INTERPOLATING CARLITZ ZETA VALUES

F. PELLARIN

This note is a survey of some results obtained in collaboration with B. Anglès and F. Tavares Ribeiro [5] on a new class of *L*-series arising in the theory of function fields of positive characteristic recently introduced in [14]. Complete proofs and wider investigations can be found in [4, 5].

1. Preliminaries.

We set $A = \mathbb{F}_q[\theta]$, $K = \mathbb{F}_q(\theta)$, $K_{\infty} = \mathbb{F}_q((\theta^{-1}))$ and we denote by \mathbb{C}_{∞} the completion of an algebraic closure of K_{∞} .

The Carlitz zeta values are the series

(1)
$$\zeta_C(n) := \sum_{a \in A^+} a^{-n} \in K_{\infty}, \quad n \ge 1,$$

where the sum runs over the set A^+ of monic polynomials. In analogy with the *classical* zeta values

$$\zeta(n) = \sum_{i \ge 1} i^{-n}$$

with n integer (convergence occurs only if $n \geq 2$).

It was proved by Carlitz [8] that, if $n \equiv 0 \pmod{q-1}$,

(2)
$$\zeta_C(n) \in K^{\times} \widetilde{\pi}^n,$$

where $\tilde{\pi}$ is the value in \mathbb{C}_{∞} of an infinite product

(3)
$$\widetilde{\pi} := -(-\theta)^{\frac{q}{q-1}} \prod_{i=1}^{\infty} (1-\theta^{1-q^i})^{-1} \in (-\theta)^{\frac{1}{q-1}} K_{\infty},$$

uniquely defined up to the multiplication by an element of $\mathbb{F}_q^{\times} = \mathbb{F}_q \setminus \{0\}$ (corresponding to the choice of a root $(-\theta)^{\frac{1}{q-1}}$). We notice that $v_{\infty}(\tilde{\pi}) = -\frac{q}{q-1}$, where v_{∞} is the valuation of \mathbb{C}_{∞} (so that $v_{\infty}(\theta) = -1$).

The element $\tilde{\pi}$ is a fundamental period of the *Carlitz exponential* exp_C (Goss, [11, §3.2]), that is, the unique surjective, entire, \mathbb{F}_q -linear function

$$\exp_C: \mathbb{C}_\infty \to \mathbb{C}_\infty$$

of kernel $\widetilde{\pi}\mathbb{F}_q[\theta]$ such that its first derivative satisfies $\exp_C = 1$.

We have the following arithmetical analogy between the Carlitz zeta values $\zeta_C(n) \in K_{\infty}^{\times}$ $(n \geq 1)$ and the special values $\zeta(n)$ $(n \geq 2)$ of Riemann's zeta function, which was pointed out by Lenny Taelman.

For $n \ge 1$, we have the functor of Quillen K-theory K_{2n-1} , which, evaluated at \mathbb{F}_p , gives the finite group $K_{2n-1}(\mathbb{F}_p)$, cyclic of cardinality $p^n - 1$ (Quillen's theorem). Moreover, the

evaluation $\operatorname{Lie}(K_{2n-1})(\mathbb{F}_p)$ of the functor $\operatorname{Lie}(K_{2n-1})$ (¹) has cardinality $|\operatorname{Lie}(K_{2n-1})(\mathbb{F}_p)| = p^n$ (this can be deduced, for example, from the paper of Hesselholt and Madsen [12, Theorem E]). Now, this yields the Eulerian product

$$\zeta(n) = \prod_{p} \left(\frac{|\operatorname{Lie}(K_{2n-1})(\mathbb{F}_p)|}{|K_{2n-1}(\mathbb{F}_p)|} \right)$$

which diverges of course for n = 1. We note that the cardinalities above can also be viewed as positive generators of Fitting ideals of finite Z-modules.

We set $A = \mathbb{F}_q[\theta]$. The *Carlitz module* C is the functor from A-algebras to A-modules which sends an A-algebra \mathcal{A} to the unique A-module which has \mathcal{A} as underlying abelian group, and such that the (left) multiplication by θ of an element x of \mathcal{A} is $C_{\theta}(x) = \theta x + x^q$.

Let P be a prime of A (that is, a monic irreducible polynomial of A). To the A-algebra A/PA, we can associate the A-module C(A/PA), which is a finite A-module, to which we can associate the unique monic generator of its Fitting ideal $[C(A/PA)]_A$. In virtue of Goss, [11, Theorem 3.6.3], we have

$$[C(A/PA)]_A = P - 1.$$

More generally, Anderson and Thakur have introduced in [3], for $n \ge 1$, a *t*-module called the *n*-th tensor power of the Carlitz module *C*, denoted by $C^{\otimes n}$, which allows to extend the above formula for $\zeta(n)$ in our framework. Indeed, for all $n \ge 1$ and *P* a prime of *A*, the *A*-module $C^{\otimes n}(A/PA)$ is finite and the monic generator of its Fitting ideal is $P^n - 1$ [3, Proposition 1.10.3]. Furthermore, $[\text{Lie}(C^{\otimes n})(A/PA)]_A = P^n$ and

$$\zeta_C(n) = \prod_P \left(\frac{[\operatorname{Lie}(C^{\otimes n})(A/PA)]_A}{[C^{\otimes n}(A/PA)]_A} \right),$$

convergence being ensured even with $n \geq 1$.

