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1 Introduction
In a continuous time stochastic equilibrium model, we describe a mechanism
in which the central bank affects the inflation rates through ordinary banks,
and studies under what conditions the change in the inflation rates alters
the equilibrium consumption, investment and production. Every transaction
is executed through bank accounts that bear a nominal interest rate and
the bank accounts are called money in this paper. The central bank lends
money to the ordinary banks by depositing the money into the reserve which
is set in the ordinary banks. In this setting, the equilibrium processes are
indeterminate. Since the real interest rates (nominal interest rates minus
inflation rates) are not determined umiquely, we can study the effects of
monetary policy on the real interest rates and therefore the consumption,.
investment and production. Because the real interest rates do not equal to the
productivity of capital, the divergent capital paths can be called equilibrium
unlike the existing dynamic stochastic equilibrium models.

2 The economy
The model we want to consider in the subsequent paper is based on the typ-
ical dynamic stochastic general equilibrium models in continuous time with
production (see e.g. Duffie (2001), Dana and Jeanblanc-Picque (2003), Es-
pino and Hintermaiser (2009) $)$ except that in this paper the banking system
is included in the setting.

The mathematical preliminaries are presented first. We work on the infi-
nite interval of time $[0, \infty)$ and on a probability space $(\Omega, \mathcal{F}, P)$ . We assume
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that a Brownian motion $(B_{t}=(B_{t}^{1}, B_{t}^{2});t\geq 0)$ is constructed on the prob-
ability space and set a filtration by $\mathcal{F}_{t}=\sigma(B_{s};s\leq t)$ that is assumed to
include the $P$-null sets. $(\mathcal{F}_{t}, t\geq 0)$ describes the flow of information available
to every agent at $t.$

Although the analysis in this paper is executed in continuous time, in
order to make the economic meaning clear, let us first illustrate our model
in discrete time. The economy consisits of four entities; consumers, firms,
ordinary banks and the central bank. The following steps show the procedure
in which transactions among the consumers and firms occur through the
bank accounts that bear an interest rate $r_{t}$ , and accompanying behavior of
the central bank.

We start from the following state of the ordinary banks $s$ balance sheet.
The right hand of balance sheet (credit side) means that consumers have the
deposit the quantity of which is $b_{0}$ and firms $p_{0}f(0, k_{-1}, l)$ at time $0$ . The
left hand (debit side) stands for the asset whose contents are lending to the
consumers and firms by issuing the ‘deposit bond’ the quantity of which is
$\theta_{0}^{c}+\theta_{0}^{f},$

$\theta_{0}^{c}$ to the consumers and $\theta_{0}^{f}$ the firms, at the price of $X_{0}$ at time $0.$

The central bank lends money to the banks, the quantity of which, called
$\Phi_{0}$ , is deposited to the central bank as the reserve.

$\frac{OrdinaryBanks’ BalanceSheet(B/S)(1)}{reserve(tothecentra1bank)\Phi_{0}consumersb_{0}}$

lend $X_{0}(\theta_{0}^{c}+\theta_{0}^{f})$ firms $p_{0}f(0, k_{-1}, l)$

borrow (from the central bank) $\Phi_{0}$

Second, the banks pay the interest rate $r_{0}$ which accrues on the deposits, and
receive the interest rate $\triangle_{0}$ paid by the borrowers (consumers and firms).

Put
$\Phi_{0}^{B}:=\triangle_{0}(\theta_{0}^{c}+\theta_{0}^{f})-\{r_{0}b_{0}+r_{0}p_{0}f(0, k_{-1}, l)+r_{0}\Phi_{0}\}$

which is paid as the wage to workers in the banks.
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$\frac{OrdinaryBanks’ Ba1anceSheet(B/S)(3)}{reserve(tothecentra1bank)\Phi_{0}consumers}$

lend $X_{0}(\theta_{0}^{c}+\theta_{0}^{f})$ $b_{0}+r_{0}b_{0}-\triangle_{0}\theta_{0}^{c}+\delta_{0}a_{0}+w_{0}l+r_{0}\Phi_{0}+\Phi_{0}^{B}$

firms $0$

borrow (from the central bank) $\Phi_{0}$

where
$\frac{p_{0}f(0,k_{-1},l)+r_{0}p_{0}f(0,k_{-1},l)-\triangle_{0}\theta_{0}^{f}-w_{0}l}{a_{0}}=:\delta_{0}$

which means the dividend per share at time $0.$

Ordinary Banks’ Balance Sheet $(B/S)(4)$

Next, consumers select $c_{1},$ $a_{1}$ and $b_{1}$ under the budget constraint

$p_{1}c_{1}+S_{1}(a_{1}-a_{0})rb-\Delta\theta^{c}+\delta_{0}a_{0}+w_{0}l+r\Phi$

(B)
where $p_{1}$ and $S_{1}$ represent the price of the good and the stock price at time
1 respectively. Thus,

