
The least energy positive solution for the nonlinear
elliptic three-systems with attractive and

repulsive interaction terms

Yohei Sato

Department of Mathematics, Saitama University

Osaka City University Advanced Mathematical Institute

Zhi-Qiang Wang

Department of Mathematics and Statistics, Utah State University

Chern Institute Mathematics, Nankai University

0. Introduction

In this report, for the bounded domain $\Omega\subset R^{n}(n\leq 3)$ with smooth boundary, we

consider the following nonlinear elliptic 3-system:

$- \Delta u_{i}+\lambda_{i}u_{i}=\mu_{i}u_{i}^{3}+\sum_{j=1}^{3}\beta_{i,j}u_{i}u_{j}^{2}$ in $\Omega,$ $(i=1,2,3)$ ,
$(*)$

$u_{i}\in H_{0}^{1}(\Omega) (i=1,2,3)$ .

where $\lambda_{i},$ $\mu_{i}>0(i=1,2,3)$ and $\beta_{i,j}=\beta_{j,i}(1\leq i<j\leq 3)$ . We consider about a
least energy positive solution of $(*)$ for the case $\beta_{1,2}>0$ and $\beta_{1,3},$ $\beta_{2,3}\leq 0$ . Here we

call a solution $\vec{u}=(u_{1}, u_{2}, u_{3})\in H^{1}(R^{n})^{3}$ is a least energy positive solution of $(*)$ if and

only if $\vec{u}$ aehieves $\inf\{I(\vec{u})|I’(\vec{u})=0, u_{i}>0(i=1,2,3)\}$ where $I(u)$ is a functional

corresponding to $(*)$ . There are many papers for the existence of non-trivial solutions of
$k$-system $(k\geq 3)$ . (cf. [LWel], [LWl], [LW2], [SW2], [S], [TT], [TTVW], [TV] $\cdots$ ) To

author’s knowledge, almost existence results for $(*)$ were given under the conditions that

interaction terms $\beta_{i,j}$ are negative or not large positive.
In this report, we introduce results of our two papers $[SW3]-[SW4]$ but we omit

those proofs. For the proofs, see $[SW3]-[SW4]$ . Roughly speaking our results, when
$\beta_{1,3},$ $\beta_{2,3}\leq 0$ and $\beta_{1,2}>0$ is sufficiently large, we observe the existence of least energy

positive solution of $(*)$ in Section 1 and the multiple existence of positive solution of $(*)$

in Section 2.
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1. The Existence of least energy solutions

In this section, when $\beta_{1,3},$ $\beta_{2,3}\leq 0$ and $\beta_{1,2}>0$ is sufficiently large, we observe the
existence of least energy positive solution of $(*)$ . Moreover, we observe that, even if $\Omega$

is ball, that solution is not radial symmetric. This is a different property from the single
homogeneous equations. It is well-known in [GNN] that if $\Omega$ is ball and $f(u)$ is of class $C^{1},$

then any positive solutions in $C^{2}of-\triangle u=f(u)$ in $\Omega u=0$ on $\partial\Omega$ are radial symmetric.
Also, in [LWel], for a $k$-system on $\Omega=R^{n}$ , Lin and Wei showed that, if all interaction
terms are positive, then, the least energy positive solutions must be radially symmetric by
the Schwartz symmetrization.

Since we treat $\beta_{1,2}$ as a parameter which plays an important role, for simplicities, we
often write $\beta\equiv\beta_{1,2}$ . We also use the following notations:

$||u||_{L^{p}(\Omega)}^{p}= \int_{\Omega}|u|^{p}$ for $u\in L^{p}(\Omega)$ $(1\leq p\leq\infty)$ ,

$|||u|||_{\lambda,\Omega}^{2}=||\nabla u||_{L^{2}(\Omega)}^{2}+\lambda||u||_{L^{2}(\Omega)}^{2}$ for $u\in H_{0}^{1}(\Omega)$ .