The value $\zeta_C(1)$ is somewhat distinguished also because its classical counterpart $\zeta(1)$ is a divergent series. If q = 2, then Carlitz result (2) implies that $\zeta_C(1) \in K^{\times} \tilde{\pi}$ so that $\exp_C(\zeta_C(1))$ is a torsion point for C in this case. A little computation shows that $\zeta_C(1) = \frac{\tilde{\pi}}{\theta(\theta+1)}$ so that $\exp_C(\zeta_C(1))$ is a point of $\theta(\theta+1)$ -torsion and in fact, we find $\exp_C(\zeta_C(1)) = 1$ (note that if q = 2, $C_{\theta(\theta+1)}(1) = (\theta^2 + \theta + 1 + (\theta^2 + \theta)\tau + \tau^2)(1) = 0$; if q > 2, 1 is always a point of infinite order).

In [8], Carlitz proves that

(4)
$$\exp_C(\zeta_C(1)) = 1$$

for all q; this is a completely different relation, if compared with (2).

Taelman [17] recently exhibited an appropriate setting to interpret the above formula as an instance of the *class number formula*. He worked more generally in the framework of *Drinfeld modules* defined over the ring of integers R of a finite extension L of K.

Taelman associated to each such Drinfeld module ϕ a finite A-module $H(\phi/R)$ called the class module and a finitely generated A-module $U(\phi/R)$ called the unit module. Taelman also introduced, for each such Drinfeld module ϕ/R , an L-series value

$$L(\phi/R) = \prod_{\mathfrak{m}} \left(\frac{[\operatorname{Lie}(\phi)(R/\mathfrak{m}R)]_A}{[\phi(R/\mathfrak{m}R)]_A} \right),$$

¹We recall that if $F : (\text{Rings}) \to (\text{Ab. groups})$ is a functor, Lie(F) denotes the functor $\text{Ker}(F(A[\epsilon]) \to F(A)), \epsilon \mapsto 0$, where $A[\epsilon]$ denotes the ring of dual numbers.

where the product runs over the maximal ideals of R (the convergence can be checked easily). Taelman fundamental Theorem [17, Theorem 1] states that

$$L(\phi/R) = [H(\phi/R)]_A \operatorname{Reg}(U(\phi/R)),$$

where $\operatorname{Reg}(U(\phi/R))$ denotes a *regulator* of the unit module defined by Taelman. It is easy to see that $L(\phi/R)$ becomes $\zeta_C(1)$ in the case of $\phi = C$ and R = A. In particular, since \exp_C induces an isometry of the disk $\{z \in \mathbb{C}_{\infty}; v_{\infty}(z) > -\frac{q}{q-1}\}$, the class A-module

$$H(C/A) = \frac{C(K_{\infty})}{\exp_C(K_{\infty}) + C(A)}$$

is trivial. For similar reasons, the unit A-module

$$U(C/A) = \{ f \in K_{\infty}; \exp_C(f) \in C(A) \}$$

is the free A-submodule of K_{∞} generated by $\log_C(1)$, the Carlitz logarithm evaluated at one (this is the local composition inverse of \exp_C at 0 and converges at one). From this, Carlitz formula (4) follows.

A generalization of Taelman's Theorem was recently considered by Jiangxue Fang [10] to certain *L*-series values associated to Anderson's t-modules. If *E* is a t-module defined over *R* (the ring of integers of *L* a finite extension of *K*), the definition of L(E/R) is formally the same as Taelman's for Drinfeld modules, and we have $L(C^{\otimes n}/A) = \zeta_C(n)$. Fang's Theorem [10, Theorem 1.7] states a generalization of Taelman's class number formula in this setting. His results makes a fundamental use of the machinery of shtukas as in Lafforgue's paper [13].

2. Results.

In the preprint [5], we have generalized the formulas (2) and (4) in a different direction. For the sake of simplicity, we are now going to present a particular case of our results. For this purpose, we are going to introduce a generalization of the Carlitz module functor.

2.1. The Carlitz functor revisited. Let t_1, \ldots, t_s be indeterminates, let us denote by A_s the polynomial algebra $A[t_1, \ldots, t_s]$. Let \mathbb{T}_s be the standard Tate algebra of dimension s, that is, the completion of the polynomial algebra $\mathbb{C}_{\infty}[t_1, \ldots, t_s]$ for the Gauss norm $\|\cdot\|$ associated to the absolute value $|\cdot|$ of \mathbb{C}_{∞} uniquely normalized by setting $|\theta| = q^{-v_{\infty}(\theta)} = q$. We fix once and for all the embedding $A[t_1, \ldots, t_s] \subset \mathbb{T}_s$ determined by the embedding $A \subset \mathbb{C}_{\infty}$.

The Carlitz module $C(\mathbb{C}_{\infty})$ over \mathbb{C}_{∞} extends in an unique way to an A_s -module $C(\mathbb{T}_s)$ (we allow a slight abuse of notation; $C(\mathbb{C}_{\infty})$ is an A-module while $C(\mathbb{T}_s)$ is an A_s -module, but this will not lead to confusion). Explicitly, $C(\mathbb{T}_s)$ is the unique A_s -module having \mathbb{T}_s with the usual multiplication as the underlying $\mathbb{F}_q[t_1,\ldots,t_s]$ -module, and such that the (left) multiplication of an element $x \in \mathbb{T}_s$ by θ , denoted by $C_{\theta}(x)$, is $\theta x + \tau(x)$, where

$$\tau:\mathbb{T}_s\to\mathbb{T}_s$$

represents the $\mathbb{F}_q[t_1,\ldots,t_s]$ -linear extension of $\tau: \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$.

To give a concrete example, let us consider $f = t_1 - \theta$, which belongs to A_1 hence to \mathbb{T}_1 . Then, $\tau(f) = t_1 - \theta^q$ and $C_{\theta}(f) = t_1(\theta + 1) - (\theta^2 + \theta^q)$. In the case of s = 1, we also prefer to write $\mathbb{T} = \mathbb{T}_1$ and $t = t_1$.

