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Abstract

An accurate model for the spin-coating process is presented and in-
vestigated from view point of the mathematical analysis. The method
is based on the Hanzawa transform for the free boundary value prob-
lem to quasilinear evolution equations on a fixed layer domain. For
solving, the maximal regularity approach is used. This is achieved by
applying the Newton polygon method to the boundary symbol with
Weis’ Fourier multiplier theory.

1 Introduction

This note is a brief survey of the results related to [DGHSSII], mainly.

Problem We will analyze the spin-coating process, mathematically. $Spin-\backslash$

coating has many applications, for example, in manufacturing micro-electronic
devices or magnetic storage. Various models describing certain aspects have
been developed in the engineering sciences as well as from physical or chemi-
cal point of views. The spin-coating process basically has the following three
stages:

1. Deposition of the coating fluid onto the substrate.

2. Acceleration of the substrate up to its final.

3. Spinning of the substrate at a constant speed.
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In what follows, we zoom into the detail of stage 3, in particular, the
fluid viscous forces dominate the thinning. We consider the Navier-Stokes
equations (one-phase flow) in an infinite layer-like domain. Also, we shall
impose the free boundary on the top, and Navier’s partially-slip boundary
on the bottom. The equations are as

$(SCP)$ $\{\begin{array}{l}\rho(U_{t}+(U, \nabla)U)-\mu\triangle U+\nabla P=-\rho[2\Lambda\cross U+\chi_{R}\Lambda\cross(\Lambda\cross x)] in \cup\{t\}\cross\Omega(t) ,t\in(0,T)\nabla\cdot U=0 in \cup\{t\}\cross\Omega(t) ,t\in(0,T)-\mathbb{T}\nu=\sigma\kappa\nu, V=U\cdot\nu on t\in(0,T)\cup\{t\}\cross\Gamma_{+}(t) ,U’=c(\delta+h)^{\alpha}\partial_{3}U’, U^{3}=0 on (0, T)\cross\Gamma_{-},U|_{t=0}=U_{0} (\nabla\cdot U_{0}=0) in \Omega(0) ,h|_{t=0}=h_{0} (|h_{0}|<\delta/2) in \mathbb{R}^{2}.\end{array}$

Notations of differential are as $U_{t}$ $:=\partial_{t}U,$ $\partial_{t}$ $:=\partial/\partial t,$ $\partial_{i}$ $:=\partial/\partial x_{i}$ for
$i=1$ , 2, 3, $\nabla$ $:=(\partial_{1}, \partial_{2}, \partial_{3})$ , $\nabla’$ $:=(\partial_{1}, \partial_{2})$ , $\triangle$ $:= \sum_{i=1}^{3}\partial_{i}^{2}$ . For vector fields
$a$ and $b$ we denote $a\cdot b$ $(or, (a, b)$ sometimes) by the scalar product in $\mathbb{R}^{2}$

or $\mathbb{R}^{3}$ . The vector field $U=(U’, U^{3})=(U^{1}(t, x), U^{2}(t, x), U^{3}(t, x))$ denotes
by the unknown velocity of the liquid at time $t\in(0, T)$ for some $T>0$
and location $x\in\Omega(t)$ ; the scalar fields $P=P(t, x)$ and $h=h(t, x’)$ stand
for the unknown pressure and the unknown amplitude from the average $\delta$ of
the region $\Omega(t)$ , respectively. The region of the fluid at time $t$ is represented
by $\Omega(t)$ $:=\{x=(x’, x_{3});x’\in \mathbb{R}^{2},$ $x_{3}\in(0,$ $\delta+h(t,$ $x$ which is an infinite
layer-like domain in $\mathbb{R}^{3}$ . The boundary of region is splited into two parts,
the bottom is denoted by $\Gamma_{-}(t)$ $:=\Gamma_{-}:=\{(x’, 0);x’\in \mathbb{R}^{2}\}$ $:=\mathbb{R}^{2}$ , and the
top surface stands for $\Gamma_{+}(t)$ $:=\{(x’, h(t, x x’\in \mathbb{R}^{2})$ } at each time $t$ . On
the top surface we have used the outer normal $v$ and its tangential vector $\tau,$

those are defined by $h$ explicitly (we will give them in below); the curvature
on the top surface $\kappa$ will also be done as well. The stress tensor is denoted by
$\mathbb{T}$ $:=\mathbb{T}(U, P)$ $:=\mathbb{S}(U)+\mathbb{I}P$ , where $\mathbb{S}(U)$ $:=\nabla U+(\nabla U)^{T}$ is the deformation
tensor and $\mathbb{I}$ is the $3\cross 3$ identity matrix; $M^{T}$ stands for the transposed matrix
of $M.$

