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ABSTRACT. The first part of the paper contains a short review of recent results about the
existence of densities for finite dimensional functionals of weak solutions of the Navier-
Stokes equations forced by Gaussian noise. Such results are obtained for solutions limit
of spectral Galerkin approximations.

In the second part of the paper we prove via a ”transfer principl$e’$ that existence
of densities is universal, in the sense that it does not depend on how the solution has
been obtained, given some minimal and reasonable conditions of consistence under
conditional probabilities and weak-strong uniqueness. A quantitative version of the
transfer principle is also available for stationary solutions.

1. INTRODUCTION

When dealing with a stochastic evolution PDE, the solution depends not only on the
time and space independent variables, but also on th$e^{}$ chanc$e’$ variable, which plays
a completely different role. The existence of a density for the probability distribution
of the solution is thus a form of regularity with respect to this new variable.

In this paper we detail some results related to the existence of densities of finite
dimensional projections of any solution of the Navier-Stokes equations

$\dot{u}+(u\cdot\nabla)u+\nabla p=v\Delta u+\eta,$

(1.1)
divu $=0,$

with Dirichlet boundary conditions on a bounded domain, or with periodic boundary
conditions on the torus. Here $\eta$ is Gaussian noise. Most of the results have appeared in
[DR14, Rom13], some additional results are in progress $[Roml4b, Roml4c, Roml4a].$

To be more precise, our result concerns the existence of densities for finite dimen-
sional functionals of the solution, and one reason for this is that there is no canonical
reference measure in infinite dimension, as is the Lebesgue measure in finite dimen-
sion. To understand the right reference measure is an open problem even in dimension
two and for any suitable choice of the driving noise.
Our interest in the existence of densities stems from a series of mathematical mo-

tivations. The first and foremost is the investigation of the regularity properties of
solutions of the Navier-Stokes equations.
On the other hand regularity is not the only open problem in the mathematical the-

ory of the Navier-Stokes equations (either with random forcing, or without). The first
obvious choice is the related problem of uniqueness. In the probabilistic framework we
can deal with different notions of uniqueness, the weaker being the statistical unique-
ness, that is the uniqueness of distributions. Although the results detailed in this paper
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are very far from any uniqueness result, we mention that the law of an infinite di-
mensional random variable can be characterized by the laws of its finite dimensional
projections. By the results of [FR08], it is then sufficient to show that the laws of two
solutions agree at every time. An even easier condition, following from the results of
[Rom08], requires that we show agreement between the laws of the corresponding in-
variant measures, that is, if the processes agree at time $t=\infty$ , then they agree for every
time, including their time correlations.
An additional $($rather vague though$)^{}$ folkloristi$c’$ motivation for the interest in fi-

nite dimensional projections is that most of the real-life experiments to evaluate the
velocity of a fluid are based on a finite number of samples in a finite number of points
(Eulerian point of view), or by tracing some particles (smoke, etc $\cdots$ ) moving according
to the fluid velocity (Lagrangian point of view). The literature on experimental fluid
dynamics is huge. Here we refer for instance to [Tav05] for some examples of design
of experiments. Let us focus on the Eulerian point of view. To simplify, consider a
torus, then sampling the velocity field means measuring the velocity in some space
points $y_{1}$ , .. . , $v_{d}:urightarrow(u(t,y_{1}), \ldots,u(t_{Vd}))$ , and a bit of Fourier series manipulations
shows that this is $a”projection”.$

An interesting difficulty in proving regularity of the density emerges as a by-product
of the (more general and fundamental!) problem of proving uniqueness and regularity
of solutions of the Navier-Stokes equations. Indeed, a fundamental and classical tool
is the Malliavin calculus, a differential calculus where the differentiating variable is the
underlying noise driving the system. The Malliavin derivative $\mathcal{D}_{H}u(t)$ , the derivative
with respect to the variations of the noise perturbation, is given as

$\mathcal{D}_{H}u=\lim_{\epsilon\downarrow 0}\frac{u(W+\epsilon\int Hds)-u(W)}{\epsilon},$

where we have written the solution $u$ as $u(W)$ to show the explicit dependence of
$u$ from the noise forcing. We point, for instance, to [Nua06] for further details and
definitions, and we only notice that the Malliavin derivative $\mathcal{D}_{H}u$ of the solution $u$ of
(1.1), as a variation, satisfies the linearization around the solution, namely,

$\frac{d}{dt}\mathcal{D}_{H}u-v\Delta \mathcal{D}_{H}u+(u\cdot\nabla)\mathcal{D}_{H}u+((\mathcal{D}_{H}u)\cdot\nabla)u=SH,$

and good estimates on $\mathcal{D}_{H}u(t)$ originate only from good estimates on the linearization
of (1.1), which are not available so far. This settles the need of methods to prove exis-
tence and regularity of the density that do not rely on this calculus, as done in [DR14].

In this paper we tackle the problem of universality of the result obtained in [DR14],

which are valid only for limits of Galerkin approximations. At the present time we
do not know if the Navier-Stokes equations admit a unique $distribution_{r}$ therefore it
might happen that solutions obtained by different means may have different proper-
ties. In a way this is reminiscent of the problem of suitable weak solutions introduced
by [Sch77]. Only much later it has been proved that solutions obtained by the spectral
Galerkin methods are suitable [Gue06] (under some $non\dashv$rivial conditions though),
and hence results of partial regularity are true for those solutions.
Our main theorem is $a^{ノ/}$transfer principl$e’$ (Theorem 4.1), that states that as long as

we can prove existence of a density for a finite dimensional functional of the solution
and for a weak solution that satisfies weak strong uniqueness, then existence of a density
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holds for any other solution satisfying weak-strong uniqueness and a closure property
with respect to conditional probabilities.
An important limitation of our transfer principle is that it applies only on’ instanta-

neou$s’$ properties, namely to random variables depending only on one time, in partic-
ular, the results on time continuity of densities in $[Roml4c]$ are still out of reach.

The transfer principle is qualitative in nature, as it may transfer only the existence. In
general no quantitative information can be inherited. This seems to be mainly an arte-
fact of the proof, that in turns depends on good moments of the solution in smoother
spaces. Indeed, in the case of stationary solutions, we can prove a quantitative version
of the principle (Theorem 4.2).