Since τ induces a continuous automorphism of \mathbb{T}_s for all s, there is an unique $\mathbb{F}_q[t_1, \ldots, t_s]$ -linear extension

$$\exp_C: \mathbb{T}_s \to \mathbb{T}_s$$

of $\exp_C : \mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ which is a continuous, open $\mathbb{F}_q[t_1, \ldots, t_s]$ -linear endomorphism of \mathbb{T}_s . We further have the following exact sequence of A_s -modules:

$$0 \to \widetilde{\pi}A_s \to \mathbb{T}_s \to C(\mathbb{T}_s) \to 0.$$

Here, the third arrow is \exp_C , and it is understood that

$$C_a(\exp_C(f)) = \exp_C(af)$$

for all $a \in A_s$.

2.2. Torsion. The above function \exp_C has quite a rich torsion structure. If $f \in A_s$ is such that $f^{-1} \in \mathbb{T}_s$ (this means that f is a polynomial which has leading coefficient in \mathbb{F}_q^{\times} as a polynomial in θ , or in other words, $f \in \mathbb{T}^{\times}$, group of units of \mathbb{T}), then

$$C_f\left(\exp_C\left(\frac{\widetilde{\pi}\theta^j}{f}\right)\right) = 0, \quad j = 0, \dots, \deg_{\theta}(f) - 1.$$

It is easily seen, under the hypothesis that f is a unit of \mathbb{T}_s , that the functions $\exp_C\left(\frac{\tilde{\pi}\theta^j}{f}\right)$ constitute an $\mathbb{F}_q[t_1,\ldots,t_s]$ -basis of the submodule $\operatorname{Ker}(C_f) \subset C(\mathbb{T}_s)$, free of rank d.

These functions can be used to construct Galois representations

$$\operatorname{Gal}(K^{sep}/K) \to \operatorname{GL}_d(\mathbb{F}_q[[t_1, \ldots, t_s]])$$

(here, K^{sep} denotes the separable closure of K in \mathbb{C}_{∞}). More generally, we can attach similar Galois representations to the torsion modules of uniformizable Drinfeld modules of rank one defined over A_s introduced in [5]. The simplest case is given by the Anderson-Thakur function, first introduced by Anderson and Thakur in [3]:

$$\omega = \exp_C\left(\frac{\widetilde{\pi}}{\theta - t}\right) \in \mathbb{T}^{\times},$$

which is, by the above discussion, the generator of the $\mathbb{F}_q[t]$ -module $\operatorname{Ker}(C_{\theta-t}) \subset \mathbb{T}$, free of rank one. Here, it is well known that the associated Galois representation

$$\operatorname{Gal}(K^{sep}/K) \to \operatorname{GL}_1(\mathbb{F}_q[[t]])$$

is surjective (use, for example [16, Theorem 0.2]). Since $\tau(\omega) = (t-\theta)\omega$ (this is equivalent to saying that $\omega \in \text{Ker}(C_{\theta-t})$), we also deduce:

Proposition 1. The following properties hold:

(1) We have the product expansion

$$\omega = (-\theta)^{\frac{1}{q-1}} \prod_{i \ge 0} \left(1 - \frac{t}{\theta^{q^i}} \right)^{-1},$$

convergent in \mathbb{T} .

- (2) ω , as an element of \mathbb{T} , extends to a meromorphic function over \mathbb{C}_{∞} and has, as unique singularities, simple poles at the points $t = \theta, \theta^q, \theta^{q^2}, \ldots$ The residues can be explicitly computed. In particular, we have $\operatorname{Res}_{t=\theta}(\omega) = -\widetilde{\pi}$.
- (3) The function $1/\omega$ extends to an entire function $\mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ with unique zeros located at the poles of ω .

2.3. L-series values in \mathbb{T}_s . We construct the Carlitz zeta values $\zeta_C(n; s) \in \mathbb{T}_s$, n > 0. They are defined as follows for $n \ge 1$ an integer and $s \ge 0$:

$$\zeta_C(n;s) = \sum_{a \in A^+} a^{-n} a(t_1) \cdots a(t_s) \in \mathbb{T}_s \cap K_\infty[[t_1, \dots, t_s]].$$

It is easy to show that $\zeta_C(n,s) \in \mathbb{T}_s^{\times}$ and that $\|\zeta_C(n;s)\| = 1$. Carlitz zeta values are a special case of our construction with s = 0. In [4] it is proved that, in terms of the variables t_1, \ldots, t_s , these series define entire functions $\mathbb{C}_{\infty}^s \to \mathbb{C}_{\infty}$. Therefore, evaluation at $t_i = \theta^{q^{k_i}}$, $i = 1, \ldots, s$ and $k_i \in \mathbb{Z}$ makes sense and, for n > 0,

$$\zeta_C(n) = \zeta_C(n;0) = \zeta_C(n+q^{k_1}+\cdots+q^{k_s};s)|_{t_i=\theta^{q^{k_i}}}.$$

In this respect, we can view these functions as *interpolations of Carlitz zeta values*. In [5], we prove:

Theorem 2. For $s \ge 0$, we have

$$\exp_C(\zeta_C(1;s)\omega(t_1)\cdots\omega(t_s))=P_s\omega(t_1)\cdots\omega(t_s),$$

where $P_s \in A_s$. Moreover, for s > 1, we have $P_s = 0$ if and only if $s \equiv 1 \pmod{q-1}$. In this case, we have

(5)
$$\zeta_C(1;s) = \frac{\widetilde{\pi}B_s}{\omega(t_1)\cdots\omega(t_s)},$$

with $B_s \in A_s$.