Ordinary Banks’ Balance Sheet $(B/S)(5)$

The firms conduct the investment by making use of $S_{1}(a_{1}-a_{0})+X_{1}(\theta_{1}^{f}-$

$\theta_{0}^{f})$ . So letting $p_{1}(k_{1}-k_{0})$ stand for the quantity of the investment, it holds

$p_{1}(k_{1}-k_{0})=S_{1}(a_{1}-a_{0})+X_{1}(\theta_{1}^{f}-\theta_{0}^{f})$ .
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If we assume that the whole products are absorbed by consumption and
investment, we see

$p_{1}f(1, k_{0}, l)=p_{1}c_{1}+S_{1}(a_{1}-a_{0})+X_{1}(\theta_{1}^{f}-\theta_{0}^{f})$.

Ordinary Banks’ Balance Sheet $(B/S)(6)$

The above phase (6) is back to (1) replacing time 1 with $0$ except the
equity capital part. The ensuing process following (6) proceeds similarly to
(1)$-(6)$ . The equity capital as latent gains at time $t$ is represented as, by
writing in continuous time,

$\int_{0}^{t}(\theta_{u}^{c}+\theta_{u}^{f})dX_{u}.$

Ordinary Banks’ Balance Sheet $(B/S)t$

The central bank obtains the interest rate $r_{t}$ that accrues on $\Phi_{t}$ and pays
it to consumers (e.g. workers to the central bank) as the wage at time $t\geq 0.$

Then its balance sheet is represented as follows.

The Central Banks’ Balance Sheet $(B/S)t$

2.1 Consumers’ problem
The problem that homogenous consumers face is the following;

$(a_{t},b_{t}, \theta_{t}^{c},c_{t})_{t\geq 0}\max E_{P}[\int_{0}^{\infty}e^{-\int_{0}^{t}\rho_{u}du}u(c_{t})dt]$ (2.1.1)
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subject to

$p_{t}c_{t}dt+S_{t}da_{t}+db_{t}-X_{t}d\theta_{t}^{c}$

$=r_{t}b_{t}dt-\Delta_{t}\theta_{t}^{c}dt+\delta_{t}a_{t}dt+w_{t}ldt+r_{t}\Phi_{t}dt+\Phi_{t}^{B}dt$ $t\geq 0$ , (2.1.2)

$a_{0},$ $b_{0}>0$ , and $\theta_{0}^{c}>0$ are given (2.1.3)

$\exp(-\int_{0}^{t}\frac{\triangle_{u}}{X_{u}}du)\theta_{t}^{c}=o(e^{-vt}),$ $a.e.$ , for some constant $v>0$ , (2.1.4)

$(a, b, \theta^{c}, c)\in(C^{+})^{4}$ (2.1.5)

where $c_{t}$ is consumption at period $t,$ $a_{t}$ is the quantity of stock selected up
to $t,$ $\delta_{t}$ means the dividend at $t,$ $b_{t}$ is the quantity of bank accounts which
remains by $t,$ $\theta_{t}^{c}$ is the existing quantity of deposit bond which is bought
from banks by $t,$ $S_{t}$ stands for the price of stock at $t,$ $w_{t}$ represents the
nominal wage recieved at $t,$ $\Phi_{t}$ is the lending from the central bank. We
assume that the labors are supplied inelastically with respect to the wage,
the interpretation of which is, for example, that if consumers do not work,
they will die.

The first constraint (2.1.2) comes from $(B)$ . $(2.1.4)$ reflects the condition
that the debt should not grow faster than the interest rate (the no-Ponzi
condition), but this is stronger requirement.

2.2 Firms’ problem
The firms’ maximization problem is synonymous with the stock holders’ one
whose aim is to maximize the expected rate of revenue which is defined as the
discount rate under which the expectation of the discounted integration of all
the net profits equals the current value of firms’ equity capital, $p_{0}k_{0}-X_{0}\theta_{0}^{f}.$

Then the firms’ problem is described as follows;

$\max$ $\{\phi_{t}\}_{t\geq 0}$ maximize by the order $\phi_{t}\geq\phi_{t}’a.e$ . for all $t,$ $\phi,$ $\phi’\in L^{+}$

$(a_{t},\theta_{t}^{f},k_{t},l_{t})_{t\geq 0}$

(2.2.1)
subject to

$p_{0}k_{0}-X_{0}\theta_{0}^{f}$

$=E_{P}[ \int_{0}^{\infty}e^{-\int_{0}^{t}\phi_{u}du}\{[(1+r_{t})p_{t}f(t, k_{t}, l_{t})-\triangle_{t}\theta_{t}^{f}-w_{t}l_{t}]dt-S_{t}da_{t}\}],$

