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Abstract

We discretize the Clark-Ocone formula along the $n$-equidistant partition of a given
time interval $[0, T]$ . Then we discuss the error caused by the discretization procedure.
Our main achievements are: (i) multi-level central limit theorem for the errors, (ii) strong
$O(n^{-1/2})$-convergence for the first order errors, and (iii) successful in proving that the
Sobolev differentiability index is the rate of convergence.

1 A Discrete-Time Clark-Ocone Formula

Let $p=(p, D_{p})$ be a stationary Poisson point process on a given a-finite measure
space $(X, \mathscr{R}_{X}, n)$ . Throughout this article (except for \S 3.2), we fix a bounded measurable
function $f$ : $Xarrow \mathbb{R}$ and we consider a L\’evy process $L=(L_{t})_{0\leq t\leq T}$ given by

$L_{t}:= \int_{0}^{\ovalbox{\tt\small REJECT}+}\int_{X}f(x)N_{p}($dsdx) .

We denote by $(\mathcal{F}_{t}^{p})_{0\leq t\leq T}$ the filtration generated by the point process $p$ . Along an
$n$-equidistant partition $\{t_{l} :=:t_{l}^{(n)} :=lT/n\}_{l=0}^{n}$ , we define a discretized filtration $(\mathcal{F}_{l}^{(n)})_{l=0}^{n}$

by setting $\mathcal{F}_{0}^{(n)}$ to be the trivial a-field and

$\mathcal{F}_{l}^{(n)}:=\sigma(N_{p}((t_{k-1}, t_{k}], dx): k=1,2, \cdots , l)$ (1)

for $l=1$ , 2, $\cdots,$ $n.$
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From the Clark-Ocone formula for Poisson functionals,. we can deduce the following

presumption: For a $\sigma(\Delta L_{1}, \cdots, \Delta L_{n})$-measurable Poisson functional $F$ , we would find

that

$F \sim E[F]+\sum_{l=1}^{n}\int_{X}E[\theta_{(l,f(x))}F|\mathcal{F}_{l-1}^{(n)}]\tilde{N}_{p}((t_{l-1}, t_{l}], dx)$ , (2)

where $\theta_{(l,\nu)}$ is defined in the following sense: by assumption, we can write $F=F(\triangle L_{1}, \cdots, \triangle L_{n})$ .
Then $\theta_{(l},{}_{v)}F$ is

$\theta_{(l},{}_{\nu)}F :=F(\Delta L_{1}, \cdots, \Delta L_{l}+\nu, \cdots, \triangle L_{n})-F,$

that is, $\theta_{(l,\nu)}$ is the forward difference operator in the “variable” $\triangle L_{l}$ by step $\nu$ . However,

the filtration $(\mathcal{F}_{l}^{(n)})_{l=0}^{n}$ does not have the martingale representation theorem with respect

to the (measure-valued) discrete-time martingale $( \sum_{k\leq l}\tilde{N}_{p}((t_{k-1}, t_{k}], dx))_{l=0}^{n}$ (though $(\mathcal{F}_{t})_{0\leq t\leq T}$

does with respect to $(\tilde{N}_{p}((0, t], dx))_{0\leq t\leq T})$ , which implies that the both sides in (2) could

not be equal for generic $F.$

This motivates us to ask how much is the difference of both sides in (2). Our discrete
time Clark-Ocone formula is one of the answers:

Theorem 1 (Discrete-Time Clark-Ocone Formula, [3])

For $F\in L^{2}(\sigma(\triangle L_{1},$ $\cdots$ , $\triangle L_{n}$ we have the following $L^{2}$-convergent series expansion:

$F-E[F]$

$= \sum_{k=1}^{\infty}\sum_{l=1}^{n}\int_{X^{k}}E[\theta_{(l,f(x_{1}))}\cdots\theta_{(l,f(x_{k}))}F|\mathcal{F}_{l-1}^{(n)}]\int_{t}\tilde{N}_{p}^{\otimes k}(.ds_{1}\cdots ds_{k}dx_{1}\cdots dx_{k})$ ,
(3)

where the conditional expextations are understood in generalized sense if necessary, and
$\tilde{N}_{p}^{\otimes k}(ds_{1}\cdots ds_{k}dx_{1}\cdots dx_{k})$ $:=\otimes_{i=1}^{k}\tilde{N}_{p}(ds_{i}dx_{i})$ .