For n = 0, we re-obtain Carlitz Theorem (4). The vanishing of P_s is equivalent to (5), since this means that $\zeta_C(1; s)\omega(t_1)\cdots\omega(t_s)$ is in the kernel of \exp_C . Of course, formula (5) can be viewed as a generalization of Carlitz Theorem (2) in the case n = 1, but for various values of $s \equiv 1 \pmod{q-1}$.

One of the ingredients of the proof of Theorem 2 is a variant of Taelman's class number formula for Drinfeld modules defined over integral closures of A in finite extensions of K [17, Theorem 1]. This was obtained by F. Demeslay and a particular case of his result (corresponding to what we need to prove Theorem 2) appears in the appendix of [5].

Demeslay's method is inspired by Taelman's proof in [17] and uses a generalization of the notion of Drinfeld module introduced in [5] (the extension to \mathbb{T}_s of the Carlitz module is an example of this, but there exist many non-isomorphic Drinfeld modules of rank one over \mathbb{T}_s as soon as $s \geq 1$).

In [5] we prove a generalization of Theorem 2 which holds for more general Drinfeld modules of rank one over \mathbb{T}_s , provided that they are defined over A_s . We point out that Demeslay is currently working on a generalisation of his class number formula which may well handle at once *t*-modules and Drinfeld A_s -modules (it would then encompass Fang's and Taelman's class number formulas).

Comparing (5) and (2) we are led to the following:

Question 3. Is it true that

(6)
$$\widetilde{\pi}^{-n}\zeta_C(n;s)\omega(t_1)\cdots\omega(t_s)\in K(t_1,\ldots,t_s)$$

if and only if $n \equiv s \pmod{q-1}$?

This question is also suggested by the results in [4], in which we prove that s > 1 and $n \equiv s \pmod{q-1}$ imply (6). For example, in [14] it is proved that

(7)
$$\zeta_C(1;1) = \frac{\pi}{(\theta - t)\omega(t)}.$$

Proposition 1, which provides analogies between Euler's gamma function and the function ω of Anderson and Thakur, also provides us (thanks to (7)) with the entire continuation $\mathbb{C}_{\infty} \to \mathbb{C}_{\infty}$ of $\zeta_C(1;1)$, and the whole phenomenology of the trivial zeros and the special values of $\zeta_C(1;1)$ (as in (2)).

This gives to the functional identity (7) a role similar to that of the functional equation of Riemann's zeta function and the second part of Theorem 2 gives a partial generalization of this. For further information, read [5].

2.3.1. A transcendence question. Let (\mathcal{A}, ν) be an integral difference ring, that is, a domain \mathcal{A} together with an endomorphism $\nu : \mathcal{A} \to \mathcal{A}$. A ν -polynomial in X_1, \ldots, X_s over \mathcal{A} is a polynomial of

$$\mathcal{A}[X_1,\ldots,X_s,\nu(X_1),\ldots,\nu(X_s),\nu^2(X_1),\ldots,\nu^2(X_s),\ldots]$$

(in infinitely many indeterminates $\nu^k(X_i)$, $k \ge 0, 1 \le i \le s$). Let \mathcal{B}/\mathcal{A} be an integral difference ring extension. We say that elements $x_1, \ldots, x_n \in \mathcal{B}$ are ν -independent over \mathcal{A} if the only ν -polynomial in X_1, \ldots, X_n over \mathcal{A} vanishing at (x_1, \ldots, x_n) is the zero polynomial.

We can give the question 3 a transcendental flavor by choosing $\mathcal{A} = A_{\infty} = A[t_1, t_2, \ldots] = \bigcup_s A_s$ with $\nu = \tau_p$ the unique $\mathbb{F}_p[t_1, t_2, \ldots]$ -linear endomorphism such that $\tau_p(\theta) = \theta^p$ (here, p is the prime dividing q). We recall that, in [9], Chang and Yu have proved that the elements $\tilde{\pi}, \zeta_C(n)$ of $\mathbb{C}_{\infty}, n \geq 1, q-1 \nmid n, p \nmid n$ are algebraically independent over K. The conditions on n allow us to avoid the Bernoulli-Carlitz relations (2) and the trivial relations $\zeta(pn) = \zeta(n)^p$.

We interpret the elements $\zeta_C(n; s)$ of \mathbb{T}_s as a generalization of Carlitz' zeta values. This seems to legitimate the next question:

Question 4. Is it true that $\tilde{\pi}$ and the series $\zeta_C(n; s)$ with $i \ge 1, s \ge 0, n \ne s \pmod{q-1}$ and $p \nmid n$ are τ_p -independent over A_{∞} ?

The conditions on n, s are required to avoid that the question has negative answer trivially. Indeed, if $n \equiv s \pmod{q-1}$, it is proved in [4] that (6) holds and we know that $x_i = \omega(t_i)$ is a solution of $\tau_p^e(X_i) = (t_i - \theta)X_i$ where e is such that $p^e = q$ so that $\tilde{\pi}$ and $\zeta_C(n; s)$ are in this case τ -dependent (that is, not τ -independent). On the other hand, there is the trivial relation $\tau_p(\zeta_C(n; s)) = \zeta_C(pn; s)$ that we want to equally avoid.