(2.2.2)
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$k_{t}=k_{0}+ \int_{0}^{t}p_{u}^{-1}S_{u}da_{u}+\int_{0}^{t}p_{u}^{-1}X_{u}d\theta_{u}^{f}$ (2.2.3)

$a_{0},$
$\theta_{0}^{f}>0$ and $k_{0}>0$ are given (2.2.4)

$\exp(-\int_{0}^{t}\frac{\triangle_{u}}{X_{u}}du)\theta_{t}^{f}=o(e^{-v’t}),$ $a.e.$ , for some constant $v’>0$ , (2.2.5)

$(a, \theta^{f}, k, l)\in(C^{+})^{4}$ (2.2.6)

where $k_{t}$ is capital stock accumulated up to $t,$ $a_{t}$ is the quantity of stock
issued up to $t,$ $\theta_{t}^{f}$ is the existing quantity of deposit bond which is bought
from banks by $t,$ $S_{t}$ stands for the price of the stock at $t,$ $w_{t}$ represents the
nominal wage at $t$ . Firms’ all profit is assumed to be distributed to stock
holders as dividends which is defined as;

$\delta_{t}:=\frac{(1+r_{t})p_{t}f(t,k_{t},l_{t})-\triangle_{t}\theta_{t}^{f}-w_{t}l_{t}}{a_{t}}$

$\delta_{t}=0$ in the case of $a_{t}=0.$

Firms’ balance sheet is then described as follows;

Firms’ $B/S$ at $t$

2.3 Ordinary banks’ problem
In this paper, we assume the reserve requirement system in which a quantity
of money needs to be deposited to the central bank as the reserve that is
determined by [ the reserve ratio‘ $\cross$ ‘all deposit owed by ordinary banks’].
We write the reserve ratio as $0<\epsilon_{t}<1$ . The ordinary banks control $\theta_{t}^{c}$ and
$\theta_{t}^{f}$ subject to

$b_{t}+ \Phi_{t}+p_{t}f(t, k_{t}, l)dt+\int_{0}^{t}\theta_{u}dX_{u}-X_{t}(\theta_{t}^{c}+\theta_{t}^{f})\geq\epsilon_{t}(b_{t}+\Phi_{t}+p_{t}f(t, k_{t}, l)dt)$

namely

$b_{t}+ \Phi_{t}+\int_{0}^{t}\theta_{u}dX_{u}-X_{t}(\theta_{t}^{c}+\theta_{t}^{f})\geq\epsilon_{t}(b_{t}+\Phi_{t}) t\geq 0$ (2.3.1)

so as to maximize

$\Phi_{t}^{B}=\triangle_{t}(\theta_{t}^{c}+\theta_{t}^{f})-\{r_{t}b_{t}+r_{t}p_{t}f(t, k_{t}, l)+r_{t}\Phi_{t}\} t\geq 0$. (2.3.2)
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Thus we can see that the optimal solutions are always the corner’s ones in
which (2.3.1) holds binding. So we see in this paper

$b_{t}+ \Phi_{t}+\int_{0}^{t}\theta_{u}dX_{u}-X_{t}(\theta_{t}^{c}+\theta_{t}^{f})=\epsilon_{t}(b_{t}+\Phi_{t}) t\geq 0$ . (2.3.3)

Note (2.3.3) is equivalent to

$-X_{0}( \theta_{0}^{c}+\theta_{0}^{f})+(1-\epsilon_{t})(b_{t}+\Phi_{t})=\int_{0}^{t}X_{u}d(\theta_{t}^{c}+\theta_{t}^{c})$ $t\geq 0$ . (2.3.4)

3 Results
In this paper, we focus on the equilibrium which is defined as follows.

The definition of the equilibrium. An equilibrium of this economy is a
set of stochastic processes

$\{(a_{t}, b_{t}, \theta_{t}^{c}, \theta_{t}^{f}), (c_{t}, k_{t}, l_{t}), (p_{t}, S_{t}, X_{t}, r_{t}, \triangle_{t}, w_{t}), \epsilon_{t}, \Phi_{t}\}_{t\geq 0}$

such that
(1) given $\{p_{t}, S_{t}, X_{t}, r_{t}\},$ $\{a_{t}, b_{t}, \theta_{t}^{c}, c_{t}\}$ solves the consumers’ problem;

(2) given $\{p_{t}, S_{t}, X_{t}, r_{t}\},$ $\{a_{t}, \theta_{t}^{f}, k_{t}, l_{t}\}$ solves the firms’ problem; (3) given
$\{X_{t}, \Delta_{t}, r_{t}\},$ $\{\theta_{t}^{c}, \theta f\}$ solves the banks’ problem; (4) the good market clears;

$c_{t}+\dot{k}_{t}=f(t, k_{t}, l_{t})$

(5) the stock market clears; (6) the deposit bond market clears; (7) the labor
market clears; (8) $\Phi_{t}$ and $\epsilon_{t}$ are exogenous variables determined by the central
bank.