The first theorem is about the existence of a least energy positive solution of $(*)$ .
Theorem 1.1. We suppose that $\beta\equiv\beta_{1,2}>0$ and $\beta_{1,3},$ $\beta_{2,3}\leq 0$ . Then, there exists a $\beta_{*}>$

$0$ such that, for any $\beta>\beta_{*},$ $(*)$ has a least energy positive solution $\vec{u}_{\beta}=(u_{1,\beta}, u_{2,\beta}, u_{3,\beta})$ .
Moreover, there exist a sequence $\beta_{m}arrow\infty$ and $U_{i}\in H_{0}^{1}(\Omega)(i=1,2,3)$ such that

$(\sqrt{\beta_{7n}}u_{1,\beta_{m}}, \sqrt{\beta_{m}}u_{2,\beta_{m}}, u_{3,\beta_{m}})arrow(U_{1}, U_{2}, U_{3})$ strongly in $H_{0}^{1}(\Omega)^{3}.$

Here $U_{3}$ is a positive least energy solution of

$-\triangle u_{3}+\lambda_{3}u_{3}=\mu_{3}u_{3}^{3}$ in $\Omega,$

(1.1)
$u_{3}\in H_{0}^{1}(\Omega)$ ,

and $(U_{1}, U_{2})$ is a positive least energy solution of

$-\triangle u_{1}+(\lambda_{1}-\beta_{1,3}U_{3}^{2})u_{1}=u_{1}u_{2}^{2}$ $in$ $\Omega,$

$-\triangle u_{2}+(\lambda_{2}-\beta_{2,3}U_{3}^{2})u_{2}=u_{1}^{2}u_{2}$ $in$ $\Omega$ , (1.2)
$u_{1}, u_{2}\in H_{0}^{1}(\Omega)$ .

In particular $(U_{1}, U_{2}, U_{3})$ is a minimizer of the following minimizing problem:

$e=$ inf inf$u_{3}\in K_{3}(u_{1},u_{2})\in N_{u_{3}}(|||u_{1}|||_{\lambda_{1},\Omega}^{2}+|||u_{2}|||_{\lambda_{2},\Omega}^{2}-\beta_{1,3}||u_{1}u_{3}||_{L^{2}(\Omega)}^{2}-\beta_{2,3}||u_{2}u_{3}||_{L^{2}(\Omega)}^{2})$ ,

(1.3)
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where

$K_{3}=$ { $u\in H_{0}^{1}(\Omega)|u$ is a least energy solution of (1.1)},

$N_{u_{3}}=\{(u_{1}, u_{2})\in H_{0}^{1}(\Omega)^{2}|$ $|||u_{1}|||_{\lambda_{1},\Omega}^{2}+|||u_{2}|||_{\lambda_{2},\Omega}^{2}-\beta_{1,3}||u_{1}u_{3}||_{L^{2}(\Omega)}^{2}-\beta_{2,3}||u_{2}u_{3}||_{L^{2}(\Omega)}^{2}=2||u_{1}u_{2}||_{L^{2}(\Omega)}^{2}\neq 0\}\cdot$

Remark 1.2. The infimum $e$ is also written as $e= \inf_{u_{3}\in K_{3}}\overline{e}(u_{3})$ where

$\overline{e}(u_{3})=\inf_{(u_{1},u_{2})\in N_{u_{3}}}(|||u_{1}|||_{\lambda_{1},\Omega}^{2}+|||u_{2}|||_{\lambda_{2},\Omega}^{2}-\beta_{1,3}||u_{1}u_{3}||_{L^{2}(\Omega)}^{2}-\beta_{2,3}||u_{2}u_{3}||_{L^{2}(\Omega)}^{2})$ .

For any given $u_{3}\in H_{0}^{1}(\Omega),$ $\overline{e}(u_{3})$ is achieved by a minimizer $(u_{1}, u_{2})\in N_{u_{3}}$ which is a
non-trivial least energy solution of

$-\triangle u_{1}+(\lambda_{1}-\beta_{1,3}u_{3}^{2})u_{1}=u_{1}u_{2}^{2}$ in $\Omega,$

$-\Delta u_{2}+(\lambda_{2}-\beta_{2,3}u_{3}^{2})u_{2}=u_{1}^{2}u_{2}$ in $\Omega$ , (1.3)
$u_{1}, u_{2}\in H_{0}^{1}(\Omega)$ .

In fact, in [SWl], we showed the existence of a minimizer for $\overline{e}(u_{3})$ when $V_{i}(x)\equiv\lambda_{i}-\beta_{i,3}u_{3}^{2}$

$(i=1,2)$ are positive constants. When $V_{i}(x)$ are non-negative functions, we can show the
existence of a minimizer by the same way.