2.3.2. Anderson log-algebraic Theorem revisited. Theorem 2 can be applied to deduce an operator theoretic version of Anderson's log-algebraic Theorem (see [2]). We come back to the τ -polynomials of §2.3.1. The ring

$$\mathcal{A}_r = K[X_1, \ldots, X_s, \tau(X_1), \ldots, \tau(X_s), \tau^2(X_1), \ldots, \tau^2(X_s), \ldots]$$

is endowed with a structure of difference ring with the operator τ which sends $c \in \mathbb{C}_{\infty}$ to c^q and $\tau^k(X_i)$ to $\tau^{k+1}(X_i)$. In particular, we have, for all $d \in \mathbb{Z}$, the polynomials

$$w_d := \sum_{a \in A^+} a^{-1} C_a(X_1) \cdots C_a(X_s) \in \mathcal{A}_r.$$

Let Z be a variable. We can define the formal series

$$\mathcal{L}_r := \sum_{d \ge 0} Z^{q^d} w_d \in \mathcal{A}_r[[Z]].$$

We prove, in [5]:

Theorem 5. $\exp_C(\mathcal{L}_r) \in \mathcal{A}_r[Z]$.

The interest of this result relies on the fact that we can evaluate at X_i elements of \mathbb{T}_s ; not just elements of \mathbb{C}_{∞} as in Anderson's original result.

3. Global *L*-series for φ -sheaves

3.1. Settings. We recall here the definition of the global L-function associated to a φ -sheaf. Our references are [6, 7, 11, 18].

We fix an absolutely irreducible smooth affine scheme Y over \mathbb{F}_q (we call it the *coefficient* scheme). We denote by \mathbf{A} the ring $H^0(Y, \mathcal{O}_Y)$. For any \mathbb{F}_q -scheme of finite type X (called the *base scheme*), we write

$$X_Y := X \times_{\mathbb{F}_a} Y.$$

If X = Spec(A) for some finitely presented \mathbb{F}_q -algebra as above, then X_Y is just $\text{Spec}(A \otimes_{\mathbb{F}_q} A)$. We denote by

$$\sigma: X \to X$$

the map induced by the Frobenius morphism defined by $x \mapsto {}^{\sigma}x = x^{q}$ on the sheaf \mathcal{O}_{X} . We endow X_{Y} with the scheme endomorphism

$$\varphi = \sigma \times \mathrm{id}$$
.

Definition 6 (Drinfeld). A φ -sheaf $\underline{\mathcal{F}}$ of rank r on X over A is a locally free \mathcal{O}_{X_Y} -module \mathcal{F} of finite rank r, endowed with an injective morphism

$$arphi:\sigma^*\mathcal{F} o\mathcal{F}$$

A morphism of φ -sheaves is an \mathcal{O}_{X_Y} -linear morphism with respect to the action of φ .

Compare with Definition 3.2.1 of Böckle and Pink book [7] where more general sheaves are considered. In the present note we always suppose that the underlying sheaf \mathcal{F} is locally free.

3.1.1. Example. We choose $X = \mathbb{A}^1$ and $Y = \mathbb{A}^s$ (case in which $A = \mathbb{F}_q[\theta]$ and $A = \mathbb{F}_q[t_1, \ldots, t_s]$). Then, $X_Y = \operatorname{Spec}(A[t_1, \ldots, t_s])$. For \mathcal{F} , we choose the structure sheaf of X_Y . Then, σ induces the map

$$P(\theta, t_1, \dots, t_s) \in A[t_1, \dots, t_s] \mapsto P(\theta^q, t_1, \dots, t_s) \in A[t_1, \dots, t_s].$$

Let $\underline{\mathcal{F}}$ be a φ -sheaf on X over A. Then, $\underline{\mathcal{F}}$ can be identified with a projective $A[t_1, \ldots, t_s]$ -module of finite rank r which can be injected in its free extension by zero, which is a free $A[t_1, \ldots, t_s]$ -module of finite rank r' endowed with a σ -semilinear injective morphism acting as the Frobenius over A, and trivially on the variables t_i .

3.1.2. Example. Another important particular case is that of the base scheme X = x =Spec (k_x) where k_x is a finite extension of \mathbb{F}_q of degree d_x , and coefficient scheme Y absolutely irreducible smooth affine scheme over \mathbb{F}_q . Let $\underline{\mathcal{F}}$ be a φ -sheaf on x over A. Then, the dual characteristic polynomial (see Lemma-Definition 8.1.1 of [7])

$$\det_{\boldsymbol{A}}(\operatorname{id} - T\varphi|\underline{\mathcal{F}}) \in 1 + T\boldsymbol{A}[T]$$

is well defined (T denotes an indeterminate). In fact, it belongs to $1+T^{d_x}A[t^{d_x}]$ [7, Lemma 8.1.4]. The naive L-series of $\underline{\mathcal{F}}_x$ is defined by

(8)
$$L(x, \underline{\mathcal{F}}, T) = \det_{A} (\operatorname{id} - T\varphi | \underline{\mathcal{F}})^{-1} \in 1 + T^{d_{x}} A[[T^{d_{x}}]]$$

(see [7, Definition 8.1.6]).

3.2. Global *L*-functions. Now, let us consider, more generally, a scheme of finite type X over \mathbb{F}_q and a φ -sheaf $\underline{\mathcal{F}}$ on X over A. We denote by |X| the set of closed points of X. The choice of $x \in |X|$ determines a morphism $i : \operatorname{Spec}(k_x) \to X$ and we can construct a pull-back (stalk at x) $i_x^* \underline{\mathcal{F}}$ of $\underline{\mathcal{F}}$; a φ -sheaf on $\operatorname{Spec}(k_x)$ over A whose underlying sheaf is again locally free. We define, following [18, §2] or [7, Definition 8.1.8], the naive-*L*-function of $\underline{\mathcal{F}}$ on X over A as the product:

$$L(X, \underline{\mathcal{F}}, T) = \prod_{x \in |X|} L(x, i_x^* \underline{\mathcal{F}}, T) \in 1 + T \boldsymbol{A}[[T]].$$

The attribute of naive comes from the theory of crystals over function fields developed by Böckle and Pink [7]. They associate crystalline *L*-series canonically to *A*-crystals. In the case in which the underlying sheaf is locally free and *A* is reduced, the naive and the crystalline *L*-series coincide (cf. [7, Corollary 9.4.3]). We recall that, among other results, Taguchi and Wan [18, Theorem 4.1] proved that (\mathcal{F} being locally free and *A* the ring of integers of a finite extension of $\mathbb{F}_q(t)$) $L(X, \underline{\mathcal{F}}, T)$ is rational in *T*.