We put the following as positive constants: $\rho$ is the density coefficient, $\mu$

is the viscosity, $\sigma$ is the surface-tension, $\delta$ is the average of height; $c$ and $\alpha$

are some positive constants due to Navier’s partially-slip boundary condition;
we usually take $\alpha\sim 5/3$ in experimentation, associated with the study of a
nonintegrable singularity at the contact line in [DD74, HS71]. Also, $V$ is the
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velocity vector field of the top surface, $\Lambda$ $:=(0,0,\Lambda_{0})$ , where $\Lambda_{0}\in \mathbb{R}$ is the
angular velocity of rotation, $\chi_{R}$ is a smooth cut-off function as $\chi_{R}\equiv 1$ in $B_{R}$

and $\chi_{R}\equiv 0$ in $B_{R+1}^{c}$ for some $R>0.$

We use $\cross as$ the exterior product in $\mathbb{R}^{3}$ . So, $2\Lambda\cross U=2\Lambda_{0}(-U^{2}, U^{1},0)$

stands for the Coriolis term, $\Lambda\cross(\Lambda\cross x)=-\Lambda_{0}^{2}(x’, 0)$ is an unbounded function
as the term of centrifugal force. In order investigate the fluid dynamics
around the origin in terms of $L_{p}$-theory, we use the cut-off $\chi_{R}$ . The initial
data $U_{0}=U_{0}(x)$ and $h_{0}=h_{0}(x’)$ (and then the initial region $\Omega(O)$ ) are given
as some functions enjoying a certain regularity. We assume that $\delta$ is relatively
large (and initial amplitude of the top surface $h_{0}$ is relatively small) so that
$|h_{0}|<\delta/2$ , that is to say, the top surface does not touch to the bottom at least
in some short time-interval. We have imposed the compatibility condition:
$\nabla\cdot U_{0}=0$ . Up to the situation, we will add further compatibility conditions
on $U_{0}.$

Known results We now list-up several known results related to (SCP).
Mathematical analysis of the Navier-Stokes equations in a layer-like domain
with nonhomogeneous Dirichlet boundary condition was studied by Abe-
Shibata [AS03], Abels-Wiegner [AW05] and Abels $[Abels05a, Abels05b]$ . The
proof is based on the semigroup theory due to the Helmholtz decompostion
by Simader-Sohr [SS92] and the resolvent estimate by Farwig-Sohr [FS94]; see
also Farwig [Farwig03]. In the case of more general situation, the reader may
find the recent development in [Abe04, AY10, Abels06, AbelslO, Kagei08,
Kagei12, Shibata13] and the references therein.

For more information about mathematical theory on the Navier-Stokes
equations in fixed domains in various setting, we refer to e.g., [Amann00,
FKS05, Galdi94, GHHS12]. Also, in the rotational setting in the whole space
the reader may find recent works by active researcher in e.g., [BMNOI, CT07,
GHH06, HS10, IT13].

A model problem for the free boundary in a bounded domain (one-
phase flow, meaning, the out-side is adapted) with a surface tension has
been observed by Solonnikov [Solonnikov87, Solonnikov99, Solonnikov04],
and Shibata-Shimuzu [SS07]. Note that the surface tension plays a role for
getting the smoothing effect. Without surface tension, even the time-local
solvability is rather tough problem. Hataya obtained the precise analysis on
it in [Hataya09]; see also Hosono-Kawashima [HK06].

The two-phase problem is a hot issue. The case of an ocean with in-
finite depth and bounded above by a free surface was treated by Beale
[Beale84]. After Beale’s work, its improvement in several direction have been
done by, for instance, Beale-Nishida [BN85], Allain [Allain85, Allain87], Tani
[Tani96] and Tani-Tanaka [TT95]. The two-phase problem of the Navier-
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Stokes equations was investigated by Denisova [Denisova91, Denisova94],
Sylvester [Sylvester90, Sylvester96], Tanaka [Tanaka93, Tanaka95] and Pr\"uss-

Simonett [PS09, PS10]. So far, many researcher continue to study related
topics; see [AR09, LST12, Maekawa07, SSII] and the reference therein.