Remark 1.3. The solution $\vec{u}_{\beta}$ of Theorem 1.1 was given as a minimizer of the following
minimizing problem:

$c_{\beta}= \inf_{\vec{u}\in M_{\beta}}(|||u_{1}|||_{\lambda_{1},\Omega}^{2}+|||u_{2}|||_{\lambda_{2},\Omega}^{2}+|||u_{3}|||_{\lambda_{3},\Omega}^{2})$ ,

$M_{\beta}=\{\vec{u}\in H_{0}^{1}(\Omega)^{3}| f_{1}(\vec{u})+f_{2}(\vec{u})=0f_{3}(\vec{u})=0, (u_{1},u_{2}).\neq(0,0)u_{3}\neq 0’\},$

where $f_{i}( \vec{u})=|||u_{i}|||_{\lambda_{i},\Omega}^{2}-\mu_{i}||u_{i}||_{L^{4}(\Omega)}^{4}-\sum_{J\neq i}\beta_{i,j}||u_{i}u_{j}||_{L^{2}(\Omega)}^{2}$ . For details, see our paper
[SW3].

Next, we will observe the non-radial symmetry for a least energy positive solution of
$(*)$ even if $\Omega$ is ball. When $\Omega$ is ball, it is well-known that least energy solution of (1.1) is
a unique positive radial symmetric solution satisfying $U_{3}’(r)<0,$ $r=|x|$ . (The uniqueness
was proved in [K], The radial symmetry was proved in [GNN]. $)$ Let $\vec{u}_{\beta}=(u_{1,\beta}, u_{2,\beta}, u_{3,\beta})$

be a least energy solution of $(*)$ . From Theorem 1.1, $u_{3,\beta}$ converges to the unique positive
radial symmetric solution $U_{3}$ and a subsequence of $(\sqrt{\beta}u_{1,\beta}, \sqrt{\beta}u_{2,\beta})$ converges to a least
energy solution $(U_{1}, U_{2})$ of (1.2) whose potential functions $\lambda_{i}-\beta_{i,3}U_{3}(x)(i=1,2)$ have
minimum on the boundary $\partial\Omega$ . Then, we can show that $(U_{1}, U_{2})$ has a concentrating point
near $\partial\Omega$ . That is, $(U_{1}, U_{2})$ is not radial symmetric.
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In fact, in this report, we will observe such concentrating phenomenon for the following
system including (1.2):

$-\epsilon^{2}\triangle u_{1}+V_{i}(x)u_{1}=u_{1}u_{2}^{2}$ in $\Omega,$

$-\epsilon^{2}\triangle u_{2}+V_{2}(x)u_{2}=u_{1}^{2}u_{2}$ in $\Omega,$ $(1.4)_{\epsilon}$

$u_{1}, u_{2}\in H_{0}^{1}(\Omega)$ .

where $\epsilon>0$ is a parameter, $V_{i}(x)\in C(\overline{\Omega}, R)(i=1,2)$ are positive functions. Let $(\vec{u}_{\epsilon})_{\epsilon>0}$

be a family of positive least energy solutions of $(1.4)_{\epsilon}$ . To state the concentrating point of
$(\vec{u}_{\epsilon})_{\epsilon>0}$ , we need the following $b(\lambda_{1}, \lambda_{2})$ :

$b( \lambda_{1}, \lambda_{2})=\inf_{(u_{1},u_{2})\in N_{\lambda_{1},\lambda_{2}}}(|||u_{1}|||_{\lambda_{1},R^{n}}^{2}+|||u_{2}|||_{\lambda_{2},R^{n}}^{2})$ , (1.5)

$N_{\lambda_{1},\lambda_{2}}=\{(u_{1}, u_{2})\in H^{1}(R^{n})^{2}||||u_{1}|||_{\lambda_{1},R^{n}}^{2}+|||u_{2}|||_{\lambda_{2},R^{n}}^{2}=2||u_{1}u_{2}||_{L^{2}(R^{n})}^{2}\neq 0\}.$

We easily see that $b(\lambda_{1}, \lambda_{2})$ is achieved for some $\vec{u}=(u_{1}, u_{2})\in H^{1}(R^{n})^{2}$ and $\vec{u}$ is a least
energy solution of

$-\triangle u_{1}+\lambda_{1}u_{1}=u_{1}u_{2}^{2}$ in $R^{n},$

$-\triangle u_{2}+\lambda_{2}u_{2}=u_{1}^{2}u_{2}$ in $R^{n},$
$(1.6)_{(\lambda_{1},\lambda_{2})}$

$u_{1}, u_{2}\in H^{1}(R^{n})$ .

Also, for $b(\lambda_{1}, \lambda_{2})$ , we have the following:
Lemma 1.4.
(i) $b(\lambda_{1}, \lambda_{2})$ : $(0, \infty)^{2}arrow R$ is a continuous function.

