often used in the sense that the process does not remember the past.
$6_{For}$ the same reason that we assumed that $V\equiv 0$ in the classical setting.
$7_{The}$ heat capacity $\sigma$ is defined as $\sigma=\kappa\rho$ , where $\kappa$ is specific heat and $\rho$ density. We need $\sigma$ to convert

temperature to the amount of heat per unit volume. The concentration $c$ in the diffusion equation is, by definition,
the amount of diffusion substance pet unit volume so that conversion factor is needed. See, e.g., [5] for further
discussion.
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Example 2 (Weighted manifolds). Let $(M,g, m)$ be a weighted manifold, that is, $(M,g)$ is a
Riemannian manifold and $m$ is a measure with density function $\Psi$ against the Riemannian measure.
The canonical Dirichlet form $(\mathcal{E}, \mathcal{F})$ is

$\mathcal{E}(u)=\int_{M}g(\nabla u, \nabla u)dm, \mathcal{F}=\overline{C_{0}^{\infty}(M)}^{\mathcal{E}_{1}}$

The associated Laplacian $\Delta_{m}$ is

$\Delta_{m}u=\Delta u+\frac{g(\nabla\Psi,\nabla u)}{\Psi}.$

Example 3 (Weighted graphs). Let $(V, E)$ be a countably infinite connected undirected graph
without loops or multiple edges. We call such a graph a simple graph. We furnish $(V, E)$ with
weights $m$ and $b$ :

$m:Varrow(0, \infty)$ ,
and

$b(x, y)=b(y, x)$ : $V\cross Varrow(O, \infty)$

satisfying:
$b(x, y)>0$ if and only if $x\sim y,$

and the integrability condition:

$\sum_{y}b(x, y)<\infty$
, for all $x\in V.$

We will call $G=(V, E, b, m)$ a weighted graph. The canonical Dirichlet form $(\mathcal{E}, \mathcal{F})$ on $G$ is

$\mathcal{E}(u)=\sum_{x,y\in V}b(x, y)(u(x)-u(y))^{2} \mathcal{F}=\overline{C_{0}(V)}^{\mathcal{E}_{1}}$

Example 4 (Quantum graphs). We follow the framework in [19]. Let $(V, E)$ be a simple graph
as above furnished with

(1) An orientation map $\tau$ : $Earrow-1,1$ satisfying
$\tau((x, y))=-\tau((y, X))$ for all $(x, y)\in E.$

We denote $E_{+}=\tau^{-1}(\{1\})$ .
(2) $A$ length function $l:E+arrow(0, +\infty],$

(3) $A$ family of marked intervals $\{I(e)\}_{e\in E_{+}}$ , where $I(e)=[O, l(e)]\cross\{e\}.$

For every $e=(x, y)\in E_{+}$ , the endpoints $0$ and $l(e)$ of the interval $I(e)$ will be identified with $x$

and $y$ , respectively. Denoting this identification by $\sim$ , we call the quotient space
$X=( \bigcup_{e\in E_{+}}I(e))/\sim$

a quantum graph8. $A$ quantum graph $X$ carries a natural distance $d$ as well as the measure $m$ via
this identification. The Dirichlet form is

$\mathcal{E}(u)=\sum_{e\in E_{+}}\int_{0}^{l(e)}(u’)^{2}dm, \mathcal{F}=\overline{\{u\in C_{0}(X)|\mathcal{E}(u)<\infty\}}^{\mathcal{E}_{1}}$

Example 5 ( $\alpha$-stable Levi form). Let $(X, d, m)$ be a $\beta$-regular metric measure space, that is,
there is $c>0$ such that the measure $m(B(x, r))$ of any $r$-ball at any $x\in X$ satisfies:

$c^{-1}r^{\beta}<m(B(x, r))<cr^{\beta}.$

For $0<\alpha<2$ , the $\alpha$-stable Levi form is

$\mathcal{E}(u)=\int\int_{X\cross X\backslash }$

diag
$(u(x)-u(y))^{2} \frac{m(dx)}{(x-y)^{\beta+\alpha}}m(dy))$

$\mathcal{F}=\overline{C_{0}^{lip}(X)}^{\mathcal{E}_{1}}$

where $C_{0}^{lip}(X)$ is the space of Lipschitz functions with compact support.