Main theorem We now state the main results in this note, that is, the time-
local existence and uniqueness of strong solutions to (SCP) in the suitable
setting of initial data and a rotation speed. The definition of function spaces
will be given in Section 3.

Theorem 1.1 ([DGHSSII]). Let $p>5$ , and let $\rho,$ $\mu,$ $\sigma,$
$\delta,$ $R,$ $c,$ $\alpha,$

$\Lambda_{0}$

be positive constants. Then there exist $\epsilon>0$ and $T>0$ such that for
all $U_{0}\in W_{p}^{2-2/p}(\Omega(O))$ and all $h_{0}\in W_{p}^{3-2/p}(\mathbb{R}^{2})$ with $\nabla\cdot U_{0}=0$ on $\Omega(O)$

satisfying
$\Vert U_{0}\Vert_{W_{p}^{2-2/p}(\Omega(0))}+\Vert h_{0}\Vert_{W_{p}^{3-2/p}(\mathbb{R}^{2})}<\epsilon,$

there $exi_{\mathcal{S}}ts$ a unique solution $(U, P, h)$ to (SCP) within the regularity classes

$U\in H_{p}^{1}(0, T;L_{p}(\Omega(t))^{3})\cap L_{p}(0, T;H_{p}^{2}(\Omega(t))^{3})$ ,

$P\in\{P\in L_{p}(\hat{H}_{p}^{1}(\Omega(t))):P\in W_{p}^{1/2-1/2p}(L_{p}(\Gamma_{+}(t)))\cap L_{p}(W_{p}^{1-1/p}(\Gamma_{+}(t)))\},$

$h\in W_{p}^{2-1/2p}(L_{p}(\mathbb{R}^{2}))\cap H_{p}^{1}(W_{p}^{2-1/p}(\mathbb{R}^{2}))\cap L_{p}(W_{p}^{3-1/p}(\mathbb{R}^{2}))$ .

Due to our assumption $p>5$ , by Sobolev embedding we have

$h\in C(O, T;BUC^{2}(\mathbb{R}^{2}))$ and $\partial_{t}h\in C(0, T; BUC^{} (\mathbb{R}^{2}))$ .

See e.g., [Amann95]. This implies that the regularity of $\Omega(t)$ is enough, that
is to say, the normal velocity $V$ of $\Gamma_{+}(t)$ and its mean curvature $\kappa$ are well
defined and continuous. In particular, the equations in the region and on the
free boundaries can be understood in the classical sense, point-wisely. For
$U$ , we also note that

$U(t)\in BUC^{1}(\Omega(t))$ and $\nabla U(t)\in BUC(\Omega(t))$ , $t\in(O, T)$ .

The uniqueness of solutions obtained by Theorem 1.1 comes from the
dual backward equations; this technique was developed by Lions-Masmoudi
[LMOI]. We deal with the nonlinear terms regarded as perturbation from the
solutions to the linearized equations, as in Beale-Nishida [BN85].

We next state the existence and uniqueness results of another type; the
strong solution exists in an arbitrary time-interval if the initial data and the
rotation speed are sufficiently small.
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Theorem 1.2 ([DGHSSII]). Let $p>5,$ $T>0$ , and let $\rho,$ $\mu,$ $\sigma,$
$\delta,$ $R,$

$c,$ $\alpha$ be positive constants. Then there exists $\epsilon>0$ such that for all $U_{0}\in$

$W_{p}^{2-2/p}(\Omega(O))$ and all $h_{0}\in W_{p}^{3-2/p}(\mathbb{R}^{2})$ with $\nabla\cdot U_{0}=0$ on $\Omega(O)$ satisfying.

$\Vert U_{0}\Vert_{W_{p}^{2-2/p}(\Omega(0))}+\Vert h_{0}\Vert_{W_{p}^{3-2/p}(\mathbb{R}^{2})}+|\Lambda_{0}|<\epsilon,$

there exists a unique solution $(U, P, h)$ to (SCP) in $(0, T)$ within the same
regularity classes in Theorem 1.1.