2. WEAK SOLUTIONS

We consider problem (1.1) with either periodic boundary conditions on the three-
dimensional torus $\mathbb{T}_{3}=[0,$ $2\pi|^{3}$ or Dirichlet boundary conditions on a smooth domain
$0\subset R^{3}$ . We will understand weak martingale solutions of (1.1) as probability measures
on the path space. We will then define legit families of solutions as classes of solu-
tions that are closed by conditional probability and for which weak-strong uniqueness
holds.

2.1. Preliminaries. Let $H$ be the standard space of square summable divergence free
vector fields, defined as the closure of divergence free smooth vector fields satisfying
the boundary condition, with inner product $\rangle_{H}$ and norm $\Vert$ $\Vert_{H}$ . Define likewise
V as the closure with respect to the $H^{1}$ norm. Let $\Pi_{L}$ be the Leray projector, $A=$
$-\Pi_{L}\Delta$ the Stokes operator, and denote by $(\lambda_{k})_{1c\geq 1}$ and $(e_{k})_{k\geq 1}$ the eigenvalues and the
corresponding orthonormal basis of eigenvectors of A. Define the bi-linear operator
$B$ : $V\cross Varrow V’$ as $B(u,\nu)=\Pi_{L}(u\cdot\nabla\nu)$ , $u,\nu\in$ V. We recall that $\langle u_{1},$ $B(u_{2},u_{3})\rangle=$

$-\langle u_{3},$ $B(u_{2},u_{1}$ We refer to Temam [Tem95] for a detailed account of all the above
definitions.

The noise $\dot{\eta}=S\dot{W}$ in (1.1) is coloured in space by a covariance operator S $\star$@ $\in \mathscr{L}$ (H),
where $W$ is a cylindrical Wiener process (see [DPZ92] for further details). We assume
that @

$\star$

@ is trace-class and we denote by $\sigma^{2}=R(@^{\star}@)$ its trace. Finally, consider the
sequence $(\sigma_{k}^{2})_{k\geq 1}$ of eigenvalues of@$\star$@, and let $(q_{k})_{k\geq 1}$ be the orthonormal basis in $H$

of eigenvectors of @
$\star$S. For simplicity we may assume that the Stokes operator A and

the covariance commute, so that

$\dot{\eta}(t,y)=SdW=\sum_{k\in Z_{\star}^{3}}\sigma_{k}\dot{\beta}_{k}(t)e_{k}(v)$
.

2.2. Weak and strong solutions. With the above notations, we can recast problem (1.1)
as an abstract stochastic equation,
(2.1) $du+(vAu+B(u))dt=SdW,$

with initial condition $u(0)=x\in$ H. It is well-known [Fla08] that for every $x\in H$

there exist a martingale solution of this equation, that is a filtered probability space
$(\tilde{\Omega},\overline{\mathscr{F},}\tilde{\mathbb{P}},\{\overline{\mathscr{F}_{t}}\}_{t\geq 0})$ , a cylindrical Wiener process $\overline{W}$ and a process $u$ with trajectories in
$C([0, \infty);D(A)’)\cap L_{1oc}^{\infty}([0, \infty), H)\cap L_{1oc}^{2}([0, \infty);V)$ adapted to $(\overline{\mathscr{F}_{t}})_{t\geq 0}$ such that the above
equation is satisfied with $\overline{W}$ replacing $W.$

We will describe, equivalently, a martingale solution as a measure on the path space
(in other words via a martingale problem). Let $\Omega_{NS}=C([0, \infty);D(A)’)$ and let $\mathscr{F}^{NS}$
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be its Borel $\sigma$-algebra. Denote by $\mathscr{F}_{t}^{NS}$ the $\sigma$-algebra generated by the restrictions of
elements of $\Omega_{NS}$ to the interval $[0, t]$ (roughly speaking, this is the same as the Borel
$\sigma$-algebra of $C([0, t];D(A)’)$ ). Let $\xi$ be the canonical process, defined by $\xi_{t}(\omega)=\omega(t)$ ,

for $\omega\in\Omega_{NS}$

Definition 2.1 ([FR08]). A probability measure $\mathbb{P}$ on $\Omega_{NS}$ is a solution of the martingale
problem associated to (2.1) with initial distribution $\mu$ if

$\blacksquare \mathbb{P}[L_{1\circ c}^{\infty}(R^{+}, H)\cap L_{1oc}^{2}(R^{+};V)]=1,$

$\blacksquare$ for each $\phi\in D(A)$ , the process

$\langle\xi_{t}-\xi_{0}, \phi\rangle+\int_{0}^{t}\langle\xi_{s}, A\phi\rangle-\langle B(\xi_{s}, \phi) , \xi_{s}\rangle ds$

is a continuous square summable martingale with quadratic variation $t\Vert S\phi\Vert_{H}^{2}$

(hence a Brownian motion),
$\blacksquare$ the marginal of $\mathbb{P}$ at time $0$ is $\mu.$

The second condition in the definition above has a twofold meaning. On the one
hand it states that the canonical process is a weak (in terms of PDEs) solution, on the
other hand it identifies the driving Wiener process, and hence is a weak (in terms of
stochastic analysis) solution.

2.2.1. Strong solutions. It is also well-known that (2.1) admits local smooth solutions
defined up to a random time (a stopping time, in fact) $\tau_{\infty}$ that corresponds to the (pos-
sible) time of blow-up in higher norms. To consider a quantitative version of the local
smooth solutions, notice that $\tau_{\infty}$ can be approximated monotonically by a sequence of
stopping times

$\tau_{R}=\inf\{t>0:\Vert Au_{R}(t)\Vert_{H}\geq R\},$

where $u_{R}$ is a solution of the following problem,

$du_{R}+(vAu_{R}+\chi(\Vert Au_{R}\Vert_{H}^{2}/R^{2})B(u_{R},u_{R}))dt=@dW,$

with initial condition in $D(A)$ , and where $\chi$ : $[0, \infty$ ) $arrow[0$ , 1$]$ is a suitable $cut-0ff$ func-
tion, namely a non-increasing $C^{\infty}$ function such that $\chi\equiv 1$ on $[0$ , 1$]$ and $\chi_{R}\equiv 0$ on
[2, $\infty)$ . The process $u_{R}$ is a strong (in PDE sense) solution of the cut-off equation.