To define a global L-function (following Goss, Taguchi and Wan [18, \S 8] and Böckle [6, Definition 2.8]) we have to make an assumption. We require that there exists a morphism

(9)
$$f: X \to Y = \operatorname{Spec}(A).$$

If $x \in |X|$, we set $\mathfrak{p}_x = f(x)$ and we have that the residue degree $d_{\mathfrak{p}_x}$ divides d_x .

3.2.1. Exponentiation. We now review Goss' idea of exponentiation of an ideal. The exponentiation takes place in A and for this reason, we need to suppose that $\dim_{\mathbb{F}_q}(A) = 1$. Hence, we suppose, additionally, that $Y = \mathcal{C} = \overline{\mathcal{C}} \setminus \{\infty\}$, where $\overline{\mathcal{C}}$ is a smooth projective geometrically irreducible curve over \mathbb{F}_q , and ∞ is a point \mathbb{F}_q -rational on it (otherwise, the exponentiation of ideal becomes difficult to realize). In other words, $A = H^0(\mathcal{C}, \mathcal{O}_{\mathcal{C}})$ is a Dedekind ring.

Goss' topological group of exponents is (for the ∞ -adic theory)

$$\mathbb{S}_{\infty} = \mathbb{C}_{\infty} \times \mathbb{Z}_p,$$

where \mathbb{C}_{∞} is the completion of an algebraic closure of K_{∞} , the completion of the fraction field of A at the chosen infinity place.

Let I be a fractional ideal of A and $s = (z, n) \in \mathbb{S}_{\infty}$. The exponentiation of I by s is, by definition, the element of \mathbb{C}_{∞} :

$$I^s = z^{\deg I} \langle I \rangle^n$$

 $(\langle I \rangle$ denotes the the one unit part of I, depending on a choice of uniformizer π of K_{∞} , see [11, §8.2] and $\langle I \rangle^n$ denotes the \mathbb{Z}_p -exponentiation by n). Then, the global *L*-series associated to the datum of $X, \mathcal{C}, f, \underline{\mathcal{F}}, \pi$ etc. is:

$$L^{glob}(X,\underline{\mathcal{F}},s) = \prod_{x \in |X|} L(x, i_x^*\underline{\mathcal{F}}, T)|_{T^{d_{\mathfrak{p}_x}} = \mathfrak{p}_x^{-s}}.$$

This product converges on some half-plane of \mathbb{S}_{∞} to a \mathbb{C}_{∞} -valued analytic function in the sense of Goss. Conjectures of Goss about meromorphy, essential algebraicity and entireness have been solved for these functions by Taguchi and Wan with a variant of Dwork's method in [18, Theorem 8.1] when $\mathbf{A} = \mathbb{F}_q[t]$ and later by Böckle in [6], for \mathbf{A} the ring of regular functions of a smooth projective curve over \mathbb{F}_q minus a point ∞ , in a way which is closer to Grothendieck's approach. 3.2.2. Example. If X = Spec(A) with $A = \mathbb{F}_q[\theta]$ and $Y = \mathcal{C} = \text{Spec}(A)$ with $A = \mathbb{F}_q[t]$ with the map f in (9) corresponding to

(10)
$$A \to A, \quad a(t) \mapsto a(\theta).$$

We set $\underline{\mathcal{F}}$ to be the structure sheaf of X_Y with $\varphi = (t - \theta)(\sigma \times id)$. In this case, it is easy to see that, for all $x = (\mathfrak{p})$ closed point of X (ideal generated by a prime \mathfrak{p} , that is, a monic irreducible polynomial of A),

$$L(\mathfrak{p}, \underline{\mathcal{F}}, T) = \frac{1}{1 - \mathfrak{p}T}$$

so that

$$L^{glob}(X,\underline{\mathcal{C}},s) = \prod_{\mathfrak{p}} \left(1 - \frac{\mathfrak{p}}{\mathfrak{p}^s}\right)^{-1}$$

is the Goss' zeta function evaluated at $s - s_1$ (where $s_1 = (\pi^{-1}, 1) \in \mathbb{S}_{\infty}$).

3.3. Alternative construction for a global *L*-series. Here we suppose, additionally, that both X, Y are affine schemes and X = Spec(A) and Y = Spec(A).

We want to propose a different construction taking into account certain hidden features. This will give the Carlitz zeta values of $\S 2$ as a special case.

We have more freedom on the choice of Y; so we do not restrict to the case of an affine curve. Similar hypotheses occur in the definition of *A*-premotives by Tamagawa (see [19, Definition, p. 155]).

Exponentiation of ideals is anyway still needed, and will be performed now in the ring A so that we suppose X to be an affine curve: X = C with $C, \overline{C}, \infty, A, K_{\infty}, \mathbb{C}_{\infty}$ etc. as in §3.2.1 (K_{∞} is now the completion of the fraction field of A at ∞). There is an injective homomorphism of groups

$$s: \mathbb{Z} \to \mathbb{S}_{\infty}, \quad n \mapsto (\pi^{-n}, n),$$

determined by the choice of π . Instead of letting the variable s varying in the group \mathbb{S}_{∞} , we can even reduce ourselves to choose $s = s_n$ in the image of $\mathbb{Z}_{>0}$.