$8_{It}$ is also called a metric graph in the literature.
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Remark 1. Examples 1, 2, and 4 are strongly local Dirichlet forms and Examples 3 and 5 are
non local Dirichlet forms.

3. RECENT DEVELOPMENTS

3.1. Adapted distance associated to a Dirichlet form. Biroli and Mosco [4] and Sturm [25]
defined an developed the theory of Carnot-Carath\’eodory distance associated to a regular strongly
local Dirichlet form:

(14) $d(x, y)= \sup\{u(x)-u(y)|u\in \mathcal{F}_{1oc}\cap C(X), d\mu^{c}(u)\leq dm\},$

where $\mathcal{F}_{1oc}$ is the space of functions locally in $\mathcal{F}$ . For instance, the Carnot-Carath\’eodory distance
associated to the canonical Dirichlet form of a weighted manifold (Example 2) is independent of
the density function, and it coincides with the original Riemannian distance. For Example 1, we
have

Example 6. Let $X=(\mathbb{R}, \sigma dx)$ with a positive even function $\sigma$ and

$\mathcal{E}(u)=\int_{X}(u’)^{2}dx$ and $\mathcal{F}=W^{1,2}(X, \sigma dx)$ .

Then
$d(x, y)= \sup\{u(x)-u(y)|u\in C^{1}(X), |u’|\leq\sqrt{\sigma}\},$

and the distance between the origin and $x$ is

$r(x)= \int_{0}^{x}\sqrt{\sigma(t)}dt.$

By a theorem in [25], the Dirichlet form $(\mathcal{E}, \mathcal{F})$ is conservative if there exists $c>0$ such that

$m(B(r))=2 \int_{0}^{r^{-1}(r)}\sigma(s)ds\leq\exp(cr^{2}\ln r)$ for all large $r>0.$

A counter part of Carnot-Carath\’eodory distance for a non local Dirichlet form was proposed
in [22] (see also [13] for a similar notion of distance).

Assume that $J(dxdy)$ has a kernel $j(x, dy)$ , namely, $j(x, dy)$ is a kernel that associates for any
$x\in X$ a Radon measure on the Borel a-algebra $\mathcal{B}(X\backslash \{x\})$ that depends on $x$ in a measurable
way, and

$j(x, dy)dx=J(dxdy)$ .
This assumption corresponds to that $d\mu^{c}(u)$ has a density against $dm$ in (14).

Definition 1. We say that the distance $d$ is adapted to $(\mathcal{E}, \mathcal{F})$ if

(15) $\sup_{x\in X}\int_{y\neq x}(1\wedge d^{2}(x, y))j(x, dy)<\infty.$

The condition (15) is equivalent to the combination of the following:

(16) $\sup_{x\in}\int_{B(x,1)\backslash \{y=x\}}d^{2}(x, y)j(x, dy)<\infty$

and

(17) $\sup_{x\in}\int_{B^{c}(x,1)}j(x, dy)<\infty.$

It is easy to verify that the constant 1 in (15) may be any positive number. The condition (16) is a
straightforward generalisation of (14). On the other hand, (17) will vanish if the jump rage is less
than 1. (This is why we don’t need (17) for a strongly local case because the process associated
to a strongly local Dirichlet form has no jumps.) Of course, we need (17) so that the Euclidean
distance is adapted to the classical Levi form.
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Example 7 (Standard adapted distance for a weighted graph [10, 17]). For a weighted graph, set

