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1 Introduction
In the past decade, the interest in developing novel simulation techmiques for modeling fluid-
structure interactions revived due to the increasing demands in capabilities to accurately and ef-
ficiently study biomedical applications. Biomedical applications often involve fluid (blood or air)
interacting with soft tissues.

Since soft tissues come in with all forms, shapes and sizes, it is more convenient to setup a simu-
lation using a non-boundary-fitted modeling technique. The non-boundary-fitted approaches avoid
the re-meshing process by defining independent meshes for the fluid and solid respectively. The
solid can freely move on top of the fluid gnid without deforming the surrounding fluid. $A$ widely
used numerical approach for bio-interface applications is the immersed boundary ($IB$ ) method,
which was initially proposed by Peskin to study the blood flow around heart valves [1, 2, 3, 4, 5, 6,
7$]$ . The mathematical formulation of the $IB$ method employs a mixture of Eulerian and Lagrangian
descriptions for fluid and solid domains. In particular, the entire fluid domain is represented by a
uniform background grid, which can be solved by finite difference method with periodic boundary
conditions; whereas the submerged structure is represented by a fiber or boundary network. The
interaction between the fluid and structure is accomplished by distributing the nodal forces and
interpolating the velocities between Eulerian and Lagrangian domains through a smoothed approx-
imation of the Dirac delta function.

The immersed finite element method (IFEM) [8, 9, 10, 11] was developed based on the $IB$

method to represent the background viscous fluid with an unstructured fin\’ite element mesh and
nonlinear finite elements for the immersed deformable solid. Similar to the immersed boundary
method, the fluid domain is defined on a fixed Eulerian grid. However, the solid domain is con-
structed independently with a Lagrangian mesh, which makes it possible to use a more detailed
constitutive model to describe the solid material such as linear elastic, hyperelastic and viscoelastic.
This approach is particularly attractive to modeling biomedical applications including stent deploy-
ment, blood flow in athersclerosis in arteries, etc. [12, 13, 14, 15, 16, 17, 18, 19, 20]. With finite
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element formulations for both fluid and solid domains, the submerged structure is solved more re-
alistically and accurately in comparison to the corresponding fiber network representation in the $IB$

method.
There also exist a number of methods that solve the fluid-solid interaction problem on fixed

grid without distribution and interpolation procedures of the nodal forces and velocities (unlike $IB$

methods). Examples include direct-forcing method, originally developed by Mohd-Yusof [21] and
improved by Fadlun et al. [22] to allow three-dimensional geometries by enforcing the velocities
in the boundary cells to the interpolated values from the ambient velocity field. The method has
found many engineering applications [23, 24]. Later, Ikeno and Kajishima [25] proposed a proper
discretization scheme of the pressure Poisson equation in a manner that consists with the direct-
forcing approach. Sato et $aI.$ $[26]$ further evolved the idea of consistency between the discretized
(incompressible) flow field and the direct-forcing approach, and presented improved accuracies of
the velocity and pressure fields near the object surface.

One of the present authors was also involved in the developments of other fixed-grid approaches;
immersed solid approach coupled with a finite element method ($IS$-FEM) and fully-Eulerian method.
The $IS$-FEM [27] also employs Eulerian and Lagrangian domains for fluid and solid, respectively.
In the method, the conservation equations with respect to the mixture velocity field (established

through volume-averaging the local fluid velocity and local particle velocity in a cell) are solved
with an interaction term at the boundary cells, and the same interaction term (with the opposite
$sign)$ is substituted into the finite-element formulation of the solid defonnation to update the posi-
tion and velocities of the object. On the other hand, the fully-Eulerian method [28, 29, 30, 31, 32]

describes the solid deformation on Eulerian frame, and couples the motions of the two phases on
the Eulerian frame. To account for the presence and the deformation of the object, transport equa-
tions of a volume-of-fluid and a left Cauchy-Green deformation tensor are solved. This approach
is also attractive to multi-component flow problem involving a variety of solid geometries, such as
biomedical applications, as it does not even require the mesh generation for solid object.