We choose $\mathbf{A} = \mathbb{F}_q[t_1, \ldots, t_n]/\mathcal{P}$, with \mathcal{P} a prime ideal, or (0). We choose a norm $|\cdot|_{\infty}$ on \mathbb{C}_{∞} . Then, the ring $\mathbb{C}_{\infty} \otimes_{\mathbb{F}_q} \mathbf{A}$ is endowed with the norm induced by the Gauss norm on $\mathbb{C}_{\infty} \otimes_{\mathbb{F}_q} \mathbb{F}_q[t_1, \ldots, t_n]$. We denote by \mathcal{T} the affinoid Tate algebra $\mathbb{C}_{\infty} \otimes_{\mathbb{F}_q} \mathbf{A}$ obtained by completing $\mathbb{C}_{\infty} \otimes_{\mathbb{F}_q} \mathbf{A}$ for this Gauss norm. We denote by $\|\cdot\|_{\mathcal{T}}$ the standard norm of \mathcal{T} .

We construct local factors of our new global *L*-functions. Let x be again a closed point of X represented by a prime ideal P and let us consider a φ -sheaf $\underline{\mathcal{F}}$ on X over A.

We do a different substitution in the local factor (8). We define the local factor at x of our global L-series by setting:

$$\mathcal{L}(x, i_x^* \underline{\mathcal{F}}, n)^{-1} = \det_{\mathbf{A}} (\operatorname{id} - P^{-s_n} \varphi|_{i_x^* \underline{\mathcal{F}}})^{-1} \in 1 + P^{-s_n} \mathbf{A}[P^{-s_n}] \subset \mathbb{C}_{\infty} \otimes \mathbf{A}.$$

Since

$$\|\mathcal{L}(x, i_x^* \underline{\mathcal{F}}, n)\|_{\mathcal{T}} = 1, \quad \|\mathcal{L}(x, i_x^* \underline{\mathcal{F}}, n) - 1\|_{\mathcal{T}} \to 0$$

with the limit taken for the cofinite filter on |X|, the product

$$\mathcal{L}^{glob}(X,\underline{\mathcal{F}},n) := \prod_{x \in |X|} \mathcal{L}(x, i_x^*\underline{\mathcal{F}}, n)$$

converges in \mathcal{T} to our new global *L*-function. This can be viewed as a *function* in virtue of the fact that the elements of \mathcal{T} themselves can be viewed as functions.

3.3.1. Example. When $X = \mathbb{A}^1$ and $Y = \mathbb{A}^s$ (case in which $A = \mathbb{F}_q[\theta]$ and $A = \mathbb{F}_q[t_1, \ldots, t_s]$ so that the ring A_s that we have used in §2 is $A_s = A[t_1, \ldots, t_s] = \operatorname{Spec}(X \times_{\mathbb{F}_q} Y)$), we choose $\underline{\mathcal{F}}_s$ to be the structure sheaf of X_Y with φ defined by $(t_1 - \theta) \cdots (t_s - \theta)(\sigma \times \operatorname{id})$. In this case, for all n > 0, it is easy to check that

$$\mathcal{L}^{glob}(X, \underline{\mathcal{F}}_s, n) = \zeta_C(n; s).$$

Now, we can vary t_1, \ldots, t_s in the polydisk $\{(t_1, \ldots, t_s) \in \mathbb{C}_{\infty}; |t_i| \leq 1\}$; this provides us with a different type of global *L*-function.

More generally, it is not difficult to show that, for ϕ a Drinfeld module of rank one with parameter $\alpha \in A_s$ as defined in [5], the L-series value $L(n, \phi)$ defined there is equal to $\mathcal{L}^{glob}(X, \underline{\mathcal{F}}, n)$, where φ now acts as $\alpha(\sigma \times id)$. Explicitly,

$$\mathcal{L}^{glob}(X, \underline{\mathcal{F}}_s, n) = L(n, \phi),$$

in the notation of [5].

4. FINAL REMARKS.

It is likely that the functions of §3.3 can be further generalized in yet another arithmetically interesting direction. To simplify, we focus on the function

$$L(\chi_t, 1) = \sum_{a \in A^+} \frac{a(t)}{a} \in \mathbb{T},$$

which corresponds to $X = Y = \mathbb{A}^1$ and $\underline{\mathcal{F}} = \mathcal{O}_{X_Y}$ with $\varphi = (t - \theta)(\sigma \times id)$. From now on, $A, K, K_{\infty}, \mathbb{C}_{\infty}$ are as in §1.

Let u, v be variables of \mathbb{C}_{∞} such that $|u| \leq 1 < |v|$. We can define the series of functions of two variables:

$$L^{\sharp}(u,v) = \sum_{a \in A^+} \frac{a(u)}{a(v)}.$$

We have $L^{\sharp}(t,\theta) = \zeta_C(1;1)$. By (7), and the first part of Proposition 1, we observe that

$$L^{\sharp}(u,v) = \prod_{i>0} \frac{1 - \frac{u}{v^{q^{i}}}}{1 - \frac{v}{v^{q^{i}}}}.$$

In particular, if x, y, z are variables of \mathbb{C}_{∞} such that $|z| \leq 1$ and |x|, |y| < 1, we have

$$\frac{L^{\sharp}(z,1/y)}{L^{\sharp}(z,1/x)} = \prod_{i>0} \frac{1-x^{q^{i}-1}}{1-y^{q^{i}-1}} \prod_{i>0} \frac{1-y^{q^{i}}z}{1-x^{q^{i}}z}.$$