Moreover it is a strong solution also in terms of stochastic analysis, so it can be realized
uniquely on any probability space, given the noise perturbation.
As it is well-known in the theory of Navier-Stokes equations, the regular solution is

unique in the class of weak solutions that satisfy some form of the energy inequality.
We will give two examples of such classes for the equations with noise.

Remark 2.2. The analysis of strong (PDE meaning) solutions can be done on larger
spaces, up to $D(A^{1/4})$ , which is a critical space with respect to the Navier-Stokes scal-
ing. The extension is a bit technical though, see [Romll].
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2.2.2. Solutions satisfying the almost sure energy inequality. An almost sure version of the
energy inequality has been introduced in [Rom08, RomlO]. Given a weak solution $\mathbb{P},$

choose $\phi=e_{k}$ as a test function in the second property of Definition 2.1, to get a one
dimensional standard Brownian motion $\beta^{k}$ . Since $(e_{k})_{k\geq 1}$ is an orthonormal basis, the
$(\beta^{k})_{k\geq 1}$ are a sequence of independent standard Brownian motions. Then the process
$W_{\mathbb{P}}= \sum_{k}\beta^{k}e_{k}$ is a cylindrical Wiener process1 on H. Let $z_{\mathbb{P}}$ be the solution to the
linearization at $0$ of (2.1), namely $dz_{\mathbb{P}}+Az_{\mathbb{P}}=SdW_{\mathbb{P}}$ , with initial condition $z(0)=0.$

Finally, set $\nu_{\mathbb{P}}=\xi-z_{\mathbb{P}}$ . It turns out that $\nu_{\mathbb{P}}$ is a solution of

$\dot{\nu}+vA\nu+B(\nu+z_{\mathbb{P}},\nu+z_{\mathbb{P}})=0, \mathbb{P}-a.s.,$

with initial condition $\nu(0)=\xi_{0}$ . An energy balance functional can be associated to $\nu_{\mathbb{P}},$

$\mathcal{E}_{t}(\nu, z)=\frac{1}{2}\Vert\nu(t)\Vert_{H}^{2}+v\int_{0}^{t}\Vert\nu(r)\Vert_{V}^{2}dr-\int_{0}^{t}\langle z(r)$ , $B(\nu(r)+z(r),\nu(r))\rangle_{H}$ dr.

We say that a solution $\mathbb{P}$ of the martingale problem associated to (2.1) (as in Definition
2.1) satisfies the almost sure energy inequality if there is a set $T_{P}\subset(0, \infty)$ of null Lebesgue
measure such that for all $s\not\in T_{P}$ and all $t\geq s,$

$P[\mathcal{E}_{t}(\nu, z)\leq \mathcal{E}_{s}(\nu, z)]=1.$

It is not difficult to check that $\mathcal{E}$ is measurable and finite almost surely.

2.2.3. A martingale version of the energy inequality. An alternative formulation of the
energy inequality that, on the one hand is compatible with conditional probabilities,
and on the other hand does not involve additional quantities (such as the processes $z_{\mathbb{P}}$

and $\nu_{\mathbb{P}})$ can be given in terms of super-martingales. The additional advantage is that
this definition is keen to generalization to state-dependent noise.
Define, for every $\mathfrak{n}\geq 1$ , the process

$\mathscr{E}_{\iota^{1}}=\Vert\xi_{t}\Vert_{H}^{2}+2v\int_{0}^{t}\Vert\xi_{s}\Vert_{V}^{2}$ ds-2Tr(@
$\star$

S),

and, more generally, for every $\mathfrak{n}\geq 1,$

$\mathscr{E}_{t}^{\mathfrak{n}}=\Vert\xi_{t}\Vert_{H}^{2\mathfrak{n}}+2\mathfrak{n}v\int_{0}^{t}\Vert\xi_{s}\Vert_{H}^{2\mathfrak{n}-2}\Vert\xi_{s}\Vert_{V}^{2}ds-\mathfrak{n}(2\mathfrak{n}-1)R(S^{\star}S)\int_{0}^{t}\Vert\xi_{s}\Vert_{H}^{2\mathfrak{n}-2}$ ds,

when $\xi\in L_{1oc}^{\infty}([0, \infty);H)\cap L_{1\circ c}^{2}([0, \infty);V)$ , and $\infty$ elsewhere.
We say that a solution $\mathbb{P}$ of the martingale problem associated to (2.1) (as in Definition

2.1) satisfies the super-martingale energy inequality if for each $\mathfrak{n}\geq 1$ , the process $\mathscr{E}_{t}^{\mathfrak{n}}$

defined above is $\mathbb{P}$-integrable and for almost every $s\geq 0$ (including $s=0$) and all
$t\geq s,$

$\mathbb{E}[\mathscr{E}_{\iota^{\mathfrak{n}}}|\mathscr{F}_{s}^{NS}]\leq \mathscr{E}_{s}^{\mathfrak{n}},$

or, in other words, if each $\mathscr{E}^{\mathfrak{n}}$ is an almost sure supermartingale.