We assume that the utihty function is CRRA class.

Assumption 1.
$u(c)= \frac{c^{1-\gamma}}{1-\gamma}, c\geq 0$

where $0<\gamma<1.$

We can see
$- \frac{u"(c)c}{u’(c)}=\gamma, \frac{u"’(c)c^{2}}{u’(c)}=\gamma(\gamma+1)$ .
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The production function is assumed to be linear with respect to both vari-
ables.

Assumption 2.
$f(t, x_{t}, l_{t})=\alpha(t, B_{t})x_{t}+\beta(t, B_{t})l_{t}$

$0< \inf_{(t,\omega)}\alpha(t, B_{t}) , 0<\inf_{(t,\omega)}\beta(t, B_{t})$

where $\alpha(t, B_{t}),$ $\beta(t, B_{t})\in C^{2}([0, \infty)\cross \mathbb{R}^{2})(i.e.,$
$\alpha,$

$\beta$ is twice continuously
differentiable on $[0, \infty)\cross \mathbb{R}^{2}.$

Put

$p_{t}:=p_{0} \exp(\int_{0}^{t}\pi_{u}du-\frac{1}{2}\int_{0}^{t}\{(\sigma_{u}^{p1})^{2}+(\sigma_{u}^{p2})^{2}\}du-\int_{0}^{t}\{\sigma_{u}^{p1}dB_{u}^{1}+\sigma_{u}^{p2}dB_{u}^{2}\})$

(3.1)
and

$c_{t}$

$:=c_{0} \exp(\int_{0}^{t}(1/\gamma)[r_{u}-\pi_{u}-(\sigma_{u}^{p1}\lambda_{u}^{1}+\sigma_{u}^{p2}\lambda_{u}^{2})-\rho_{u}+\frac{1}{2}\{(\sigma_{u}^{p1}+\lambda_{u}^{1})^{2}+(\sigma_{u}^{p2}+\lambda_{u}^{2})^{2}\}]du$

$+ \int_{0}^{t}\{((\sigma_{u}^{p1}+\lambda_{u}^{1})/\gamma)dB_{u}^{1}+((\sigma_{u}^{p2}+\lambda_{u}^{2})/\gamma)dB_{u}^{2}\})$ (3.2)

so that it holds that
$p_{0}=u’(c_{0})$ . (3.3)

Put

$k_{t}= \exp(\int_{0}^{t}\alpha_{u}du)[k_{0}+\int_{0}^{t}\exp(-\int_{0}^{u}\alpha_{\tau}dtau)(\beta_{u}l-c_{u})du]$ . (3.4)

Set

$S_{t}= \exp(\int_{0}^{t}\mu_{u}du-\frac{1}{2}\int_{0}^{t}\{(\sigma_{u}^{1})^{2}+(\sigma_{u}^{2})^{2}\}du+\int_{0}^{t}\{\sigma_{u}^{1}dB_{u}^{1}+\sigma_{u}^{2}dB_{u}^{2}\})$

(3.5)

for some $\mu,$
$\sigma^{1},$ $\sigma^{2}\in L.$
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Put

$X_{t}= \exp(\int_{0}^{t}\hat{r}_{u}du-\frac{1}{2}\int_{0}^{t}\{(\zeta_{u}^{1})^{2}+(\zeta_{u}^{2})^{2}\}du+\int_{0}^{t}\{\zeta_{u}^{1}dB_{u}^{1}+\zeta_{u}^{2}dB_{u}^{2}\})$

(3.6)

for some $\hat{r},$ $\zeta^{1},$ $\zeta^{2}\in L.$

Select $a,$
$\theta^{f}\in C^{+}$ so as to satisfy

$k_{t}=k_{0}+ \int_{0}^{t}p_{u}^{-1}S_{u}da_{u}+\int_{0}^{t}p_{u}^{-i}X_{u}d\theta_{u}^{f}$ (3.7)

and put

$\delta_{t}=\frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}k_{t}-\triangle_{t}\theta_{t}^{f}}{a_{t}}$. (3.8)

Choose $r_{t}$ so that it holds

$\alpha_{t}=\frac{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}}{1+r_{t}}$ . (3.9)

Solve $(\lambda_{t}^{1}, \lambda_{t}^{2})$ as the solution of the following equation;

$(_{\zeta_{t}^{1}’}^{\sigma_{t}^{1}}, \sigma_{t}^{2}\zeta_{t}^{2)}(\begin{array}{l}\lambda_{t}^{1}\lambda_{t}^{2}\end{array})=(\begin{array}{l}\mu_{t}-r_{t}+(\delta_{t}/S_{t})\hat{r}_{t}-r_{t}+(\Delta_{t}/X_{t})\end{array})$ (3.10)