Remark 1

(i) We notice that the first order $(k=1)$ term in (3) coincides with the last term in (2).

(ii) One can establish also a discrete Clark-Ocone formula for Wiener functionals (see [1]):

Let $W=(W_{t})_{0\leq t\leq T}$ be the one-dimensional Brownian motion starting from zero. $We$

define a filtration $(\mathcal{G}_{l}^{(n)})_{l=0}^{n}$ as in (1) by using the increments of $W$ , instead of the Levy

process L. Then for $F\in L^{2}(\mathcal{G}_{n}^{(n)})$ , it holds that

$F- E[F]=\sum_{m=1}^{\infty}\sum_{l=1}^{n}\frac{(\triangle t)^{m/2}}{\sqrt{m!}}E[\partial_{l}^{m}F|\mathcal{G}_{l-1}^{(n)}]H_{m}(\frac{\triangle W_{l}}{\sqrt{\triangle t}})$ (4)

where $H_{m}$ is the m-th Hermite polynomial which is given by

$H_{m}(x)= \frac{(-1)^{m}}{\sqrt{m!}}e^{x^{2}/2}\frac{d^{m}}{dx^{m}}e^{-x^{2}/2}$

and $\partial_{l}$ is the differential in the ‘Variable” $\Delta W_{l}.$
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2 Generalizing The Malliavin Difference Operator to

Higher Order via Consistency

We put this section to prepare some notations necessary to state a limit theorem in

the next section.

The difference operator $\theta_{(l,\nu)}$ is merely a simple reduction on the class of $\sigma(\{\Delta L_{l}\}_{l=1}^{n})-$

measurable Poisson functionals, of a more general operator, that is, the Malliavin dif-
ference operator, as we shall see in the next proposition. Assume that our Poissonian
framework is setup on canonical space (that is, our probability space is the space $\Pi_{X}$ of

all point functions on X).

Proposition 2 (Consistency)

For $F\in \mathbb{D}_{2,1}\cap L^{2}(\sigma(\triangle L_{1},$
$\cdots,$

$\triangle L_{n}$

$(D_{(t},{}_{x)}F)(p)= \sum_{l=1}^{n}1_{\{t<t\}}t_{l-1}\leq:(\theta_{(l,f(x))}F)(p)$

for $a.a.$ $(p, t, x)\in\Pi_{X}\cross[0, T]\cross X.$

If $F\in \mathbb{D}_{2,1}$ is a functional of $L=(L_{t})_{0\leq t\leq T}$ , Proposition 2 implies that

$(D_{(t},{}_{x)}F)(p)= \lim_{narrow\infty}\sum_{l=1}^{n}1_{\{:\}}t_{l-1}\leq t<t(\theta_{(l,f(x))}E[F|\Delta L_{1}, \cdots, \Delta L_{n}])(p)$ (5)

for a.a. $(p, t, x)\in\Pi_{X}\cross[0, T]\cross X$ . Note that in the Brownian motion case, the derivative
$D$ on the Wiener space is defined via a similar relation to (5) with $n=2^{m}$ in [9]. Although

the proof is obvious by definition, this relation motivates us to generalize to higher order
operators. Following this approach in [9], we define, for functionals $F\in \mathbb{D}_{2,k}$ of $L,$

$D_{(\cdot,x_{1},\cdots,x_{k}}^{k}{}_{)}F\in L^{2}[0, T]$ (6)

as the $L^{2}$-limit of the sequence

$\sum_{l=1}^{n}1_{\{t_{l-1}\leq t<t_{l}\}}\theta_{(l,f(x_{1}))}\cdots\theta_{(l,f(x_{k}))}E[F|\triangle L_{1}, \cdots, \Delta L_{n}]$

if it exists.