We now follow Anderson, in [1]. In his definition of the function τ of an A-lattice, he introduces, in loc. cit. §2.3, the auxiliary formal series in four variables

$$h(t, x, y, z) = (1 - tz) \prod_{i \ge 0} \frac{1 - y^{q^i} z}{1 - x^{q^i} z} = \sum_{k \ge 0} h_k(t, x, y) z^k \in \mathbb{F}_q[[t, x, y, z]].$$

This can be viewed as a generating series for *solitons*, and by the above observation, h(t, x, y, z) is related to the ratio of two of our series L^{\sharp} by:

$$h(t, x, y, z) = \frac{(1 - tz)(1 - xz)}{1 - yz} \frac{L^{\sharp}(z, 1/y)}{L^{\sharp}(z, 1/x)} \prod_{i > 0} \frac{1 - y^{q^{i} - 1}}{1 - x^{q^{i} - 1}}.$$

INTERPOLATING CARLITZ ZETA VALUES

Another reason to investigate these functions is suggested in [15]; looking at [15, Proposition 28], we need to introduce the functions of two variables $|u| \leq 1 < |v|$

$$\omega_{\tau}^{\sharp}(u,v) = v_0 \prod_{i \ge 0} \tau^i \left(1 - \frac{u}{v}\right)^{-1}$$

(where v_0 is solution of $\tau(v_0) + vv_0 = 0$) to make visible analogues of the multiplication relations and the cyclotomic relations:

(11)
$$\omega_{\tau}^{\sharp}(u,v) = \prod_{i=0}^{n-1} \tau^{i}(\omega_{\tau^{n}}(u,v)),$$

(12)
$$\omega_{\tau}^{\sharp}(u,v^{n}) = \prod_{i=0}^{n-1} \tau^{i}(\omega_{\tau}(u,\zeta^{i}v)).$$

In the formulas above, n > 0, ζ is a solution of $X^n = 1$ in \mathbb{C}_{∞} such that $\zeta^k \neq 1$ for all 1 < k < n. This suggests the study of the analytic and the arithmetic properties of the two variable series

$$L^{\sharp}_{\tau}(u,v) = \sum_{a \in (\mathbb{F}_q^{ac})^{\tau}[\theta]^+} \frac{a(u)}{a(v)}.$$

The sum takes place in the subring of $\mathbb{F}_q^{ac}[\theta]$ whose elements are the monic polynomials with coefficients fixed by τ . Of course, \mathbb{F}_q^{ac} denotes the algebraic closure of \mathbb{F}_q in \mathbb{C}_{∞} .

5. ACKNOWLEDGEMENT.

We warmly thank D. Goss and Y. Taguchi for useful hints that have contributed to improve the present note and F. Brunault for suggesting the reference [12]. This work was supported by the ANR HAMOT.

References

- [1] G. Anderson. Rank one elliptic A-modules and A-harmonic series. Duke Math. J. 73 (1994), 491-542.
- G. W. Anderson. Log-Algebraicity of Twisted A -Harmonic Series and Special Values of L-Series in Characteristic p. J. of Number Theory 60 (1996),165-209.
- [3] G. Anderson & D. Thakur. Tensor powers of the Carlitz module and zeta values. Ann. of Math. 132 (1990), 159-191.
- [4] B. Anglès & F. Pellarin. Functional identities for L-series values in positive characteristic. To appear in the Journal of Number Theory (2014).
- [5] B. Anglès, F. Pellarin & F. Tavares Ribeiro. Arithmetic of positive characteristic L-series values in Tate algebras. Preprint (2014), arXiv:1402.0120.
- [6] G. Böckle. Global L-functions over function fields. Math. Ann. 323 (2002), 737-795.
- [7] G. Böckle & R. Pink. Cohomological Theory of Crystals over Function Fields. Tracts in Mathematics 9, European Mathematical Society (2010).
- [8] L. Carlitz. On certain functions connected with polynomials in a Galois field. Duke Math. J. 1 (1935), 137-168.
- C.-Y. Chang & J. Yu. Determination of algebraic relations among special zeta values in positive characteristic. Advances in Math. 216 (2007), 321-345.
- [10] J. Fang. Special L-values of abelian t-modules. Preprint (2014), arXiv:1401.1293.
- [11] D. Goss. Basic Structures of Function Field Arithmetic. Springer, Berlin, 1996.
- [12] L. Hesselholt & I. Madsen. On the K-theory of finite algebras over Witt vectors of perfect fields. Topology 36, 29-101, (1997).
- [13] V. Lafforgue. Valeurs spéciales des fonctions L en caractéristique p. J. Number Theory 129 (2009), 10, 2600-2634.

- [14] F. Pellarin. Values of certain L-series in positive characteristic. Annals of Math. 176 (2012), 2055-2093.
- [15] F. Pellarin. On the generalized Carlitz's module. J. Number Theory 133 (2013), 1663-1692.
- [16] R. Pink. The Mumford-Tate conjecture for Drinfeld modules. Publ. RIMS, Kyoto Univ. 33 (1997), 393-425.
- [17] L. Taelman, Special L-values of Drinfeld modules, Annals of Math. 75 (2012), 369-391.
- [18] Y. Taguchi & D. Wan. L-functions of φ -sheaves and Drinfeld modules. J. of the Amer. Math. Soc. 9, (1996).
- [19] A. Tamagawa. Generalization of Anderson's t-motives and Tate conjecture. In Moduli spaces, Galois representations and L-functions. (Kyoto, 1993, 1994). RIMS Kökyüroku No. 884 (1994), 154-159.

Federico Pellarin Institut Camille Jordan, Faculté des Sciences, 23, rue du Dr. P. Michelon, 42023 Saint-Etienne Cedex, federico.pellarin@univ-st-etienne.fr