(ii) $b(\lambda_{1}, \lambda_{2})$ is increasing with respect to $\lambda_{i}(i=1,2)$ .
(iii) $b(\eta\lambda_{1}, \eta\lambda_{2})=\eta^{2}b(\lambda_{1}, \lambda_{2})$ for all $\eta,$

$\lambda_{1},$ $\lambda_{2}>0.$

We regard $u\in H_{0}^{1}(\Omega)$ as $u\in H^{1}(R^{n})$ by setting $u=0$ on $R^{n}\backslash \Omega$ . Now we have the
following theorem.

Theorem 1.5. There exist sequences $\epsilon_{m}arrow 0,$ $x_{m}arrow x_{0}$ in $\overline{\Omega}$ and $\vec{u}_{0}=(u_{1,0}, u_{2,0})\in$

$H^{1}(R^{n})^{2}$ which is a positive least energy solution of $(1.6)_{V_{1}(x_{0}),V_{2}(x_{0})}$ such that

$u_{i,\epsilon_{m}}(\epsilon_{m}x-x_{m})arrow u_{i,0}(x)$ strongly in $H^{1}(R^{n})$ $(i=1,2)$ ,
$b(V_{1}(x_{m}), V_{2}(x_{m}))arrow b(V_{1}(x_{0}), V_{2}(x_{0}))=\underline{b}.$

Here $\underline{b}=\min_{x\in S}b(V_{1}(x), V_{2}(x))$ .
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Remark 1.6.
(i) For an unique positive radial symmetric solution $U_{3}$ of (1.1), setting $V_{i}(x)=\lambda_{i}-$

$\beta_{i,3}U_{3}(x)(i=1,2)$ , from (ii) of Lemma 1.4, $b(V_{1}(x), V_{2}(x))$ has minimum on the
boundary $\partial\Omega$ . Thus, the least energy solution $(U_{1}, U_{2})$ of (1.2) with suitable coeffi-
cients, has a concentrating point near $\partial\Omega.$

(ii) When a positive interaction term $\beta$ closes to $0$ , Lin-Wei [LWe2] and $Ikoma-Tanaka$

[IT] studied a singular perturbation problem for

$-\epsilon^{2}\Delta u_{1}+V_{1}(x)u_{1}=\mu_{1}u_{1}^{3}+\beta u_{1}u_{2}^{2}$ in $R^{n},$

$-\epsilon^{2}\Delta u_{2}+V_{2}(x)u_{2}=\mu_{2}u_{2}^{3}+\beta u_{1}^{2}u_{2}$ in $R^{n}$

In this case, there are possibilities that least energy positive solution $u_{1,\epsilon}$ and $u_{2,\epsilon}$ have
different concentrating points. But, in our case, $u_{1,\epsilon}$ and $u_{2,\epsilon}$ always must concentrate
a same point.

2. The Existence of $G$-symmetric least energy solutions

In this section, when $\Omega$ is a ball $B=\{x\in R^{N}||x|=1\}$ , we observe the multiple
existence of positive solutions of $(*)$ . When $\Omega$ is a ball, a positive solution $U_{3}$ of (1.1)
is unique and radially symmetrically. Thus, for group actions $G\subset O(n)(O(n)$ is the
orthogonal group for $n=2,3$), by solving minimizing problems on $G$-symmetric function’s
set $H_{0}^{G}(B)=\{u\in H_{0}^{1}(B)|u(gx)=u(x)$ for all $g\in G\}$ , we can expect multiple existence
of positive solutions of $(*)$ . In fact, we can show the following theorem by a similar way
of Theorem 1.1.

Theorem 2.1. Assume $\Omega=B,$ $\beta\equiv\beta_{1,2}>0$ and $\beta_{1,3},$ $\beta_{2,3}\leq 0$ . Let $G\subset O(n)$ be a
group action. Then, there exists $\beta^{G}>0$ such that, for any $\beta>\beta^{G},$ $(*)$ has a $G$-symmetric
positive solution $\vec{u}_{\beta}^{G}(x)=(u_{1,\beta}^{G}(x), u_{2,\beta}^{G}(x), u_{3,\beta}^{G}(x))$ . Moreover, there exist a sequence
$\beta_{m}arrow\infty$ and $U_{i}\in H_{0}^{1}(B)(i=1,2,3)$ such that

$(\sqrt{\beta_{m}}u_{1,\beta_{m}}^{G}, \sqrt{\beta_{m}}u_{2,\beta_{m}}^{G}, u_{3,\beta_{m}}^{G})arrow(U_{1}^{G}, U_{2}^{G}, U_{3})$ strongly in $H_{0}^{1}(B)^{3}.$