Determine the above parameters so that $\lambda_{t}^{1}$ and $\lambda_{t}^{2}\in L$ satisfy the fol-
lowing Novikof condition;

$E_{P}[ \exp(\frac{1}{2}\int_{0}^{t}\{(\lambda_{u}^{1})^{2}+(\lambda_{u}^{2})^{2}\}du)]<\infty, t\geq 0$ . (3.11)

Then, by the Girsanov theorem, $\hat{B}_{t}^{i}$ $:=B_{t}^{i}+ \int_{0}^{t}\lambda_{u}^{i}du,$ $i=1,2$ , is a standard
Brownian motion under the new measure $Q$ defined by

$dQ$ $:= \exp(-\frac{1}{2}\int_{0}^{t}\{(\lambda_{u}^{1})^{2}+(\lambda_{u}^{2})^{2}\}du-\int_{0}^{t}\{\lambda_{u}^{1}dB_{u}^{1}+\lambda_{u}^{2}dB_{u}^{2}\})dP.$
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Under these settings we prove the following lemma.

Lemma 1. There exists a set of parameters $\{r,\hat{r},$ $\zeta^{1},$ $\zeta^{2},$
$\mu,$

$\sigma^{1},$ $\sigma^{2},$ $\lambda^{1},$ $\lambda^{2},$

$\pi,$
$\sigma^{p1},$ $\sigma^{p2},$ $\triangle,$ $a,$ $\theta^{f}\}$ which simultaneously satisfies $($ 3. $1)-(3.11)$ .

(Proof) Set first the parameters so as to satisfy $(3.1)-(3.6),$ $(3.9)-(3.11)$ .
Determine $\theta^{f}$ by

$p_{t}^{-1}S_{t}d( \frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}k_{t}-\triangle_{t}\theta_{t}^{f}}{\delta_{t}})+p_{t}^{-1}X_{t}d\theta_{t}^{f}=dk_{t},$

which is equivalent to

$( \frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}^{-1}S_{t}}{\delta_{t}}-1)dk_{t}+d(\frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}}{\delta_{t}})k_{t}$

$=( \frac{\triangle_{t}}{\delta_{t}}-p_{t}^{-1}X_{t})d\theta_{t}^{f}+d(\frac{\triangle_{t}}{\delta_{t}})\theta_{t}^{f}$ (3.12)

Lastly, $a_{t}$ is determined by (3.8). $\square$

In the subsequent lemmata, we prove that the parameters found in the
lemma 1 consist of the equilibrium.

Let $\Phi_{t},$ $b_{t}$ and $\theta_{t}^{c}$ satisfy (2.3.4). Define $\Phi_{t}^{B}$ by (2.3.2).

Lemma 2. Let $\{(a_{t}, b_{t}, \theta_{t}^{c}, c_{t})\}_{t\geq 0}$ meet the consumers’ budget con-
straint $(2.1.2)-(2.1.5)$ . Then $c_{t},$ $t\geq 0$ satisfies

$E_{Q}[ \int_{0}^{\infty}R_{t}p_{t}c_{t}dt]\leq S_{0}a_{0}+b_{0}-X_{0}\theta_{0}^{c}+E_{Q}[\int_{0}^{\infty}(R_{t}w_{t}l+r_{t}R_{t}\Phi_{t}dt+R_{t}\Phi_{t}^{B})dt]$

(3.13)
where

$R_{t}:= \exp(-\int_{0}^{t}r_{u}du)$ .

(Proof) From the condition in this claim, we see

$p_{t}c_{t}dt+S_{t}da_{t}+db_{t}-X_{t}d\theta_{t}^{c}$

$=r_{t}b_{t}dt-\triangle_{t}\theta_{t}^{c}dt+\delta_{t}a_{t}dt+w_{t}ldt+r_{t}\Phi_{t}dt+\Phi_{t}^{B} t\geq 0$, (2.1.2)
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Multiplying both sides by $R_{t}$ and calculating a little yield that

$R_{t}p_{t}c_{t}dt+d(R_{4}S_{t}a_{t})+d(R_{4}b_{t})-d(R_{t}X_{t}\theta_{t}^{c})$

$=a_{t}d(R_{4}S_{t})-\theta_{t}^{f}d(R_{t}X_{t})-R_{t}\Delta_{t}\theta_{t}^{c}dt+R_{4}\delta_{t}a_{t}dt+R_{4}w_{t}ldt+r_{t}R_{4}\Phi_{t}dt+R_{t}\Phi_{t}^{B}$