$1_{Notice}$ that $W$ is measurable with respect to the solution process.
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2.3. Legit families of weak solutions. Following the spirit of [FR08], given $x\in H,$

denote by $\mathscr{C}(x)$ any family of non-empty sets of probability measures on $(\Omega_{NS}, \mathscr{F}^{NS})$

that are solutions of (1.1) with initial condition $x$, as specified by Definition 2.1, and
such that the following properties hold,

$\blacksquare$ the sets $(\mathscr{C}(x))_{x\in H}$ are close under conditioning, namely for every $\mathbb{P}\in \mathscr{C}(x)$ and
every $t>0$, if $(\mathbb{P}|_{\mathscr{F}_{t}^{NS}}^{\omega})_{\omega\in\Omega_{NS}}$ is the regular conditional probability distribution of
$\mathbb{P}$ given $\mathscr{F}_{t}^{NS}$ , then $\mathbb{P}|_{\mathscr{T}_{t}^{NS}}^{\omega}\in \mathscr{C}(\omega(t))$ , for $\mathbb{P}-a.e.$ $\omega\in\Omega_{NS},$

$\blacksquare$ weak-strong uniqueness holds, namely for every $x\in D(A)$ and every $\mathbb{P}\in \mathscr{C}(x)$ ,
$\xi(t)=u_{R}(t,x)$ for every $t<\tau_{R},$ $\mathbb{P}-a.s$, where $u_{R}$ x) is the local smooth solution
with initial condition $x.$

We will call each family $(\mathscr{C}(x))_{x\in H}$ satisfying the two above property a legit family.
It is clear that the classes defined in [FR08] (detailed in section 2.2.3) and in [Rom08,

RomlO] (detailed in section 2.2.2) are of this kind, as they actually satisfy the more
restrictive condition called reconstruction in the above-mentioned papers.2 It is also
straightforward that the $x$-wise set union of two legit families is again a legit fam-
ily. A less obvious fact is that the family of sets of solutions obtained as limits of
Galerkin approximations is legit. This is remarkable as limits of Galerkin approxi-
mations do not satisfy the reconstruction property. To see this fact, we first observe
that limit of Galerkin approximatio\’{n} satisfy the energy inequality, and hence fall in
the same class defined in [Rom08, RomlO]. In particular, due to the energy inequality,
weak-strong uniqueness holds. Moreover, once the sub-sequence of Galerkin approx-
imations is identified, the regular conditional probability distributions of the approx-
imations, along the sub-sequence, converge to the corresponding regular conditional
probability distributions of the limit (uniquely identified by the sub-sequence).

3. EXISTENCE OF DENSITIES

In this section we give a short review of the results contained in the papers [DR14,
$Roml4c,$ $Roml4a]$ (see also [Rom13]). To this end we recall the definition of Besov
spaces. The general definition is based on the Littlewood-Paley decomposition, but it
is not the best suited for our purposes. We shall use an altemative equivalent definition
(see [Tri83, Tri92]) in terms of differences. Define

$(\Delta_{b}^{1}f)(x)=f(x+b)-f(x)$ ,

$( \Delta_{b}^{\mathfrak{n}}f)(x)=\Delta_{b}^{1}(\Delta_{h}^{\mathfrak{n}-1}f)(x)=\sum_{\mathfrak{j}=0}^{\mathfrak{n}}(-1)^{\mathfrak{n}-j}(\begin{array}{l}\mathfrak{n}\mathfrak{j}\end{array})f(x+\mathfrak{j}b)$ ,

then the following norms, for $s>0,$ $1\leq p\leq\infty,$ $1\leq q<\infty\backslash$ ,

$\Vert f\Vert_{B_{p,q}^{s}}=\Vert f\Vert_{Lp}+(\int_{\{|b|\leq 1\}}\frac{\Vert\Delta_{b}^{\mathfrak{n}}f||_{L}^{q_{p}}}{|b|^{sq}}\frac{dh}{|h|^{d}})^{\frac{1}{q}}$

and for $q=\infty,$

$\Vert f\Vert_{B_{p,\infty}^{s}}=\Vert f\Vert_{Lp}+\sup_{|b|\leq 1}\frac{\Vert\Delta_{b}^{\mathfrak{n}}f\Vert_{Lp}}{|h|^{\alpha}},$

$2_{Reconstruction}$, roughly speaking, requires that if one has a $\mathscr{F}_{t}^{NS}$ measurable map $x\mapsto \mathbb{Q}_{x/}$ with
$\mathbb{Q}_{x}\in \mathscr{C}(x)$ , and $\mathbb{P}\in \mathscr{C}(x_{0})$ , then the probability measure given by $\mathbb{P}$ on $[0, t]$ , and, conditionaly on $\omega(t)$ ,

by the values of $\mathbb{Q}$ . , is an element of $\mathscr{C}(x_{0})$ .
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where $\mathfrak{n}$ is any integer such that $s<\mathfrak{n}$, are equivalent norms of $B_{p,q}^{s}(R^{d})$ for the given
range of parameters.

The technique introduced in [DR14] is based on two ideas. The first is the following
analytic lemma, which provides a quantitative integration by parts. The lemma is
implicitly given in [DR14] and explicitly stated and proved in $[Roml4c].$

Lemma 3.1 (smoothing lemma). If $\mu$ is a finite measure on $R^{d}$ and there are an integer
$m\geq 1$ , two real numbers $s>0,$ $\alpha\in(0,1)$ , with $\alpha<s<m$, and a constant $c_{1}>0$ such that

for every $\phi\in C_{b}^{\alpha}(R^{d})$ and $b\in R^{d},$

$| \int_{R^{d}}\Delta_{h}^{m}\phi(x)\mu(dx)|\leq c_{1}|b|^{S}\Vert\phi\Vert_{C_{b}^{\alpha}},$

then $\mu$ has a density $f_{\mu}$ with respect to the Lebesgue measure on $R^{d}$ and $f_{\mu}\in B_{1,\infty}^{r}$ for every
$r<s-\alpha$. Moreover, there is $c_{2}=c_{2}(r)$ such that

$\Vert f_{\mu}\Vert_{B_{1,\infty}^{r}}\leq c_{2}c_{1}.$

The second idea is to use the random perturbation to perform th$e^{}$ fractiona$l’$ inte-
gration by parts along the noise to be used in the above lemma. The bulk of this idea
can be found in [FP10]. Our method is based on the one hand on the idea that the
Navier-Stokes dynamics i$s^{}$ goo$d’$ for short times, and on the other hand that Gauss-
ian processes have smooth densities. When trying to estimate the Besov norm of the
density, we approximate the solution by splitting the time interval in two parts,

time

On the first part the approximate solution $u_{\epsilon}$ is the same as the original solution, on the
second part the non-linearity is killed. By Gaussianity this is enough to estimate the
increments of the density of $u_{e}$ . Since $u_{\epsilon}$ is the one-step explicit Euler approximation
of $u$, the error in replacing $u$ by $u_{\epsilon}$ can be estimated in terms of $e$ . By optimizing the
increment versus $e$ we have an estimate on the derivatives of the density.