$\deg(x)=\frac{1}{m(x)}\sum_{y\in V}b(x, y)$

and
(lS) $\sigma(x, y)=\min\{\deg(x)^{-1}, \deg(y)^{-1},1\}$

for $x\sim y.$ $A$ subset $\gamma$ : $x\sim y=\{x=x_{0},x_{1},$ $\cdots,$ $y=x_{n+1}\in V|x_{l}\sim x_{l+1}$ for all $0\leq l\leq n\}\subset V$

is called a path connecting $x,$ $y\in V$ . The lengh of $\gamma$ : $x\sim y$ is $l( \gamma)=\sum_{0\leq n\leq m}\sigma(x_{n}, x_{n+1})$ . Then
the standard adapted distance for $x\neq y$ is defined as

$d(x, y)= \inf_{\gamma:x\sim y}l(\gamma)$ .

We should point out that we don’t need (17) since the associated process jumps only to the
linked vertices, namely, it is essentially a “diffusion” but in a discrete state space. Indeed, in this
situation, the distance is intrinsic in the sense of [13]. We refer the author to [20] for further
discussions about the distance including the Hopf-Rinow type theorem.

3.2. Volume growth conditions. As we had mentioned in the introduction, the Brownain mo-
tion on a geodesically complete Riemannian manifold (or $mo$re generally, symmetric strongly local
Dirichlet forms) is conservative if

$m(B(x_{0}, r))\leq\exp(cr^{2}\ln r)$ for all large $r>0.$

Now, let us turn to a symmetric jump process on a metric measure space $(X, d, m)$ , i.e., the
associated symmetric Dirichlet form is

$\mathcal{E}(u, v)=\int\int_{X\cross X\backslash diag}(u(x)-u(y))(v(x)-v(y))j(x, dy)m(dx)$ .

We assume that any geodesic balls $B(x, r)=\{y\in X|d(x, y)<r\}$ are relatively compact. In
particular, ( $X$ , d) is locally compact and separable. Let $d$ be an adapted distance to $(\mathcal{E},\mathcal{F})$ . Then,

Theorem 1. If $m(B(x_{0}, r))\leq\exp(cr\ln r)$ , then $(\mathcal{E}, \mathcal{F})$ is conservative.

Theorem 1 was proved in [17] for $c=1/2$ and for general $c>0$ in [23]. In particular, Theorem
1 holds true for more general Dirichlet forms having both strongly local part and non local part
[23]:

Example 8. Let $X= \bigcup_{i\in Z}X_{i}$ , where for each $i\in \mathbb{Z},$ $X_{i}=\{x=(x_{i}, i)\in \mathbb{R}^{n+1}|x_{i}\in \mathbb{R}^{n}\}$ . Denote
the associated projections of $x$ to the first and second components, respectively, by $p$ : $Xarrow \mathbb{R}^{n}$

and $q:Xarrow \mathbb{Z}$ . We define the distance $d$ as
$d(x, y)=|p(x)-p(y)|+|q(x)-q(y)|, x, y\in X,$

where $|\cdot|$ is the Euclidean distance. Let $m(dx)= \sum_{i\in Z}m_{i}(dx_{i})$ be a measure on $X$ such that for
each $i\geq 1,$ $m_{i}(dx_{i})=\Psi(x_{i})dx_{i}$ is a measure on $X_{i}$ with a positive function $\Psi\in C(\mathbb{R}^{n})$ , and $dx_{i}$

is the $n$-dimensional Lebesgue measure. Clearly, $m$ is a Radon measure on $X$ . The state space is
the triple $(X, d, m)$ .