$=\sigma_{t}^{1}R_{t}S_{t}a_{t}dB^{1}+\sigma_{t}^{2}R_{4}S_{t}a_{t}dB^{2}+R_{t}S_{t}a_{t}(\mu_{t}-r_{t}+(\delta_{t}/S_{t}))dt$

$+\zeta_{t}^{1}R_{4}X_{t}\theta_{t}^{f}dB^{1}+\zeta_{t}^{2}R_{4}S_{t}\theta_{t}^{f}dB^{2}+R_{t}X_{t}\theta_{t}^{f}(\hat{r}_{t}-r_{t}+(\triangle/X_{t}))dt+R_{t}w_{t}ldt+r_{t}R_{4}\Phi_{t}dt+R_{4}\Phi_{t}^{B}$

$=\sigma_{t}^{1}R_{l}S_{t}a_{t}d\hat{B}^{1}+\sigma_{t}^{2}R_{4}S_{t}a_{t}d\hat{B}^{2}+\zeta_{t}^{1}R_{t}X_{t}\theta_{t}^{f}d\hat{B}^{1}+\zeta_{t}^{2}R_{t}S_{t}\theta_{t}^{f}d\hat{B}^{2}$

$+R_{t}w_{t}ldt+r_{t}R_{4}\Phi_{t}dt+R_{4}\Phi_{t}^{B}.$

Integrating both sides in time and taking expectations by the measure $Q$

generate that

$E_{Q}[ \int_{0}^{t}R_{w}p_{u}c_{u}du]+E_{Q}[R_{4}S_{t}a_{t}+R_{4}b_{t}-R_{t}X_{t}\theta_{t}^{c}]$

$=S_{0}a_{0}+b_{0}-X_{0} \theta_{0}^{c}+E_{Q}[\int_{0}^{t}(R_{w}w_{u}l+r_{u}R_{w}\Phi_{u}+R_{w}\Phi_{u}^{B})du].$

Note

$R_{4}X_{t}= \exp(-\int_{0}^{t}\frac{\Delta_{u}}{X_{u}}du-\frac{1}{2}\int_{0}^{t}\{(\zeta_{u}^{1})^{2}+(\zeta_{u}^{2})^{2}\}du+\int_{0}^{t}\{\zeta_{u}^{1}d\hat{B}_{u}^{1}+\zeta_{u}^{2}d\hat{B}_{u}^{2}\})$.

So by the condition (2.2.5), we find that

$\lim_{tarrow\infty}E_{Q}[R_{4}X_{t}\theta_{t}^{c}]=0.$

That completes the proof. $\square$

Lemma 3. If $c$ and $k\in C^{+}$ satisfy

$k_{t}= \exp(\int_{0}^{t}\alpha_{u}du)[k_{0}+\int_{0}^{t}\exp(-\int_{0}^{u}\alpha_{\tau}d\tau)(\beta_{u}l-c_{u})du]$ (3.4)

and $a$ and $\theta^{f}\in C^{+}$ are determined so that

$k_{t}=k_{0}+ \int_{0}^{t}p_{u}^{-1}S_{u}da_{u}+\int_{0}^{t}p_{u}^{-1}X_{u}d\theta_{u}^{f}$, (3.7)

holds. Let $b$ and $\theta^{c}\in C^{+}$ are chosen so that it holds

$\Phi_{t}^{B}=\triangle_{t}(\theta_{t}^{c}+\theta_{t}^{f})-\{r_{t}b_{t}+r_{t}p_{t}f(t, k_{t}, l)+r_{t}\Phi_{t}\}$ $t\geq 0$ . (3.14)
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and that the money market clears, namely,

$b_{t}=X_{0}( \theta_{0}^{c}+\theta_{0}^{f})+\int_{0}^{t}X_{u}d(\theta_{u}^{c}+\theta_{u}^{f}) t\geq 0$ . (3.15)

Then it follows that

$p_{t}c_{t}dt+S_{t}da_{t}+db_{t}-X_{t}d\theta_{t}^{c}$

$=r_{t}b_{t}dt-\triangle_{t}\theta_{t}^{c}dt+\delta_{t}a_{t}dt+w_{t}ldt+r_{t}\Phi_{t}dt+\Phi_{t}^{B} t\geq 0$. (2.1.2)

(Proof) Firstly note that (3.4) is equivalent to

$\dot{k}_{t}=f(t, k_{t}, l)-c_{t}.$

Then by multiplying both sides by $p_{t}$

$p_{t}c_{t}dt+S_{t}da_{t}+X_{t}d\theta_{t}^{f}$

$=\lceil p_{t}f(t, k_{t}, l)-\triangle_{t}\theta_{t}^{f}-w_{t}l]dt+\triangle_{t}\theta_{t}^{f}dt+w_{t}ldt$