Here $U_{3}$ is a uniq $ue$ positive radial least energy solution of (1.1) with $\Omega=B$ and $(U_{1}^{G}, U_{2}^{G})$

$is$ a positive least energy $G$-symmetric solution of (1.2) with $\Omega=B.$

Theorem 2.1 suggests the multiplicity of positive solutions of $(*)$ . However, in order
to get a multiple existence for $(*)$ , we need to show the $\vec{u}^{G}\neq\vec{u}^{G’}$ for group actions
$G\neq G’$ . To observe this, we will discuss an asymptotically behavior of limit equation
(1.2) by regarding some coefficients as parameters. That is, for group actions $G\neq G’,$
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we show that $(U_{1}^{G}, U_{2}^{G})$ and $(U_{1}^{G’}, U_{2}^{G’})$ has different asymptotically behaviors when some
parameters go to limits. More precisely, we will show $(U_{1}^{G}, U_{2}^{G})$ has $k^{G}$-peaks near the
boundary $\partial B$ where $k^{G}$ is a number of the minimum orbit for $G$ . This argument is similar
to the arguments for the multiplicity of positive solutions $of-\Delta u+u=u^{p}$ on annulus
domain.

We will observe such asymptotically results for more general equations which including
(1.2). For radial positive functions $V_{i}(x)\in C(B, R)(i=1,2)$ , we consider the following
system

$-\triangle u_{1}+\eta V_{1}(x)u_{1}=u_{1}u_{2}^{2}$ in $B,$ $u_{1}\in H_{0}^{1}(B)$ ,
(2.1)

$-\triangle u_{2}+\eta V_{2}(x)u_{2}=u_{1}^{2}u_{2}$ in $B,$ $u_{2}\in H_{0}^{1}(B)$ .

For a group action $G\subset O(n)(n=2,3)$ , to get $G$-symmetric solutions of (2.1), we solve
the following minimizing problem on $H_{0}^{G}(B)$ :

$\hat{b}_{\eta}^{G}=\inf_{(u_{1},u_{2})\in\hat{N}_{\eta}^{G}}(|||u_{1}|||_{\etaV_{1},B}^{2}+|||u_{2}|||_{\eta V_{2},B}^{2})$ , (2.2)

$\hat{N}_{\eta}^{G}=\{(u_{1}, u_{2})\in H_{0}^{G}(B)^{2}||||u_{1}|||_{\eta V_{1},B}^{2}+|||u_{2}|||_{\eta V_{2},B}^{2}=2||u_{1}u_{2}||_{L^{2}(B)}^{2}\neq 0\}.$

By standard ways, we see that $\hat{b}_{\eta}^{G}$ is achieved for some $(u_{1,\eta}^{G}, u_{2,\eta}^{G})\in\hat{N}_{\eta}^{G}$ which is a G-
symmetric positive solution of (2.1). To discuss an asymptotically behavior of $(u_{1,\eta}^{G}, u_{2,\eta}^{G})$

as $\etaarrow\infty$ , the function $b(\lambda_{1}, \lambda_{2})$ which was defined in (1.5) also plays important roles.
By using the Schwarz symmetrization, we see that least energy solutions of $(1.6)_{(\lambda_{1},\lambda_{2})}$ is
radial symmetry. For $G\subset O(n)$ , let $G[x]=\{gx|g\in G\}$ be an orbit of $x\in R^{n}\backslash \{0\}$ and
$k^{G}= \min\{\# G[x]|x\in R^{n}\backslash \{0\}\}$ be a element number of the minimum orbit. Now, we
obtain the following theorem which is essential in our arguments.

Theorem 2.2. Assume that $V_{i}(x)\in C(B, R)(i=1,2)$ are positive radial functions and
a finite group $G\subset O(n)$ satisfies $k^{G}< \frac{b(V_{1}(0),V_{2}(0))}{\underline{b}}$ where $\underline{b}=\min_{x\in B}b(V_{1}(x), V_{2}(x))$ .
Then we have

$\eta^{\frac{n}{2}-2}\hat{b}_{\eta}^{G}arrow k^{G}\underline{b}$ as $\etaarrow\infty.$

Moreover, for a family of $G$-symmetric positive solutions $(u_{1,\eta}^{G}, u_{2,\eta}^{G})$ of (2.1) which achieves
the minimizing problem (2.2), there exist a subsequence $\eta_{m}arrow\infty$ and a sequence $x_{m}arrow x_{0}$

in $B$ with $\# G[x_{m}]=\# G[x_{0}]=k^{G}$ and $b(V_{1}(x_{0}), V_{2}(x_{0}))=\underline{b}$ such that