For any $u\in C_{0}^{lip}(X)$ , define

$\mathcal{E}(u)=\int_{X}|\nabla u|^{2}dm+\int\int_{X\cross X\backslash x\neq y}(u(x)-u(y))^{2}j(x, y)m(dx)m(dy)$,

and
$j(x, y)_{\wedge}^{\vee} \frac{d(x,y)^{-(n+\alpha)}1_{\{d(x,y)<1\}}+d(x,y)^{-(n+\beta+1)}1_{\{d(x,y)\geq 1\}}}{\Psi(p(x))+\Psi(p(y))}, x, y\in X$

with some constants $0<\alpha<2$ and $\beta>0$ . If $\mathcal{F}=\overline{C_{0}^{lip}(X)}^{\mathcal{E}_{1}}$ then $(\mathcal{E}, \mathcal{F})$ is a regular Dirichlet
form, and $d$ is adapted to $(\mathcal{E}, \mathcal{F})$ . The volume criterion in Theorem 1 is satisfied for example

$\Psi(x)\leq|x|^{|x|}\ln|x|$

for all $x$ when $|x|$ is large enough.
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The Markov process in this example jumps from a connected component to other competent,
.and it behaves as ajump-diffusion inside each component.

See also Shiozawa [24] for further extension of Theorem 1.
For a weighted graph, a sharp result has been obtained by Folz [11] and Huang [19]:

Theorem 2. Assume that every metric ball of a weighted graph $X$ is compact. If
$\int^{\infty}\frac{rdr}{\ln m(B(x_{0},r))}=\infty,$

then $(\mathcal{E}, \mathcal{F})$ is conservative.

Remark 2. (1) We don’t know either the volume growth condition in Theorem 1 is sharp or
not. The idea of the proof is to develop the analysis of non local operators and to adapt the
Davies method [6], where he proved the conservation property for the Brownian motion on
a complete weighted manifold. The obstruction in the non local case is the lack of chain
rule.

(2) Folz [11] and Huang [19] proved Theorem 2 using the probability method and analysis,
respectively. Both of them established comparison theorems for a continuous time random
walk on the set of vertices and the Brownian motion on the quantum $9^{raph}$ . The latter is
a strongly local Dirichlet form so that one can apply Sturm’s result to get the sharp volume
growth criterion. It seems that there has been no direct proof for Theorem 2 yet.

(3) $Stu7m[25]$ assumed that every metric ball is relatively compact. It is possible to extend his
result to certain geodesically incomplete quantum graphs. For example, if $\partial_{C}X$ is polar
and there exists a relatively compact open set $O\subset\overline{X}$ such that $O\supset\partial_{C}X$ and $O\backslash \partial_{C}X$ is
connected. This observation may be useful to weaken the topological assumption required
in Theorem 2.

3.3. Polar conditions. As we already have mentioned in the introduction, a compact polar
set $K$ of a Riemannian manifold satisfies $co\dim_{H}(K)\geq 2$ , where $co\dim_{H}(K)$ is the Hausdorff
codimension of $K$ . In this subsection we will show that this classical fact is not true in more
general setting by present counter examples. The upper Minkowski codimension of a Borel set $K$

in a metric measure space is defined as

(19) $co\dim_{M}(K)=\lim_{rarrow}\sup_{0}\frac{\ln m(B(K,r))}{\ln r}.$

It is known that these two dimensions coincide for a wide class of fractals9. For a Riemannian
manifold $M$ , the Cauchy boundary is defined as

$\partial_{C}M=\overline{M}\backslash M,$

where $\overline{M}$ is the completion of $M$ with respect to the Riemannian distance. We recall the 1-capacity
of a set $\Sigma\subset\overline{M}$ associated to $W^{1,2}$ . Let $\mathcal{O}$ denote the family of all open subsets of M. First we
define for $\Omega\in \mathcal{O}$ :

Cap $( \Omega):=\inf_{u\in \mathcal{L}(\Omega)}\int_{M}u^{2}+|\nabla u|^{2}d\mu$ , if $\mathcal{L}(\Omega)\neq\phi,$

where $\mathcal{L}(\Omega)$ is the set of functions $u\in W^{1,2}$ satisfying that $0\leq u\leq 1$ and $u|_{\Omega\cap M}=1$ . We let
Cap $(\Omega)=\infty$ if $\mathcal{L}(\Omega)=\phi$ , and Cap $(\phi)=0$ . For arbitrary set $\Sigma\subset\overline{M}$ , we let

Cap $(\Sigma)$
$:= \inf_{\Omega\in \mathcal{O},\Sigma\subset\Omega}$ Cap $(\Omega)$ .