$=[(1+r_{t})p_{t}f(t, k_{t}, l)-\triangle_{t}\theta_{t}^{f}-w_{t}l]dt-r_{t}p_{t}f(t, k_{t}, l)dt+\Delta_{t}\theta_{t}^{f}dt+w_{t}ldt$

$\mathbb{R}om(3.14)$ and the definition of $\delta_{t}$

$=\delta_{t}a_{t}+r_{t}b_{t}-\triangle_{t}\theta_{t}^{c}dt+r_{t}\Phi_{t}dt+\Phi_{t}^{B}dt+w_{t}ldt.$

On the left hand side, we obtain from (3.15)

$p_{t}c_{t}dt+S_{t}da_{t}+X_{t}d\theta_{t}^{f}$

$=p_{t}c_{t}dt+S_{t}da_{t}+X_{t}d(\theta_{t}^{c}+\theta_{t}^{f})-X_{t}d\theta_{t}^{c}$

$=p_{t}c_{t}dt+S_{t}da_{t}+db_{t}-X_{t}d\theta_{t}^{c}.$

Thus we find (2.1.2) holds. $\square$

Lemma 4. The solution of the firms’ problem

$(,k_{t},l_{t})_{t\geq 0} \max_{a_{t},\theta_{t}^{f}}\{\phi_{t}\}_{t\geq 0}$
maximize by the order $\phi_{t}\geq\phi_{t}’a.e$ . for all $t,$ $\phi,$ $\phi’\in L^{+}$

(2.2.1)
subject to $(2.2.2)-(2.2.6)$ is

$\{\hat{r}_{t}+\frac{\triangle_{t}}{X_{t}}\}_{t\geq 0}.$

(Proof) Let

$\hat{R}_{t}=\exp(-\int_{0}^{t}\{\hat{r}_{u}+\frac{\triangle_{u}}{X_{u}}\}du)$ .
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$[(1+r_{t})\hat{R}_{t}p_{t}f(t, k_{t}, l_{t})-\Delta_{t}\hat{R}_{t}\theta_{t}^{f}-\hat{R}_{t}w_{t}l_{t}]dt-\hat{R}_{t}S_{t}da_{t}$

$=[\{\hat{r}_{t}+(\Delta_{t}/X_{t})\}\hat{R}_{t}p_{t}k_{t}-(\Delta_{t}/X_{t})\hat{R}_{t}X_{t}\theta_{t}^{f}]dt-\hat{R}_{t}S_{t}da_{t}$

$=-k_{t}d(\hat{R}_{t}p_{t})-(\hat{f}\theta p_{t})dk_{t}+\hat{R}_{t}X_{t}d\theta_{t}^{f}-(\triangle_{\iota}/X_{t})\hat{R}_{t}X_{t}\theta_{t}^{f}dt$

$=-d(\hat{R}_{t}p_{t}k_{t})+d(\hat{R}_{t}X_{t}\theta_{t}^{f})+0_{t}^{p1}\hat{R}_{t}p_{t}k_{t}dB_{t}^{1}+0_{t}^{p2}\hat{R}_{t}p_{t}k_{t}dB_{t}^{2}+\zeta_{t}^{1}\hat{R}_{t}X_{t}\theta_{t}^{f}dB_{t}^{1}+\zeta_{t}^{2}\hat{R}_{t}X_{t}\theta_{t}^{f}dB_{t}^{2}.$

Thus it follows by integrating and taking expectations of both sides

$p_{0}k_{0}-X_{0}\theta_{0}^{f}$

$=E_{P}[ \int_{0}^{t}\exp(-\int_{0}^{u}\{\hat{r}_{\tau}+\frac{\triangle_{\tau}}{X_{\tau}}\}d\tau)\{[(1+r_{u})p_{u}f(t, k_{u}, l_{u})-\triangle_{u}\theta_{u}^{f}-w_{u}l_{t}]du-S_{u}da_{u}\}]$

$+E_{p}[\hat{R}_{t}p_{t}k_{t}-\hat{R}_{t}X_{t}\theta_{t}^{f}].$

Because for any $(a, \theta^{f}, k, l)$ that satisfies $\lim_{arrow\infty}E_{p}[\hat{R}_{t}p_{t}k_{t}-\hat{R}_{t}X_{t}\theta_{t}^{f}]=0$ it
holds that

$p_{0}k_{0}-X_{0}\theta_{0}^{f}$

$=E_{P}[ \int_{0}^{\infty}\exp(-\int_{0}^{t}\{\hat{r}_{u}+\frac{\triangle_{u}}{X_{u}}\}du)\{[(1+r_{t})p_{t}f(t, k_{t}, l_{t})-\triangle_{t}\theta f-w_{t}l_{t}]dt-S_{t}da_{t}\}],$

it suffices to prove that hm$arrow\infty^{E_{p}[\hat{R}_{t}p_{t}k_{t}-\hat{R}_{t}X_{t}\theta_{t}^{f}]}=0$ follows for the selected
$(a, \theta^{f}, k, l)$ .