$\Vert|u_{i,\eta_{m}}^{G}-\sum_{z\in G[x_{m}]}\sqrt{\eta_{m}}w_{i,0}(\sqrt{\eta_{m}}(\cdot-z))\Vert|_{\eta_{m}V_{l},B}^{2}=o(\eta_{m}^{1-\frac{n}{2}}) (i=1,2)$ .
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Here $(w_{1,0},w_{2,0})$ is a positive least energy solution of (1.5) with $(\lambda_{1}, \lambda_{2})=(V_{1}(x_{0}), V_{2}(x_{0}))$

and $o(\eta_{m^{2}}^{1-g})\eta^{\frac{n}{m^{2}}}$

‘

$1arrow 0$ as $\eta_{m}arrow\infty$ . That is, for large $\eta_{m},$
$(u_{1,\eta_{m}}^{G}, u_{2,\eta_{m}}^{G})$ is close to $k^{G}$ -peak

functions.

Remark 2.3.
(i) For the case $k^{G} \geq\frac{b(V_{1}(0),V_{2}(0))}{\underline{b}},$ $G$-symmetric positive solutions $(u_{1,\eta}^{G}, u_{2,\eta}^{G})$ achieving

(2.2) may be radial symmetric. Thus we can’t look for any more positive solutions by

only Theorem 2.2.
(ii) Theorem 2.1 and 2.2 still hold for $G$-invariant domain $\Omega$ . The other corollaries and

theorems below follow from Theorem 2.1 and Theorem 2.2.

From Theorem 2.2, we have the following

Corollary 2.4. Suppose that the same assumptions as Theorem 2.2 hold. Let $K_{\eta}^{G}$ be a

set of least energy $G$-symmetric solution of (2.1), $K$ be a set ofleast energy solution of (1.6)

with $(\lambda_{1}, \lambda_{2})=(V_{1}(x_{0}), V_{2}(x_{0}))andX=\{x\in B|\# G[x]=k^{G}, b(V_{1}(x), V_{2}(x))=b\}and$

$X_{\rho}=\{x\in B|\neq G[x]=k^{G}, dist(x, X)<\rho\}$ . Then, for any $\rho>0$ , we have

$\sup_{(u_{1},u_{2})\in K_{\eta}^{G}}\inf_{(w_{1},w_{2})\in K,x\in X_{\rho}}\sum_{i=1,2}\Vert|u_{i}-\sum_{z\in G[x]}\sqrt{\eta}w_{i}(\sqrt{\eta}(\cdot-z))\Vert|_{\eta V_{t},B}^{2}=o(\eta^{1-\frac{n}{2}})$ (2.3)

Here $o(\eta^{1-\frac{n}{2}})\eta^{g-1}arrow 0$ as $\etaarrow\infty.$

Proof. Suppose that Corollary 2.4 does not hold. Then there exists $c_{0}>0,$ $\eta_{m}arrow\infty$ and
$(u_{1,\eta_{m}}, u_{2,\eta_{m}})\in K_{\eta_{m}}^{G}$ such that

$\inf_{(w_{1},w_{2})\in K,x\in X_{\rho}}\sum_{i=1,2}\Vert|u_{i,\eta_{m}}-\sum_{z\in G[x]}\sqrt{\eta_{m}}w_{i}(\sqrt{\eta_{m}}(\cdot-z))\Vert|_{\eta_{m}V_{i},B}^{2}\geq c_{0}\eta^{1-4}2$

But, this contradicts to Theorem 2.2. I

When $n=2$ , for any $k\in N$ , the cyclic group $Z_{k}\subset O(2)$ satisfies $k^{z_{k}}=k$ . Thus, from

Corollary 2.4, we easily find the following multiple existence of positive solutions.

Corollary 2.5. Suppose that $n=2$ and $V_{i}(x)\in C(B, R)(i=1,2)$ are positive radial

functions and $k< \frac{b(V_{1}(0),V_{2}(0))}{\underline{b}}$ where $\underline{b}=\min_{x\in B}b(V_{1}(x), V_{2}(x))$ . Then, there exists

$\eta_{k}>0$ such that, for any $\eta>\eta_{k},$ $(2.1)$ has a positive solution close to $\ell$-peak function in
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the sense of (2.3) with $G=Z\ell$ and (2.1) has a radial positive solution. That is, (2.1) has
at least $k+1$ positive solutions.