3 Asymptotic Analysis for Errors

Assume that we are given a sequence $F_{*}=(F_{n})_{n=1}^{\infty}$ such that

$\triangleright F_{n}\in L^{2}(\sigma(\Delta L_{1}, \cdots, \triangle L_{n}))$ for each $n=1$ , 2, $\cdots.$
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Therefore we can apply to each $F_{n}$ our discrete Clark-Ocone formula along the $n$-equidistant

partition of $[0, T]$ , and then we define for $m=1$ , 2, $\cdots,$

$Err_{n}(F_{*};m)$

$:=F_{n}-E[F_{n}]$

$- \sum_{k=1}^{m}\sum_{l=1}^{n}\int_{X^{k}}E[\theta_{(l,f(x_{1}))}\cdots\theta_{(l,f(x_{k}))}F|\mathcal{F}_{l-1}^{(n)}]\int_{t_{l-1<s_{1<\cdot\cdot<s_{k}\leq t_{l}}}}\tilde{N}_{p}^{\otimes k}(.ds_{1}\cdots d\mathcal{S}_{k}dx_{1}\cdots dx_{k})$ ,

which is the difference between $F_{n}$ and what approximates $F_{n}$ up to the m-th order with

using the discrete Clark-Ocone formula (3). As a convention, we write $Err_{n}(F_{*};0)$ $:=$

$F_{n}-E[F_{n}]$ . Note that the $m=1$ case becomes

$Err_{n}(F_{*};1)=F_{n}-E[F_{n}]-\sum_{l=1}^{n}\int_{X}E[\theta_{(l,f(x))}F|\mathcal{F}_{l-1}^{(n)}]\tilde{N}_{p}((t_{l-1}, t_{l}], dx)$ ,

which is the most interest for us, as explained in \S 1.

3.1 Preceding Literatures

Let us begin with the case of a one dimensional Brownian motion $W=(W_{t})_{0\leq t\leq T}$

starting from zero. For a Wiener functional $F$ , the Clark-Ocone formula enables us to

write

$F= E[F]+\int_{0}^{T}E[D_{t}F|\mathcal{F}_{t}^{W}]dW_{t},$

where $(\mathcal{F}_{t}^{W})_{0\leq t\leq T}$ is the filtration generated by $W$ , so that a natural candidate approxi-

mating $F$ would be the Riemann-sum approximation, and then the error is given by

$Err_{n}^{track}(F) :=F-E[F]-\sum_{l=1}^{n}E[D_{t_{l}^{(n)}}F|\mathcal{F}_{t_{l}^{(n)}}^{W}]\triangle W_{l}.$

Although the Wiener functional $F$ and the definition of the error may differ depending

on the contexts, one has roughly the following results:

$\bullet$ Convergence in law of the normalized error:

$\sqrt{n}Err_{n}^{track}(F)\vec{arrow}\frac{1}{\sqrt{2}}\int_{0}^{T}E[D_{t}^{2},{}_{t}F|\mathcal{F}_{t}^{W}]dB_{t}$ in law (7)

where $F=f(X_{T})$ with $X=(X_{t})_{0\leq t\leq T}$ denoting a diffusion defined via a stochastic

differential equation driven by the Brownian motion $W$ (Bertimas-Kogan-Lo [4]). The

process $B=(B_{t})_{0\leq t\leq T}$ is a Brownian motion independent of $W$ . For general It\^o

processes, see Hayashi-Mykland [8].
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$\bullet$
$L^{2}$-convergence of the error:

$\Vert Err_{n}^{track}(F)\Vert_{L^{2}}arrow 0$ as $narrow\infty$ (8)

with the order

$-O(n^{-1/2})$ when $F= \max\{X_{T}-K, 0\},$ $\max\{K-X_{T}, 0\}$ or $F=f(X_{T})$ where $f$

is absolutely continuous with polynomial growth, and where $X=(X_{t})_{0\leq t\leq T}$ is a
diffusion process defined by a stochastic differential equation (Zhang [10]).

$-O(n^{-1/4})$ when $F=1_{[K,+\infty)}(X_{T})$ . Which is more irregular than the above, is shown
by Gobet-Temam [7].

$-O(n^{\theta-1/2})$ when $F=f(X_{T})$ with $f$ belonging to a fractional Sobolev-type space

indexed by $\theta\in[0$ , 1/2) (Geiss-Geiss [5]). They revealed the reason why the absolute
continuity assumption on $f$ was needed to get the $O(n^{-1/2})$-convergence (which is
the best possible) with equidistant time partitions.