A set $\Sigma$ is called polar if Cap $(\Sigma)=0$ . Clearly, $M$ is geodesically complete if and only if $\partial_{C}M=\phi.$

The following was proved in [18] (see also [21]).

Theorem 3. The capacity defined above is a Choquet $capacity^{1}$ . Assume that $\partial_{C}M$ is compact.
(1) If Cap $(\partial_{C}M)$ is positive, then

(a) $W_{0}^{1,2}(M)\neq W^{1,2}(M)$ .
$9_{For}$ example, $K$ satisfies the open set condition.
$10_{A}$ Choquet capacity is usually defined for a subset of $M.$

61



CONSERVATION PROPERTY OF MARKOV PROCESSES

(b) The Brownian motion on $M$ is not conservative.

(2) If Cap $(\partial_{C}M)=0$ , then
(a) $W_{0}^{1,2}(M)=W^{1,2}(M)$ .
(b) The Brownian motion on $M$ is conservative, provided the Grigor’yan volume condi-

tion;

$\int^{\infty}\frac{rdr}{\ln m(B(x_{0},r))}=\infty.$

Moreover, it was proved that

Theorem 4. (1) If $codim_{M}(\partial_{C}M)>2$ , then Cap $(\partial_{C}M)=0.$

(2) For any $n\geq 2$ , there eansts an $n$ -dimensional Riemannian manifold $M$ such that

$codim_{M}(\partial_{C}M)=2$ and Cap$(\partial_{C}M)>0.$

We define the Cauchy boundary $\partial_{c}X$ for a graph $X$ as well. In the discrete setting, it was
proved in [20] that

Theorem 5. For a locally finite weighted graph $X$ with adapted distance $d,$

$codim_{M}(\partial_{C}X)>2$ $\Rightarrow$ Cap$(\partial_{C}X)=0$ $\Rightarrow$ $W_{0}^{1,2}(X)=W^{1,2}(X)$ .

These two theorems above agree with the classical fact ab$0$ut the Hausdorff dimension and the
polarity, which we mentioned above. On the contrary, we have

Example 9. Let $X=N_{0}$ be a weighted graph with

$b(x, y)=\{\begin{array}{l}1, |x-y|=1,0, otherwise,\end{array}$

and $m(x)=2^{(1-2\alpha)x}$ with $\alpha>1/2$ . Consider the standard adapted distance $d$ . Then, Cap$(\partial X)=$

$0$ and
$co\dim_{M}(\partial X)=2-\alpha^{-1}.$

This example is due to Mr. Y. Watanabe as a modification of Example 5.7 in [20], where the
same result was obtained using an adapted distance but not the standard one. We should point
out that any distance which is smaller than an adapted distance is adapted, it is natural to produce
“counter examples” if we don’t use the standard one.

A continuous version, also due to him, is also available:

Example 10. The underlying space is $X=(0, +\infty),$ $dm=x^{p}dx$ with $0<p<1$ . The Dirichlet
form is

$\mathcal{E}(u)=\int_{X}(u’)^{2}dm$

and $\mathcal{F}=\overline{C_{0}^{\infty}(X)}^{\mathcal{E}_{1}}.$ $A$ direct calculation yields: $co\dim_{M}(\partial_{C}X)=1+p$ . Let $0<r<R$ and

$u_{r,R}(x)=(( \frac{x^{1-p}-R^{1-p}}{r^{1-p}-R^{1-p}})\wedge 1)_{+}$

Then, $u_{r,R}(x)=1$ for $x\leq r,$ $u_{r,R}(x)=0$ for $x\geq R$ , and

$\mathcal{E}_{1}(u_{r,R})arrow 0$ as $r<Rarrow 0.$

Therefore, Cap $(\partial_{C}X)=0.$
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