The fixed-grid methods are often apphed to a flow including an object of complex geometry and
moving boundary problem including solid/deformable objects. In this paper, we first provide brief
descriptions of the fonnulations for FEM, the semi-implicit IFEM, and the modified IFBM, as well
as $IS$-FEM and fully-Eulerian method. Then, we will show several applications of bio-related flow
problems by the FEM algorithms. The choice of the method/algorithm used for each application is
dependent on the nature of the fluid-structure interactions (FSI) involved, which comes clear as the
readers go through the motivations of each of the algorithm development.

2 Methods

2.1 Immersed finite element method (IFEM)

Let us consider a deformable structure that occupies a finite domain, $\Omega^{S}$ , which is completely im-
mersed in a fluid domain $\Omega^{f}$ . The fluid and the solid together occupy the entire computational
domain $\Omega$ , and they intersect at a common interface $\Gamma^{FSI}$ , where”FSI” represents a line if $\Omega$ is a
two-dimensional domain or a surface if $\Omega$ is in three-dimensions. The interface $\Gamma^{FSI}$ coincides with
the solid boundary $\Gamma^{s}$ . The nomenclature involved can be partitioned into two categories: one be-
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longs to the solid and the other to the fluid. The notations associated with the solid have superscript
$s$ to distinguish them from those of the fluid $f$ . The following assumptions are made: (1) The fluid
exists everywhere in the domain, $\Omega$ . (2) The interface between the fluid and the solid must abide
by the matching velocity (or no-slip) and traction boundary conditions. (3) The solid must always
remain immersed in the fluid domain to avoid inaccurate interpolations at the fluid-solid interface.

The original derivation of IFEM starts from the principle of virtual of work or the weak form,
which is used for standard finite element analysis. The weak forms of the derived equations are
equivalent to their strong forms if the weak form solution is smooth enough to satisfy at least $C^{0}$

continuity. In the IFEM formulation, the term $f_{i}^{FSI,f}$ can be interpreted as the extemal force applied
to the fluid that is generated from the artificial fluid. It is important to note that since the solid nodal
velocities follow that of the overlapping fluid grid velocities, the compressibility of the solid must
follow that of the fluid as well. Therefore, the solid must be incompressible or at least nearly
incompressible when the fluid is incompressible.

In the IFEM, small time step has to be used to ensure the stability of the coupling procedure
because the solid domain and fluid domain are coupled to each other explicitly at every time step.
Since the Navier-Stokes equations are solved implicitly, such small time step requirement due to the
coupling stability makes the whole algorithm numerically inefficient especially for the cases when
the sohd properties are very different from the fluid. Semi-implicit coupling between the fluid and
solid domain is then introduced in order to enlarge the stability region.

To alleviate the numerical issues caused by the restrictions in time step size of explicit coupling
and the convergence problem due to highly disparate properties between the fluid and the solid
domains, a semi-implicit approach is introduced [33]. In the semi-implicit algorithm, the interaction
force $f^{FSI,s}$ is re-defined in the solid domain, which only includes the internal forces for the fluid
and solid from the original definition. An indicator function, $I(x)$ , is to identify the real fluid region
$\Omega^{f}$ , the artificial fluid region or the solid region $\Omega^{s}$ , and the fluid-structure interface $\Gamma^{FSI}$ , in the
computational domain $\Omega$ . The value of the indicator function is ranged between $0$ and 1 where it is
$0$ if an entire element belongs to the fluid and 1 if an entire element belongs to the solid. Comparing
to the original IFEM algorithm, the inertial and the extemal force terms in the original interaction
force formulation are considered in the goveming equation and can be evaluated iteratively with the
most updated velocity field. This is, therefore, considered as semi-implicit IFEM algorithm.