$-O(n^{-s/2})$ when $F=f(W_{T})$ with $f\in(\mathbb{D}_{2,1}(\gamma), L^{2}(\gamma))_{1-s,W}$ (Geiss-Huio [6]). Where
$(\mathbb{D}_{2,1}(\gamma), L^{2}(\gamma))_{1-s,W}$ is an interpolation space between $\mathbb{D}_{2,1}(\gamma)=\mathbb{D}_{2,1}^{(1)}$ and $L^{2}(\gamma)=$

$\mathbb{D}_{2,0}^{(1)}$ which are discrete (or finite dimensional) versions ofMalliavin-Watanabe Sobolev
spaces $\mathbb{D}_{2,1}$ and $\mathbb{D}_{2,0}$ , respectively.

$-O(n^{-s/2})$ when $F=f(W_{T})\in \mathbb{D}_{2,s}$ for $0\leq s\leq 1$ (Akahori-Amaba-Okuma [1]).
Furthermore, they deduced an inequality

$\Vert Err_{n}^{track}(f(W_{T}))\Vert_{L^{2}}\leq n^{-s/2}\Vert f(W_{T})\Vert_{D_{2,s}}$

for every $0\leq s\leq 1$ and obtained an implication: $f(W_{T})\in \mathbb{D}_{2,s}\Rightarrow f\in(\mathbb{D}_{2,1}(\gamma), L^{2}(\gamma))_{1-s,W}.$

This convergence result is extended to “stationar ‘ sequences in [1].

$-O((m/n)^{-s/2})$ when $F=f(\Delta^{(m)}W_{1}, \cdots, \Delta^{(m)}W_{m})\in \mathbb{D}_{2,s}$ for $0\leq s\leq 1$ (Akahori-

Amaba-Okuma [1]). Where $\Delta^{(m)}$ is a fixed $m$-equidistant partition $\{t_{k}^{(m)}\}_{k=0}^{m}$ of
$[0, T]$ . In fact, it holds that

$\Vert Err_{n}^{track}(F)\Vert_{L^{2}}\leq(\frac{m}{n})^{-s/2}\Vert F\Vert_{\mathbb{D}_{2,s}}$

for every $0\leq s\leq 1$ . It might be interesting that this inequality alludes roughly that
the convergence rate would get worse when $m=narrow\infty$ , that is, when we consider
the approximations of generic truely infinite dimensional Wiener functionals.

3.2 A Central Limit Theorem for the Errors

Let us back to our settings. In this subsection, we assume that $f=1_{U}$ for some
$U\in \mathscr{R}_{X}$ with $n(U)=:\lambda<+\infty$ . Therefore, the L\’evy process $L=(L_{t})_{0\leq t\leq T}$ is just a
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Poisson process $N=(N_{t})_{0\leq t\leq T}$ with intensity $\lambda$ , given by

$N_{t} :=L_{t}=N_{p}((0, t]\cross U)$ .

Then by setting $D_{p’}$ $:=\{t\in[0, T] : N_{t-}\neq N_{t}\}$ and $p’(t)$ $:=N_{t}-N_{t}$-for $t\in D_{p’}$ , the

point process $p’=(p’, D_{p’})$ is a stationary Poisson point process on the singleton {1}. In

the following, we denote $D_{t}^{k}$

$:=D_{(t,1,\cdots 1)}^{k}\check{k-member}s$)

which was defined in (6).

Theorem 3 (see [2, Theorem 4.1])

Let $m\in \mathbb{N}$ . Suppose that $F_{n}\in \mathbb{D}_{2,m+2}$ for each $n=1$ , 2, $\cdots$ and for some $F\in \mathbb{D}_{2,m+1}$ , we
have

$\triangleright F_{n}arrow F$ in $L^{2}(P)$ ,

$\triangleright D_{t}^{k+1}F$ exists for $a.a.$ $t\in[0, T]$ and $\int_{0}^{T}\Vert D_{t}^{k+1}F_{n}-D_{t}^{k+1}F\Vert_{L^{2}}^{2}dtarrow 0$ as $narrow\infty$ for

each $k=0$ , 1, $\cdots,$ $m$ and

$\triangleright\sup_{n}\int_{0}^{T}\Vert D_{t}^{m+2}F_{n}\Vert_{L^{2}}^{2}dt<+\infty.$