The final result is given in the proposition below. In comparison with Theorem 5.1
of [DR14], here we give an explicit dependence of the Besov norm of the density with
respect to time. The estimate looks not optimal though.

The regularity of the density can be slightly improved from $B_{1,\infty}^{1-}$ to $B_{1,\infty}^{2-}$ if $u$ is the
stationary solution, namely the solution whose statistics are independent from time.

Proposition 3.2. Given $x\in H$ and a finite dimensional subspace $F$ of $D(A)$ generated by
the eigenvectors of $A$, namely $F=span[e_{\mathfrak{n}_{1}}, \cdots, e_{\mathfrak{n}_{F}}]$ for some arbitrary indices $\mathfrak{n}_{1}$ , $\cdots$ , $\mathfrak{n}_{F},$

assume that $\pi_{F}S$ is invertible on F. Thenfor every $t>0$ the projection $\pi_{F}u(t)$ has an almost
everywhere positive density $f_{F,t}$ with respect to the Lebesgue measure on $F$, where $u$ is any
solution of (2.1) which is limit point of the spectral Galerkin approximations.

Moreover, for every $\alpha\in(0,1)$ , $f_{F,t}\in B_{1,\infty}^{\alpha}(R^{d})$ and for every small $e>0$, there exists
$c_{3}=c_{3}(e)>0$ such that

$\Vert f_{F,t}\Vert_{B_{1,\infty}^{\alpha}}\leq\frac{c_{3}}{(1\wedge t)^{\alpha+e}}(1+\Vert x\Vert_{H}^{2})$ .

Proof. Given a finite dimensional space $F$ as in the statement of the proposition, fix
$t>0$, and let $\alpha\in(0,1)$ , $\phi\in C_{b}^{\alpha}$ , and $h\in F$, with $|b|\leq 1$ . For $m\geq 1$ , consider two
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cases. $If|b|^{2\mathfrak{n}/(2\alpha+\mathfrak{n})}<t$, then we use the same estimate in [DR14] to get

$|\mathbb{E}[\Delta_{\dagger\iota}^{m}\phi(\pi_{F}u(t))]|\leq c_{4}(1+\Vert x\Vert_{H}^{2\alpha})\Vert\phi\Vert_{C_{b}^{\alpha}}|b|^{\frac{2\mathfrak{n}\alpha}{2\infty+\mathfrak{n}}}.$

If on the other hand $t\leq|b|^{2\mathfrak{n}/(2\infty+\mathfrak{n})}$ , we introduce the process $u_{\epsilon}$ as above, but with
$\epsilon=t$ . As in [DR14],

$\mathbb{E}[\Delta_{h}^{m}\phi(\pi_{F}u(t))]=\mathbb{E}[\Delta_{h}^{m}\phi(\pi_{F}u_{\epsilon}(t))]+\mathbb{E}[\Delta_{b}^{m}\phi(\pi_{F}u(t))-\Delta_{b}^{m}\phi(\pi_{F}u_{\epsilon}(t))]$

and
$|\mathbb{E}[\Delta_{b}^{m}\phi(\pi_{F}u(t))-\Delta_{b}^{m}\phi(\pi_{F}u_{\epsilon}(t))]|\leq c_{5}(1+\Vert x\Vert_{H}^{2\propto})\Vert\phi\Vert_{C_{b}^{\alpha}}t^{\infty}.$

For the probabilistic error we use the fact that $u_{\epsilon}(t)$ is Gaussian, hence

$| \mathbb{E}[\Delta_{b}^{m}\phi(\pi_{F}u_{\epsilon}(t))]|\leq c_{6}\Vert\phi\Vert_{\infty}(\frac{|h|}{\sqrt{t}})^{\frac{2\mathfrak{n}\alpha}{2\alpha+\mathfrak{n}}}$

In conclusion, from both cases we finally have

$|\mathbb{E}[\Delta_{b}^{m}\phi(\pi_{F}u(t))]|\leq C_{7(1+\Vert x\Vert_{H}^{2})\Vert\phi\Vert_{C_{b}^{\alpha}}|b|^{\frac{2\mathfrak{n}\alpha}{2\alpha+\mathfrak{n}}(1\wedge t)^{-\frac{\mathfrak{n}\alpha}{2\infty+\mathfrak{n}}}}}.$

The choice of $\mathfrak{n}$ and $\alpha$ yields the final result. $\square$

Remark 3.3. In [DR14] we introduced three different methods to prove existence of
densities. The first method is based on the Markov machinery developed in [FR08]

(see also [DPD03]), while the third one is the one on Besov bounds detailed above. $A$

second possibility is to use an appropriate version of the Girsanov change of measure.
It tums out that, together, the Girsanov change of measure and the Besov bounds yield
time regularity of the densities of finite dimensional projections $[Roml4c].$

As it may be expected, the time regularity obtained is ”hal$f’$ the space regularity,
and the density is at most $\frac{1}{2}$ H\"older in time with values in $B_{1,\infty}^{\alpha}$ , for $\alpha<1.$

Remark 3.4. An apparent drawback of the method is that it can only handle finite di-
mensional projections. There are interesting functions of the solution, the energy for
instance, that cannot be seen in any way as finite dimensional projections. On the other
hand, one can use the same ideas (fractional integration by parts and smoothing effect
of the noise) directly on such quantities.
Following this idea, in $[Roml4b]$ it is shown that the two quantities $\Vert u(t)\Vert_{H^{-s}}^{2}$ and

$\int_{0}^{t}\Vert u(t)\Vert_{H^{1-s/}}^{2}$ with $s<\frac{3}{4}$ , have a density. Unfortunately, there is a regularity issue that
prevents getting densities when $s\geq\frac{3}{4}$ , unless $s=0$. The special quantity

$\Vert u(t)\Vert_{H}^{2}+2v\int_{0}^{t}\Vert u(s)\Vert_{V}^{2}$ $ds$ ,

which represents the energy balance and is quite relevant in the theory, admits a den-
sity. This is possible due to $tHe$ fundamental cancellation property of the Navier-Stokes
non-linearity.