Proof. From Corollary 2.4, for any $\ell<\frac{b(V_{1}(0),V_{2}(0))}{\underline{b}}$ , there exists $\eta^{Z\ell}>0$ such that,
for any $\eta>\eta^{Z\ell},$ $(2.1)$ has a positive solution close to $\ell$-peak solutions in the sense of
(2.3). On the other hand, (2.1) always has a radial positive solution. Thus, for $\eta\geq\eta_{k}\equiv$

$\max\{\eta^{z_{1}}, \cdots, \eta^{z_{k}}\},$ $(2.1)$ has at least $k+1$ positive solutions. $I$

When $n=3$ , the subgroups $G=Z_{2},$ $P_{4},$ $P_{8},$ $P_{12}\subset O(3)$ satisfy $k^{G}=2,4,8$ , or 12,
respectively. Here $P_{q}$ is the $q$-regular polyhedron group. Thus, from Corollary 2.4, we also
find the following corollary.

Corollary 2.6. Suppose that $n=3$ and $V_{i}(x)\in C(B, R)(i=1,2)$ are positive radial
functions and 2 (or 4, 8, 12, respectively) $< \frac{b(V_{1}(0),V_{2}(0))}{\underline{b}}$ where $\underline{b}=\min_{x\in B}b(V_{1}(x), V_{2}(x))$ .
Then, there exists $\eta_{0}>0$ such that, for any $\eta>\eta_{0},$ $(2.1)$ has a positive solution close to 2
$(or 4, 8, 12,$ respectively)$-peak$ functions in the sense of (2.3) with $G=Z_{2}$ (or $P_{4},$ $P_{8},$ $P_{12},$

respectively) and (2.1) has a radial positive solution.

Here, we return to the our original equation $(*)$ and limit equation (1.2). For $\eta>0,$

$\lambda_{i}’>0$ and $\beta_{i,3}’<0(i=1,2)$ , we set

$\lambda_{i}=\eta\lambda_{i}’, \beta_{i,3}=\eta\beta_{i,3}’ (i=1,2)$ .
For (1.2), since $U_{3}(x)$ is radial and decreasing with respect to $r=|x|$ , from (bl)$-(b2),$ $b(\lambda_{1}-$

$\beta_{1,3}U_{3}(x)^{2},$ $\lambda_{2}-\beta_{2,3}U_{3}(x)^{2})$ : $(0, \infty)^{2}arrow R$ has maximum at $x=0$ and minimum on $\partial B.$

We remark that, from (b3), $b(\lambda_{1}-\beta_{1,3}U_{3}(x)^{2}, \lambda_{2}-\beta_{2,3}U_{3}(x)^{2})=\eta^{2}b(\lambda_{1}’-\beta_{1,3}’U_{3}(x)^{2},$ $\lambda_{2}’-$

$\beta_{2,3}’U_{3}(x)^{2})$ . From Corollary 2.5 and Corollary 2.6, we have the following multiple existence
for $(*)$ .

Theorem 2.7. Assume that $\Omega=B.$ For $\eta>0$ , we assume that $\beta\equiv\beta_{1,2}>0,$ $\lambda_{i}=$

$\eta\lambda_{i}’>0,$ $\beta_{i,3}=\eta\beta_{i,3}’<0(i=1,2)$ . Let $k$ be the maximum integer satisfying $k<$
$\frac{b(\lambda_{1}’-\beta_{1,3}’U_{3}(0)^{2},\lambda_{2}’-\beta_{23}’U_{3}(0)^{2})}{b(\lambda_{1},\lambda_{2})}.$

(i) When $n=2$ , for any $\epsilon,$ $\rho>0$ , there exists $\eta_{k}>0$ such that, for any $\eta>\eta_{k}$ , there
exists $\beta_{k}(\eta)>0$ such that, for any $\beta>\beta_{k}(\eta)$ and $\ell=1,$ $\cdots,$

$k$ , we have

$\sup$ inf$\vec{u}\in L_{\beta}^{Z\ell(w_{1},w_{2})\in K,x\in x_{\rho}^{\sum_{i=1,2}}}\Vert|\sqrt{\beta}u_{i}-\sum_{z\in Z\ell[x]}\sqrt{\eta}w_{i}(\sqrt{\eta}(\cdot-z))\Vert|_{V_{l},B}^{2}\leq\eta^{1-\frac{n}{2}}\epsilon.$

Here $L_{\beta}^{Z\ell}$ is a set of least energy $Z\ell$ -symmetric solutions of $(*)$ and $K$ is a set of
least energy solutions of (1.6) and $X_{\rho}=\{1-\rho<|x|\leq 1\}$ . In particular, $(*)$ has
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at least $k+1$ positive solutions $\vec{u}^{\ell}=(u_{1}^{\ell}, u_{2}^{\ell}, u_{3}^{\ell})$ of $(*)(1\leq\ell\leq k+1)$ . Here $\vec{u}^{\ell}$ is
$Z\ell$-symmetry and $(u_{1}^{\ell}, u_{2}^{\ell})$ is close to $I$-peak functions which peak’s locations are near
$\partial B(1\leq\ell\leq k)$ and $\vec{u}^{k+1}$ is radial symmetry.