Recall
$\alpha_{t}=\frac{\hat{r}+(\triangle_{t}/X_{t})-\pi_{t}}{1+r_{t}}$ . (3.9)

Because
$\alpha_{t}<\hat{r}+(\triangle_{t}/X_{t})-\pi_{t},$

we can see
$\lim_{tarrow\infty}E_{p}[\hat{R}_{t}p_{t}k_{t}]=0.$

FYom (2.2.5)
$\lim_{tarrow\infty}E_{p}[\hat{R}_{t}X_{t}\theta_{t}^{f}]=0.$

Then this lemma is proved. $\square$

Lemma 5. If $c^{*}\in C^{+}$ satisfies

$R_{4}p_{t} \exp(-\frac{1}{2}\int_{0}^{t}\{(\lambda_{u}^{1})^{2}+(\lambda_{u}^{2})^{2}\}du-\int_{0}^{t}\{\lambda_{u}^{1}dB_{u}^{1}+\lambda_{u}^{2}dB_{u}^{2}\})=\exp(-\int_{0}^{t}\rho_{u}du)u’(c_{t}^{*})$ ,
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$c^{*}$ is the solution of the problem;

$\max_{\mathcal{C}\in c+}E_{p}[\int_{0}^{\infty}e^{-\int_{0}^{t}\rho_{u}du}u(c_{t})dt]$

subject to

$E_{Q}[ \int_{0}^{\infty}R_{t}p_{t}c_{t}dt]\leq S_{0}a_{0}+b_{0}-X_{0}\theta_{0}^{c}+E_{Q}[\int_{0}^{\infty}(R_{t}w_{t}l+r_{t}R_{t}\Phi_{t}dt+R_{t}\Phi_{t}^{B})dt.]$

The proof of lemma 5 is almost the same as the standard argument (see
e.g. Dana and Jeanblanc-Picque (2003) $)$ , so we omitted here.

Note that under

$p_{t}=p_{0} \exp(\int_{0}^{t}\pi_{u}du-\frac{1}{2}\int_{0}^{t}\{(\sigma_{u}^{p1})^{2}+(\sigma_{u}^{p2})^{2}\}du-\int_{0}^{t}\{\sigma_{u}^{p1}dB_{u}^{1}+\sigma_{u}^{p2}dB_{u}^{2}\})$ ,

(3.1)
we can deduce that

$c_{t}^{*}$

$:=c_{0} \exp(\int_{0}^{t}(1/\gamma)[r_{u}-\pi_{u}-(\sigma_{u}^{p1}\lambda_{u}^{1}+\sigma_{u}^{p2}\lambda_{u}^{2})-\rho_{u}+\frac{1}{2}\{(\sigma_{u}^{p1}+\lambda_{u}^{1})^{2}+(\sigma_{u}^{p2}+\lambda_{u}^{2})^{2}\}]du$

$+ \int_{0}^{t}\{((\sigma_{u}^{p1}+\lambda_{u}^{1})/\gamma)dB_{u}^{1}+((\sigma_{u}^{p2}+\lambda_{u}^{2})/\gamma)dB_{u}^{2}\})$ . (3.2)

4 Policy Implications
We consider the case in which the central bank attempts to ease the quantity
of money by reducing the reserve rate, $\epsilon_{t}$ , or increasing the lending, $\Phi_{t}$ . The
change in these parameters leads to the change of the quantity $\theta_{t}^{c}$ and $\theta_{t}^{f}$

from (2.3.4). By (3.2) and (3.4), we can see that the increase of the inflation
rate $\pi_{t}$ means the increase of the capital path $k_{t}$ . Thus recalling (3.12)

$( \frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}^{-1}S_{t}}{\delta_{t}}-1)dk_{t}+d(\frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}}{\delta_{t}})k_{t}$

$=( \frac{\triangle_{t}}{\delta_{t}}-p_{t}^{-1}X_{t})d\theta_{t}^{f}+d(\frac{\triangle_{t}}{\delta_{t}})\theta_{t}^{f}$, (3.12)

the increase of $\theta_{t}^{f}$ accompanies the increase of the inflation rate $\pi_{t}$ provided

$sign(\frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}^{-1}S_{t}}{\delta_{t}}-1)dt=$ signd $( \frac{\{\hat{r}_{t}+(\triangle_{t}/X_{t})-\pi_{t}\}p_{t}}{\delta_{t}})$

$= sign(\frac{\triangle_{t}}{\delta_{t}}-p_{t}^{-1}X_{t})dt=$ signd $( \frac{\triangle_{t}}{\delta_{t}})$ .
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The case of tightening the money can also be studied in the similar manner
so we omitted the discussion.
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