Remark 3.5. An interesting question, that has been completely answered for the two-
dimensional case in [MP06], concems the existence of densities when the covariance
of the driving noise is essentially non-invertible. The typical perturbation in (1.1) we
consider here is

$\dot{\eta}(t,v)=\sum_{k\in X}\sigma_{k}\dot{\beta}_{k}(t)e_{k}(V)$
,

12



$0$ $t$ $\epsilon$ $t$

FIGURE 1. The strategy for the transfer principle: we only look at the
smooth solution immediately before the evaluation time.

where $\mathcal{Z}\neq Z_{\star}^{3}$ and is usually much smaller (finite, for instance). The idea is that the
noise influence is spread, by the non-linearity, to all Fourier components. The con-
dition that should ensure this has been already well understood [Rom04], and corre-
sponds to the fundamental algebraic property that SC should generate the whole group
$Z^{3}.$

It is clear that the method we have used to obtain Besov bounds cannot work in this
case, because the non-linearity plays a major role. On the other hand in $[Roml4a]$ we
prove, using ideas similar to those leading to the transfer principle (Theorem 4.1), the
existence of a density No regularity properties are possible, though.

4. THE TRANSFER PRINCIPLE

In this final section we present two results in the direction of extending results
proved only for a special class of solutions (limits of spectral Galerkin approximations
in [DR14]) to every legit solution of (1.1). As already mentioned, the transfer principle
allows the extension of instantaneous properties, namely properties that depend on a
single time.
Given $t_{0}>0$, consider the following event in $\Omega_{NS},$

$L(t_{0})=$ { $\omega$ : there is $e>0$ such that
$\sup_{t\in[t_{0}-e,t_{0}]}\Vert A\omega(t)\Vert_{H}<\infty$ }.

From $[Roml4b]$ we know that, if $(\mathscr{C}(x))_{x\in H}$ is a legit family, if $x\in H$ and $\mathbb{P}\in \mathscr{C}(x)$ , then
$\mathbb{P}[L(t_{0})]=1$ for a.e. $t_{0}>0$ . To be more precise, the proof is given in $[Roml4b]$ only for
those legit families introduced in [FR08] and [RomlO], but the two crucial properties
used in the proof of the probability one statement are exactly those defining a legit
family.
Our main theorem is given below. The intuitive idea is that if we are able to prove

existence of a density (with respect to a suitable Lebesgue measure) for a finite dimen-
sional functional of a solution, then the same holds for any other solution, regardless
of the way we were able to produce it.

In other words, we can prove existence of a density for solutions obtained from
Galerkin approximation, and this result will extend straight away to any other solu-
tions, for instance those produced by the Leray regularization (see for instance [Lio96]).
Or we can use the special properties of Markov solutions given in [FR08, RomlO] to
prove existence of densities of a large class of finite dimensional functionals, as done
in the first part of [DR14], and again this extends immediately to any (legit) solution.
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Theorem 4.1 (Transfer principle). Let $d\geq 1$ and let $F$ : $D(A)arrow R^{d}$ be a measurable
junction. Assume that we are given a legit class $(\mathscr{C}(x))_{x\in H}$ and afamily $(\mathbb{Q}_{x})_{x\in H}$ ofsolutions
of (1.1) satisfying (only) weak strong uniqueness.
Iffor every $x\in D(A)$ and almost every $t_{0}>0$ the random variable $\omega\mapsto F(\omega(t_{0}))$ on

$(\Omega_{NS}, \mathscr{F}^{NS}, \mathbb{Q}_{X})$ has a density with respect to the Lebesgue measure on $R^{d}$ , then for every
$x\in H$, every $\mathbb{P}\in \mathscr{C}(x)$ and almost every $t_{0}>0$, the random variable $\omega\mapsto F(\omega(t_{0}))$ on
$(\Omega_{NS}, \mathscr{F}^{NS},\mathbb{P})$ has a density with respect to the Lebesgue measure on $R^{d}.$

Proof. Following $[Roml4b]$ , consider for every $e\leq 1$ and every $R\geq 1$ the event $L_{\epsilon,R}(t_{0})$

defined as
$L_{\epsilon,R}(t_{0})=\{\sup_{t\in[t_{0}-\epsilon,t_{0}]}\Vert A\omega(t)\Vert_{H}\leq R\}.$

Clearly $L(t_{0})=\cup L_{e,R}(t_{0})$ . Given a measurable function $F$ as in the standing assump-
tions, a Lebesgue null set $E\subset R^{d}$ , a state $x\in H$ and a solution $\mathbb{P}\in \mathscr{C}(x)$ ,

$\mathbb{P}[F(\omega(t_{0}))\in E]=\sup_{e\leq 1,R\geq 1}\mathbb{P}[\{F(\omega(t_{0}))\in E\}\cap L_{e,R}(t_{0})].$

Given $e\leq 1$ and $R\geq 1$ , we condition $\mathbb{P}$ at time $t_{0}-e$ and we know that $\mathbb{P}|_{\mathscr{F}_{t}^{NS}}^{\omega}.$
$\in$

$\mathscr{F}_{t_{0}-\epsilon}^{NS}.$ Hence, using w$e^{0}ak^{\epsilon}-$strong u$niqueness\mathscr{C}(\omega(t_{0}-\epsilon)),$
where $\mathbb{P}|_{\mathscr{F}_{t}^{N}}^{\omega}\underline{s}istheregu1arc$onditional probability distribution of $\mathbb{P}$ given

$\mathbb{P}[\{F(\omega(t_{0}))\in E\}\cap L_{\epsilon,R}(t_{0})]=\mathbb{E}^{\mathbb{P}}[\mathbb{P}[\{F(\omega(t_{0}))\in E\}\cap L_{\epsilon,R}(t_{0})|\mathscr{F}_{t_{0}-\in}^{NS}]]$

$=\mathbb{E}^{\mathbb{P}}[\mathbb{P}|_{\mathscr{F}_{t_{0}\epsilon}^{N\underline{S}}}^{\omega}[F(\omega’(e))\in E, \tau_{R}\geq e]1_{A_{\epsilon,R}}]$