In the modified IFEM, the algorithm is revamped to capture the solid dynamics for high ${\rm Re}$

flows. For cases where the solid behavior dominates the entire system or high ${\rm Re}$ flows, using the
IFEM algorithm may lead to unrealistic solid deformation and may even cause the severe distortion
of the solid mesh, because it is not appropriate to approximate the solid behavior based on the fluid
velocity by letting $v^{s}=v^{f}$ . The idea of the modified FEM is to let the artificial fluid to behave
more like the solid, or letting $v^{f}=v^{s}$ . Doing so allows the solid governing equation to be solved
rather than be evaluated. Since the artificial fluid is not real anyway, its role is to produce the same
velocity as the solid so that the real fluid realizes the existence of the solid. This modified FEM
algorithm $a$]$lows$ the solid behaviors to be estimated more accurately and have stronger influences
in the fluid-structure interactions. The detailed rationale and derivations, as well as validation cases
were presented in [34].

In order to find the solid displacement field $u^{s}$ and the velocity field $v^{s}$ , the solid equation
is solved, $\rho^{s}u_{i,tt}^{S}=\sigma_{ij,j}^{8}$ in $\Omega^{S}$ . The solid stress $\sigma^{s}$ is evaluated using the solid strain tensor $\epsilon^{s},$
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$\sigma_{kl}^{s}=c_{\iota jkl}\epsilon_{ij}^{S}+\eta_{ijkl}\epsilon_{ij,t}^{s}$ , where $\epsilon_{ij}^{s}=\frac{1}{2}(u_{i,j}^{s}+u_{j,i}^{S})$ . Different combinations of $c_{ijkl}$ and $\eta_{ijkl}$

provide various choices of solid material constitutive laws such as lmear elastic, viscolinear elastic,
hyper-elastic, etc. The boundary condition of the solid domain can be applied using either $D$ chlet
boundary condition or Neumann boundary condition described as: $u_{i}^{S}=q_{i}$ on $\Gamma^{sq}$ , or $\sigma_{ij}^{S}n_{j}=h_{i}$

on $\Gamma^{sh}$ , where $u_{i}^{S}$ and $h_{i}$ are, respectively, the diplacement and force at previous time step, such that
$q_{i}=[ \int_{\Omega^{v}}f\phi(x-x^{S})d\Omega]\triangle t$ and $h_{i}=[ \int_{\Omega}\sigma_{ij}^{f}\phi(x-x^{s})d\Omega]n_{j}$ , and $n$ is the outward normal of the

fluid-structure interface $\Gamma^{FSI}$ and $\triangle t$ is the time step size. These boundary conditions are evaluated
based on the fluid velocity $(v^{f})$ and stress $(\sigma^{f})$ on the fluid-structure interface solved from the fluid
equations at previous time step.

Once the solid solution is obtained, the next step is to make the artificial fluid to follow the
solid, i.e. solving the artificial fluid goveming equation so that $v^{f}=v^{s}$ in $\overline{\Omega}$. To accomplish this,

the artificial fluid property, such as the density, should mimic that of the solid.
Using the same semi-implicit interaction force definition and the indicator function as mentioned

in the semi-implicit IFEM algorithm, the continuity and momentum equations of the fluid domain,
which combines the real fluid domain and artificial fluid domain, can be written as follows,

$\frac{1}{\kappa^{s}}\frac{\partial p^{f}}{\partial t}I(x)+v_{i,i}^{f}=0$ in $\Omega.$

$\overline{\rho}\frac{\partial v_{i}^{f}}{\partial t}+\overline{\rho}v_{j}^{f}v_{i,j}^{f}=\sigma_{ij,j}^{f}+f_{i}^{FSI,f}$ in $\Omega$ . (1)

To enforce the assumption $v^{f}=v^{S}$ in Sl, a correction force is introduced and added into the
fluid-structure interaction force. The correction force is effectively the difference between the mate-
rial derivative of velocity in the solid and the artificial fluid $( \rho^{s}(\frac{Dv^{\theta}}{Dt}-\frac{Dv^{f}}{Dt}))$ so that both the inertial
and convective acceleration forces are accounted for. It would be zero if the artificial fluid follows
the solid exactly. Including this correction force the fluid structure interaction force is re-defined as,
$f^{FSI,s}=\nabla\cdot\sigma^{s}-\nabla\cdot\sigma+f^{\Delta v}$ in $\Omega^{s}.$