Then we have

$(\begin{array}{l}Err_{n}(F_{*};0)(\triangle t)^{-1/2}Err_{n}(F_{*};1)\vdots(\triangle t)^{-m/2}Err_{n}(F_{*};m)\end{array})arrow(\begin{array}{l}\frac{\int_{\lambda^{1/2}}}{\sqrt{2}}\int_{0}^{T}E[D_{t}^{2}F|P_{t-}]dB_{t}^{1}o^{\tau_{E[D_{t}F|\mathcal{F}_{t-}^{\varphi’}]d\tilde{N}_{t}}}\vdots\frac{\lambda^{m/2}}{\sqrt{(m+1)!}}\int_{0}^{T}E[D_{t}^{m}F|\mathcal{F}_{t-}^{\varphi’}]dB_{t}^{m}\end{array})$

in probability on an extended probability space as $narrow\infty$ , where $(B^{1}, \cdots, B^{m})$ is an
$m$-dimensional Brownian motion.

Remark 2

(i) Due to the formula (4), one can discuss the corresponding result in the Brownian case,

which is already established in [1].

(ii) This theorem appears restrictive in its setting, since we take only $f=1_{U}$ . This should
hold for more large class of $f$ . For a generic $f$ , we naturally expect that

$(\begin{array}{l}Err_{n}(F_{*};0)(\triangle t)^{-1/2}Err_{n}(F_{*};1)\vdots(\Delta t)^{-m/2}Err_{n}(F_{*};m)\end{array})$
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would converge to

$( \frac{1}{\sqrt{2}}\int_{0}\int_{2}^{\int_{9}^{T+}}\int_{x}E[D_{(t}.’ {}_{x)}F|\mathcal{F}_{t-}^{\varphi}]\tilde{N}_{p}($

d$t$d$x$)

$x_{E[D_{(t,x_{1},\cdot\cdot x_{m}}^{m}{}_{)}F|\mathcal{F}_{t-}^{p}]W_{m}(dtdx_{1}\cdots dx_{m})}^{E[D_{(t,x_{1},x_{2})}^{2},F|\mathcal{F}_{t-}^{\varphi}]W_{1}(dtdx_{1}dx_{2})})$

in law as $narrow\infty$ , where $W_{k}(dtdx_{1}\cdots dx_{k})$ are independent Gaussian measures on
$[0, T]\cross X^{k}$ , and which is now in progress in [3].

As a corollary of Theorem 3, we can obtain

Corollary 4

If $\sup_{n}\int_{0}^{T}\Vert D_{t}^{2}F_{n}\Vert_{L^{2}}^{2}dt<+\infty$ then $\Vert Err_{n}(F_{*};1)\Vert_{L^{2}}=O(n^{-1/2})$ .

Roughly speaking, this corollary says that if $F_{*}=(F_{n})_{n=1}^{\infty}$ is smooth enough and

their second differences are $L^{2}$-bounded then the convergence rate is always assured to be
$O(n^{-1/2})$ . Therefore, in the next subsection, we are interested in the case where $F_{*}$ has
only low regularities.

3.3 Rate of Convergence under Only Low Regularity

Let $\varphi$ : $\mathbb{R}arrow \mathbb{R}$ be Borel measurable and we set $F_{n}\equiv\varphi(L_{T})$ . Although it is an abuse
of a notation, we write $F_{*}=\varphi(L_{T})$ .

Theorem 5 (Sobolev differentiability index is the rate of convergence, [3])

For every $0\leq s\leq 1$ , we have

$\Vert Err_{n}(\varphi(L_{T});1)\Vert_{L^{2}}\leq n^{-s/2}\Vert\varphi(L_{T})\Vert_{D_{2,s}}.$

Therefore, if $\varphi(L_{T})\in \mathbb{D}_{2,s}$ for some $0\leq s\leq 1$ , we have $\Vert Err_{n}(\varphi(L_{T});1)\Vert_{L^{2}}=O(n^{-s/2})$ .

Remark 3

One may naturally expect a similar result in the case where $F_{*}is$ coming from the Euler-
Maruyama approximation of a stochastic differential equation defining a diffusion. How-
ever, the corresponding result has not been obtained yet. A key to obtain such results
might be a derivation of a series of derivative estimates of the transition density associated
to the diffusion, in which the dependence on the order of derivative is described explicitly.
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