$\leq \mathbb{E}^{\mathbb{P}}[\mathbb{P}|_{\mathscr{F}_{\iota_{0}}^{N}}^{\omega}\underline{s}_{\epsilon}[F(\omega’(e))\in E, \tau_{2R}>e]1_{A_{\epsilon,R}}]$

$=\mathbb{E}^{\mathbb{P}}[\mathbb{P}_{\omega(t_{0}-\epsilon)}^{2R}[F(u_{2R}(e))\in E, \tau_{2R}>e]1_{A_{\epsilon,R}}],$

where $A_{\epsilon,R}=\{\Vert A\omega(t_{0}-e)\Vert_{H}\leq R\}$ . Again by weak-strong uniqueness, $\mathbb{P}_{v}^{2R}$ and $\mathbb{Q}_{v}$

agree on the event $\{\tau_{2R}>e\}$ of positive probability for every $V$ with $\Vert Av\Vert_{H}\leq R$ , hence
for all such $v,$

$\mathbb{P}_{v}^{2R}[F(u_{2R}(e))\in E, \tau_{2R}>e]=0.$

Therefore
$\mathbb{P}[\{F(\omega(t_{0}))\in E\}\cap L_{\epsilon,R}(t_{0})]=0$

for every $e\leq 1$ and every $R\geq 1$ . In conclusion $\mathbb{P}[F(\omega(t_{0}))\in E]=0.$ $\square$

The previous theorem has two crucial drawbacks. The first is that it deals only with
instantaneous properties, namely properties depending only on one single time, and
it looks hardly possible, by the nature of the proof, that the principle might ever be
extended, at this level of generality, to multi-time statements, such as the existence of
ajoint density for multiple times (see Remark 4.3 in [DR14]).

The second drawback is that the result is qualitative in nature. Whenever one can
find quantitative bounds on the density, such as the Besov bounds in [DR14], it is again
a $non\dashv$rivial task, one that the present author is not able to figure out in general, to
prove that the bounds ar$e^{}$ universal hence true for any solution.

If we try to repeat the proof of our main theorem above, with the purpose of ex-
tending the Besov bound in a quantitative way, in general we are doomed to failure.
Proposition 3.2 above shows that the control of the Besov norm of the density becomes
singular for short times. This is clearly expected when the initial condition is deter-
ministic.
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Let us try to understand what is preventing us from getting a quantitative estimate,
for instance in the case the finite dimensional map of the Theorem above is a finite-
dimensional projection as in Proposition 3.2. We proceed in a slightly different way,
following loosely the idea of Lemma 3.7 in [Rom08]. Let $\mathbb{P}$ be a weak solution of (1.1)
from a legit class, and fix $\phi\in L^{\infty}(F)$ with $\Vert\phi\Vert_{\infty}\leq 1,$ $b\in F$ with $|h|\leq 1$ , and $m\geq 1$

large. For $e\in(0,1)$ and $R\geq 1$ set

$A_{\epsilon,R}=\{\Vert A\omega(t-\epsilon)\Vert_{H}\leq R\}, B_{e,R}=\{\sup_{[t-\epsilon,t]}\Vert A\omega(s)\Vert_{H}\leq 2R\}.$

We have
$\mathbb{E}^{\mathbb{P}}[\Delta_{b}^{m}\phi(\pi_{F}\omega(t))]=\mathbb{E}[\Delta_{b}^{m}\phi(\pi_{F}\omega(t))1_{B_{\epsilon,R}\cap A_{\epsilon,R}}]+$ error,

where the error can be simply estimated as

$\prod$error $\leq \mathbb{P}[B_{\epsilon,R}^{c}\cup A_{\epsilon,R}^{c}]\leq \mathbb{P}[B_{\epsilon,R}^{c}\cap A_{\epsilon,R}]+\mathbb{P}[A_{\epsilon,R}^{c}].$

For the second term of the error, there is not much we can do, so we keep it unchanged.
As it regards the first term, we exploit the legit class assumption on $\mathbb{P}$ and use Proposi-
tion 3.5 in [FR07] (or [Romll, Proposition 5.7]) to get,

(4.1) $\mathbb{P}[B_{\epsilon,R}^{c}\cap A_{\epsilon,R}]=\mathbb{E}^{\mathbb{P}}[\mathbb{P}|^{\omega}[\tau_{2R}\leq\epsilon]1_{A_{\epsilon,R}}]\leq ce^{-c_{9^{\frac{R^{2}}{e}}}}$

if $R^{2}e\leq c_{10}$ , for some constants $c_{8}$ , C9, $c_{10}>0$ . Finally, again by the legit class condition,

$\mathbb{E}^{\mathbb{P}}[\Delta_{b}^{m}\phi(\pi_{F}\omega(t))1_{B_{\epsilon,R}\cap A_{\epsilon,R}}]=\mathbb{E}^{\mathbb{P}}[\mathbb{E}^{\mathbb{P}1_{J_{t\epsilon}^{\underline{N}S}}^{\omega}}[\Delta_{b}^{m}\phi(\pi_{F}\omega(e))1_{\{\tau_{2R}\geq\epsilon\}}]1_{A_{\epsilon_{)}R}}].$

$\circ n$ the event $\{\tau_{2R}\geq e\}$, by weak-strong uniqueness, the inner expectation does not
depend on $\mathbb{P}$, but only on the smooth solution starting from $\omega(t-e)$ , in particular the
Besov estimate holds and for $\alpha\in(0,1)$ , by Proposition 3.2,

$\mathbb{E}^{\mathbb{P}1_{\mathscr{T}_{t\epsilon}^{N\underline{S}}}^{\omega}}[\Delta_{\dagger\iota}^{\mathfrak{n}\iota}\phi(\pi_{F}\omega(e))1_{\{\tau_{2R}\geq\epsilon\}}]\leq\frac{c_{3}}{e^{\alpha+\delta}}(1+\Vert\omega(t-e)\Vert_{H}^{2})|b|^{\alpha}+\mathbb{P}|_{\mathscr{F}_{te}^{\underline{N}S}}^{\omega}[\tau_{2R}\leq e].$