2.2 Immersed-solid($IS$)approach coupled with finite element method(FEM)

In $IS$-FEM method, the whole field is treated as a single continuum and time-updated together with
the continuity equation. Because this velocity field does not coincide with the solid velocity at the
surface, an interaction term is added to imposed the no-slip condition. Here, the interaction term is
modelled to be proportional to the local solid volume fraction and the relative velocity of the local
solid to the fluid, and we treat the interaction term to distribute fluid-solid interface region as well
as within the solid object, like a body force. The object experiences the same force in the opposite
direction. Therefore, the surface integration of hydrodynamic force is replaced with the volume in-
tegration of the interaction term over the region enclosing the object. This replacement from surface
to volume integration considerably facilitates the computation of the solid motion. More details of
the above immersed solid approach are found in the literatures listed in the reference [35, 36]. The
method has been applied for studying a clustering process with 1000 spherical particles in a turbu-
lent flow [35, 37, 38]. Also the usefuIness of our method has been demonstrated by [39] through the
analysis of sedimentation process accommodating a total of $10^{5}$ spherical particles. Solid deforma-
tion is solved by finite element method with the above interaction term as the extemal force term.
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The method was applied to a several FSI problems, including elastic particles sedimentation [27]

and $waving/$flowing motion of fiexible fibers anchored on a corrugated elastic channel[40, 41].

2.3 Fully-Eulerian method

This simulation method was developed for solving the interaction problem between fluid and elas-
tic object on a fixed Cartesian gnid using a finite difference scheme. For describing the multi-
component geometry, a volume-of-fluid formulation [42] is applied. Solid deformation is described
in the Eulerian frame and the temporal change is updated with a left Cauchy-Green deformation
tensor. This deformation tensor is also used to express constitutive equations of nonlinear Mooney-
Rivlin materials. The fully-Eulerian method was verified and validated in a number of fundamental
interaction problems, and the numerical accuracy involved in the fluid-structure coupling problems
has been established [30]. An implicit treatment fully-Eulerian treatment [29] was also developed,
and it enables simulation of interaction between hard elastic object and a fluid.

The fully-Eulerian method was further modified to solve the interaction problem between the
membrane structure and fluid [43, 44]. For isolating the left Cauchy-Green deformation tensor
onto the membrane, a surface left Cauchy-Green deformation tensor is defined by multiplying the
surface projection operators on the current and reference configurations. The method was applied
to numerical simulation of a blood flow in a capillary vessel, considering the interactions between
red blood cells (RBCs)-like elastic membranes (hematocrit of 20%), platelets-like elastic sohds and
vessel wall defornations.

3 Biomedical Applications of IFEM

In this paper, three biomedical applications are demonstrated. The first example is a blood cell
traveling through a bifurcated blood vessel; the second example is to simulate the deployment of
an angioplasty stent, which was first presented in [20]; the third example is to study the vocal folds
vibration. The first two examples used the original IFEM algorithm where the fluid is blood and the
solid is soft tissues. We used the mIFEM algorithm for the third example where the density ratio
between the fluid (air) and the soft tissue is large.

3.1 Red blood cell in bifurcated vessel

Understanding the behavior of red blood cell
flowing in blood vessels, especially when bifur-
cation happens, is important in estimating the
nonuniform hematocrit distribution that would
affect the microvasular oxygen distribution, the
effective viscosity of blood in microvessels and
the distribution of other metabolites. Using the
established IFEM method, one can simulate the
motion and the deformation of the red blood cell
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(a) $t=0.008s$ (b) $t=0.012s$ (c) $t=0.016s$ (d) $t=0.020s$

(a) $t=0.\alpha\}s$ (b) $t=0.01s$ (c) $t=0.02s$ (d) $t=0.03s$

Figure 3: A RBC flowing in an asymmetric bifurcation vessel with $\mathcal{Q}_{L}Q_{2}=1.$

within the vessels, and study in detail how the geometry of bifurcation and fluid field affect and di-
rect which daughter branch the RBC flows.