(ii) When $n=3$ , if 2 (or 4, 8, 12, respectively) $\leq k$ holds, for any $\epsilon,$ $\rho>0$ , there exists

$\eta_{k}>0$ such that, for any $\eta>\eta_{k}$ , there exists $\beta_{k}(\eta)>0$ such that, for any $\beta>\beta_{k}(\eta)$

and $G=Z_{2}$ $(or P_{4}, P_{8}, P_{12},$ respectively) , we have

$\sup_{\vec{u}\in L_{\beta}^{G}}\inf_{(w_{1},w_{2})\in K,x\in X_{\rho}}\sum_{i=1,2}\Vert|\sqrt{\beta}u_{i}-\sum_{z\in G[x]}\sqrt{\eta}w_{i}(\sqrt{\eta}(\cdot-z))\Vert|_{V_{i},B}^{2}\leq\eta^{1-\frac{n}{2}}\epsilon.$

Here $L_{\beta}^{G}$ is a set of least energy $G$-symmetric solutions of $(*)$ and $K$ is a set of least

energy solutions of (1.6) and $X_{\rho}=\{1-\rho<|x|\leq 1\}.$

Proof. From Corollary 2.5 and Corollary 2.6, there exists $\eta_{k}>0$ such that, for all $\eta>\eta_{k},$

$\sup_{(U_{1},U_{2})\in K_{\eta}^{G}}\inf_{(w_{1},w_{2})\in K,x\in X_{\rho}}\sum_{i=1,2}\Vert|U_{i}-\sum_{z\in G[x]}\sqrt{\eta}w_{i}(\sqrt{\eta}(\cdot-z))\Vert|_{\eta V_{i},B}^{2}\leq\eta^{1-\frac{n}{2}}\epsilon$. (2.4)

Here $K_{\eta}^{G}$ is a set of least energy $G$-symmetric solution of (2.1). Next, from Theorem 2.2,

there exists $\beta(\eta)>0$ such that, for all $\beta>\beta(\eta)$ , we have

$\sup_{\vec{u}\in L_{\eta}^{G}}\inf_{(U_{1},U_{2})\in K_{\eta}^{G}}\sum_{\iota=1,2}\Vert|\sqrt{\beta}u_{i}-U_{i}\Vert|_{\eta V_{\ell},B}^{2}\leq\eta^{1-g}\epsilon$ . (2.5)

From $(2.4)-(2.5)$ , we obtain Theorem 2.7. 1

Moreover, since $U_{3}(0)arrow\infty$ as $\lambda_{3}arrow\infty$ , from (b3), we observe that

$\frac{b(\lambda_{1}’-\beta_{1,3}’U_{3}(0)^{2},\lambda_{2}’-\beta_{2,3}’U_{3}(0)^{2})}{b(\lambda_{1},\lambda_{2})}arrow\infty$ a$s$ $\lambda_{3}arrow\infty$ . (2.6)

Therefore, from Theorem 2.7 and (2.6), we easily lead the following theorem.

Theorem 2.8. Assume that $\Omega=B$ and $n=2$ . Then, for any $k\in N$ , there exists $\lambda_{k}>0,$

such that, for any $\lambda_{3}>\lambda_{k}$ , there exists $\eta_{k}(\lambda_{3})>0$ , such that, for any $\eta>\eta_{k}(\lambda_{3})$ , there

exists $\beta_{k}(\eta, \lambda_{3})>0$ , such that, for any $\beta\equiv\beta_{1,2}>\beta_{k}(\eta, \lambda_{3}),$ $(*)$ has at least $k+1$ positive

solutions $\vec{u}^{\ell}=(u_{1}^{\ell}, u_{2}^{\ell}, u_{3}^{\ell})(1\leq\ell\leq k+1)$ . Here $\vec{u}^{\ell}$ is $Z\ell$ -symmetry and $(u_{1}^{\ell}, u_{2}^{\ell})$ is close

to $\ell$-peak functions which peak’s locations are near $\partial B(1\leq l\leq k)$ and $\vec{u}^{k+1}$ is radial

symmetry.
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