Using again [FR07, Proposition 3.5] as in (4.1),

$\mathbb{E}^{\mathbb{P}}[\Delta_{b}^{m}\phi(\pi_{F}\omega(t))1_{B_{\epsilon,R}\cap A_{e,R}}]\leq\frac{c_{3}}{\epsilon^{\alpha+\delta}}(1+\mathbb{E}[\Vert\omega(t-e)\Vert_{H}^{2}])|b|^{\alpha}+c_{8}e^{-c_{9^{\frac{R^{2}}{\epsilon}}}},$

with 6 small (so that $\alpha+6<1$ ). In conclusion,

$| \mathbb{E}^{\mathbb{P}}[\Delta_{b}^{m}\phi(\pi_{F}\omega(t))]|\leq\frac{c_{3}}{\epsilon^{\alpha+6}}(1+\mathbb{E}[\Vert\omega(t-\epsilon)\Vert_{H}^{2}])|b|^{\alpha}+2c_{8}e^{-c_{9^{\frac{R^{2}}{\epsilon}}}}+$

$+\mathbb{P}[A_{e,R}^{c}]$

Choose $R\approx e^{-1/2}$, so that the constraint $eR^{2}\leq c_{10}$ is satisfied. Integrate the above
inequality over $e\in(0, e_{0})$ , $6_{0}\leq 1$ , and use the moment in $D(A)$ proved in $[Roml4a]$ to
get

(4.2) $| \mathbb{E}^{\mathbb{P}}[\Delta_{b}^{m}\phi(\pi_{F}\omega(t))]|\leq c_{11}(1+\Vert x\Vert_{H}^{2})(\frac{|\dagger\iota|^{\alpha}}{\epsilon_{0}^{\alpha+6}}+e^{--2}ce)+\frac{1}{\epsilon_{0}}|_{0}^{\epsilon_{0}}\mathbb{P}[A_{\epsilon,R}^{C}]$ de.

Neglect, only for a moment, the last term. The choice $e=-c_{12}/\log|h|$ would finally
give the same result as Proposition 3.2 (up to a logarithmic correction). Unfortunately
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the last term prevents this computation. There is no much we can do here, our best
option seems Chebychev’s inequality and the $\frac{2}{3}$-moment in $D(A)$ proved in $[Roml4a],$

$\frac{1}{\epsilon_{0}}\int_{0}^{\epsilon_{0}}\mathbb{P}[A_{\epsilon,R}^{C}]$ $de$ $\leq\frac{1}{\epsilon_{0}}\mathbb{E}^{\mathbb{P}}[\int_{0}^{\epsilon_{0}}\frac{1}{R^{\frac{2}{3}}}\Vert A\omega(t-e)\Vert^{\frac{2}{H3}}de]$

(4.3)
$\leq e_{0}^{\frac{2}{3}}\mathbb{E}^{\mathbb{P}}[\int_{0}^{t}\Vert A\omega\Vert^{\frac{2}{H3}}ds],$

and no quantitative counterpart of the transfer principle can be proved in this way.
Notice that the same technique is successful in [Rom08]. The reason is that in the

mentioned paper (a different form of) the transfer principle was used for moments of
the solution. Here we are estimating the size of an increment. It makes a $non\dashv$rivial
difference, since here the crucial mechanism is the smoothing effect of the random
perturbation, as it can be seen in a simple example with a one dimensional Brown-
ian motion $(B_{t})_{t\geq 0}$ . indeed, it is elementary to compute that $|\mathbb{E}[\phi(B_{t+h})-\phi(B_{t})]|$ is
bounded by $\Vert\phi\Vert_{\infty}\frac{\dagger\iota}{t}$ , where $\frac{h}{t}$ is the total variation distance between the laws of $B_{t}$ and
$B_{t+b}$ . On the other hand, the seemingly similar quantity $\mathbb{E}[|\phi(B_{t+b})-\phi(B_{t})|]$ is much
worse.

There is one case though where our computations above can be carried on. If we
assume that $u$ is a stationary solution, with time marginal $\mu$, the quantity in (4.3) can
be estimated as (recall that $R\approx e^{-\gamma}$ ),

$\frac{1}{\epsilon_{0}}\int_{0}^{\epsilon_{0}}\mathbb{P}[A_{\epsilon,R}^{c}]$ $de$ $\leq\frac{1}{e_{0}}\mathbb{E}^{\mathbb{P}}[\int_{0}^{\epsilon_{0}}\frac{1}{R^{\frac{2}{3}}}\Vert A\omega(t-e)\Vert^{\frac{2}{H3}}de]\leq \mathbb{E}^{\mu}[\Vert Ax\Vert^{\frac{2}{H3}}]\epsilon^{\frac{1}{0^{3}}},$

and (4.2) this time reads,

$| \mathbb{E}^{\mathbb{P}}[\Delta_{h}^{m}\phi(\pi_{F}\omega(t))]|\leq c_{13}(e^{\frac{1}{0^{3}}}+\frac{|h|^{\alpha}}{\epsilon_{0}^{\alpha+\delta}})$ .

A suitable choice of $e_{0}$ by optimization and Lemma 3.1 show that the density is Besov.
Since $\alpha$ can run over all values in $(0,2)$ by Theorem 5.2 in [DR14], we obtain the fol-
lowing result.

Theorem 4.2 (Quantitative transfer principle). Let $d\geq 1$ and consider a $d$ dimensional
sub space $F$ of $D(A)$ spanned by afinite number ofeigenvectors of the Stokes operator.
Assume that we are given a legit class $(\mathscr{C}(x))_{x\in H}$ , and let $\mathbb{P}_{\star}$ a stationary solution whose

conditional probabilities at time $0$ are elements of the legit class $(\mathscr{C}(x))_{x\in H}.$

Denote by $u_{\star}$ a process with law $\mathbb{P}_{\star/}then$ $\pi_{F}u_{\star}(t)$ has a density with respect the Lebesgue
measure on F. Moreover, the density belongs to the Besov space $B_{1,\infty}^{\alpha}(F)$ for every $\alpha<\frac{2}{7}.$

One can slightly improve the exponent $\frac{2}{7}$ by using moments in a different topology
than $D(A)$ , see Remark 2.2.
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