The geometry of a bifurcated blood vessel is shown in Fig. 1, where $w_{0}$ is the diameter of
the mother vessel; $w_{1}$ and $w_{2}$ are the diameters of the daughter vessels on the top and bottom,
respectively; $\beta_{1}$ and $\beta_{2}$ are the respective branching angles of the daughter vessels; the branching
fillet radii $r_{0},$ $r_{1}$ and $r_{2}$ are given as 3 $\mu m$ to make the vessel branching transition smooth; $Q_{0},$ $Q_{1}$ and
$Q_{2}$ represent the flow rate of each vessel. A RBC is placed near the inlet of the vessel. The radius of
the RBC is given as 2.66 $\mu m$ . The incoming velocity of the mother vessel is set to be a constant as
0.1 $cm\int s$. The branching angles $\beta_{1}$ and $\beta_{2}$ are set to be equal and constant, $\beta_{1}=\beta_{2}=\pi/4$ . In this
study, we set the diameter of the mother branch to be $w_{0}=8\mu m$ , and consider two sets of diameter
ratios, $r_{d}=w_{1}/w_{2}$ , to be 1 and 1.44. When the diameter ratio is 1, it is considered as symmetric
bifurcation; when it is not 1, then it is considered as asymmetric.

Figures 2 and 3 represent the blood cell behaviors when encountering bifurcation in symmetric
and asymmetric vessels with different original positions and ratios of flow rate of each daughter
vessel. Based on Fig. 2 we can notice that although the daughter branches are symmetric in the
geometry, due to the asymmetric boundary conditions where the ratio of the flow rates for the two
daughter branches is $Q_{L}Q_{2}=3$ , the blood cell tends to move to the daughter branch with a higher
mass flow rate. When the daughter branches are asymmetric in geometry but with the same mass
flow rate $\mathbb{A}Q_{2}=1$ , as shown in Fig. 3, the blood cell moves to the one with a smaller cross section
area, which is due to the higher average velocity in that daughter branch.

3.2 Deployment of angioplasty stents
In individuals with an occlusive vascular disease, blood flow to an organ or to a distal body part is
impaired by narrowed arteries with fatty deposits or calcium accumulations. Angioplasty and stents
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(a) Stent deployment process (b) Von Mises stress during
stent deployment

Figure 4: Stent deployment

physically open the channel of constricted arterial segments. During stenting, a catheter delivers a
balloon and a surrounding stent to the location of the blockage area. The balloon deploys the stent,

remains inflated for 30 seconds and then is deflated. At the end of the process, the expanded stent
is embedded into the wall of the diseased artery and holds it open.

Here, we mainly focus on the deployment process of balloon-expanding stents. In our previous
work [16], we built a computer model and simulated a balloon expandable stent interacting with
its surrounding fluid using the immersed finite element method. $A$ catheter is located inside the
balloon to apply appropriate pressure to inflate the balloon. The balloon has a length of 15 mm, an
outer diameter of 1.54 mm, and a thickness of 0.04 mrn. Both ends of the balloon are fixed in all
directions. The balloons used for stenting are made of very stiffpolyamide (nyion) material [45, 46].

The balloon is modeled as hyperelastic material with Mooney-Rivlin description in the simulation.
In this particular model, we use the Medtronic AVE Modular stents S7 (Medtronic AVE, Inc., Santa
Rosa, $CA$, USA). Although this stent is no longer been widely used, it is a good representation of a
typical geometrical shape of a stent, the model can be simply modified to other expandable devices.
The stent, made of wires that form a diamond shape has an outer diameter of 1.64 mm. The stent
is made of 16 identical structural members with a total length of 8 mm before its expansion. The
cross-section of the wire has a width of 0.08 mm. Finally, the stent is mounted around the balloon.
The stent is placed at the center of the balloon. During the entire simulation the inflation pressure is
constant and equals to 100 $g/cm^{2}.$

Figure 4(a) shows the deployment of the stent during balloon expansion at different time steps.
The pressure apphed onto the fluid inflates the balloon and the balloon provides a force onto the
stent, which enables the stent to expand radially outward until it contacts the inner surface of the
artery wall.

The strength and the long term in-vivo performance of the stent can be determined from the
stress distributions with the goal of minimizing vascular injury. The stress distnibution is uniform
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longitudinally along the stent and varies duning deployment. These values are critical for recoil and
failure analysis.

3.3 Human vocal folds vibration during phonation

Voice is produced by the vibration of vocal folds. The vocal folds are a pair of pliable strucmres
located within the larynx at the top of the trachea. The human vocal folds are roughly $10\sim 15$ mm
in length and $3\sim 5$ mm thick. The human vocal folds are laminated structures composed of five
different layers: the epithelium, the superficial layer (SLP), the intermediate layer (ILP), the deep
layer and thyroarytenoid muscle.

The geometry of the self-oscillated vocal folds model is shown in Fig. 5. Since sound is gener-
ated by the compression of air, the working fluid is taken as compressible air govemed by the ideal
gas law at room temperature. The density of the fluid is $\rho^{f}=1.3\cross 10^{-3}g/cm^{3}$ and the viscosity
of the fluid is $\mu=1.8\cross 10^{-4}g/cm\cdot s.$

The vocal fold muscle is considered as
isotropic viscoelastic material. The vocal fold
is assumed to have layered structure, outside
cover layer (red) and inside body layer (green).
The cover layer is much softer than the body
layer. For the cover layer the Young’s mod-
ulus is $E=10kPa$, whereas $E=40kPa$
for the body layer. The densities of both cover Figure5: 2-Dtwo-layer self-oscillated vocal folds
and body layer are assumed to be the same as model.
$\rho^{s}=1.0g/cm^{3}$ . The Poisson ratio is $v=0.3.$
Two vocal folds have the exact same geometry and material description, sit in the fluid channel
symmetric about the central line. $A$ constant total pressure boundary condition of $P_{in}=1kPa$

is applied at the channel inlet and the outflow boundaly is given at the channel exit. No-slip and
no-penetration boundary conditions are applied on the channel walls and on the vocal fold surfaces.

A snapshot of the fluid velocity field at two typical instances during a steady vibration cycle
are shown in Fig. 6. One can see that the fluid field is not symmetric about the central line during
the vibration. The glottal jet tends to attach to one side of the vocal folds randoniy, which is the
so-called the Coanda effect” [47, 48].

The asymmetrical airflow causes an asymmetrical pressure distribution in regions near the vocal
folds and change in the vibration pattem. The minimum distance between the vocal fold surface and

Figure 6: Fluid velocity field at two typical instances during steady vibration.
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the central line is measured to represent the half glottis width $(Gw)$, shown in Fig. 7, where $Gw_{up}$

and $Gw_{d\sigma wn}$ represent the opening width for the up and down vocal folds, respectively. This flgure
shows that the simulation captures the vocal folds to have a repeated opening and closing process.
When the glottis width is zero or near-zero, then the vocal folds are closed, there is no air flowing
through. The pressure starts to build up in the upstream of the vocal channel. As the pressure
increases, it starts to push the vocal folds to open and eventually reaches a maximum glottis width,
the high pressure is released. The vocal folds then return back to its closed position, and the whole
process restarts.

4 Summary
In this paper, we briefiy reviewed some fluid-
structure interaction (FSI) methods and al-
gorithms that had been developed over the
past decade. The IFEM method is a nu-
merical scheme that adopts the non-boundary-
fitted mesh approach and fully couple the fluid-
structure interaction by interpolation the inter-
acting domains. The fluid and solid domains
are solved independently using finite element
method and coupled with each other within
one time step through fluid-structure interaction
force. Three biomedical applications are illus- $T^{*}$

trated in the paper. We show that the IFEM
can model some complicated biomedical apph- Figure 7: Half glottis width of top and bottom vo-

cal folds.cations that involve fluid-structure interactions.
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