2 Hanzawa transform

In this section we shall derive the linearized equations of (SCP). Hanzawa
[Hanzawa81] introduced the transformation for fixing the region to solve the
Stefan problem. So, the transform treated here is called Hanzawa transform’,
we use this terminology, throughout this paper.

We shall change the free boundary problem (SCP) in $\Omega(t)$ to a problem
in the fixed domain $D:=\mathbb{R}^{2}\cross(0, \delta)$ . The top and bottom boundaries of $D$

are given by $\Gamma_{+}:=\mathbb{R}^{2}\cross\{\delta\}$ and $\Gamma_{-}:=\mathbb{R}^{2}\cross\{0\}$ , respectively. To this end,
we define

$\Theta$ :
$(0, T) \cross \mathbb{R}^{2}\cross(0, \delta)arrow\bigcup_{t\in(0,T)}\{t\}\cross\Omega(t))$

$\Theta(t, x’, y)$ $:=(t, x’, \frac{yh(t,x’)}{\delta})$

as well as $\theta(t, x’, y)$ $:=(x’, yh(t, x’)/\delta)$ . Hence, $\Theta(t, x’, y)=(t, \theta(t, x’, y))$ for
all $t\in(O, T)$ , $x’\in \mathbb{R}^{2}$ and $y\in(0, \delta)$ . We define the transformed variables by

$u’(t, x’, y):=[(\Theta^{*}U^{2})(t,x’,y)(\Theta^{*}U^{1})(t,x’,y)]:=U’(\Theta(t, x’, y$

$u^{3}(t, x’, y):=(\Theta^{*}U^{3})(t, x’, y):=U^{3}(\Theta(t, x’, y$

$q(t, x’, y):=(\Theta^{*}P)(t, x’, y):=P(\Theta(t, x’, y$

At $t=0$ , we also modify the initial velocity as

$u_{0}(x’, y) :=(\theta^{*}U_{0})(x’, y) :=U_{0}(\theta(0, x’, y$

Then, $D\Theta$ (the Jacobian of $\Theta$ ) is of the form

$D\Theta=(\begin{array}{llll}1 0 0 00 1 0 00 0 1 0y\partial_{t}h/\delta y\partial_{1}h/\delta y\partial_{2}h/\delta h/\delta\end{array})$
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We can easily compute its inverse. By means of this coordinate transform,

we assert for $j=1$ , 2

$\Theta^{*}\partial_{t}U=\partial_{t}u-\frac{y}{h}(\partial_{y}u)\partial_{t}h,$

$\Theta^{*}\partial_{j}U=\partial_{j}u-\frac{y}{h}(\partial_{y}u)\partial_{j}h,$

$\Theta^{*}\partial_{j}^{2}U=\partial_{j}^{2}u-2\frac{y}{h}(\partial_{j}\partial_{y}u)\partial_{j}h+\frac{y^{2}}{h^{2}}(\partial_{y}^{2}u)(\partial_{j}h)^{2}-y(\partial_{y}u)\frac{h\partial_{j}^{2}h-2(\partial_{j}h)^{2}}{h^{2}},$

$\Theta^{*}\partial_{y}U=\frac{\delta}{h}\partial_{y}u,$

$\Theta^{*}\partial_{y}^{2}U=\frac{\delta^{2}}{h^{2}}\partial_{y}^{2}u,$

$\Theta^{*}\Delta U=[\triangle^{J}+\frac{\delta^{2}}{h^{2}}\partial_{y}^{2}]u-2\frac{y}{h}(\nabla’h, \nabla’)\partial_{y}u+\frac{y^{2}}{h^{2}}|\nabla’h|^{2}\partial_{y}^{2}u$

$- \frac{y}{h}(\partial_{y}u)\triangle’h+2\frac{y}{h^{2}}(\partial_{y}u)|\nabla’h|^{2},$

$\Theta^{*}(U\cdot\nabla)U=((\Theta^{*}u)\cdot(\nabla’, \frac{\delta}{h})\partial_{y})(\Theta^{*}u)-\frac{y}{h}(\partial_{y}(\Theta^{*}u))(u’\cdot\nabla’)h,$

$\Theta^{*}\nabla P=(\nabla’, \frac{\delta}{h}\partial_{y})q-\frac{y}{h}(\partial_{y}q)(\nabla’, 0)h.$

Here $\nabla=(\nabla’, \partial_{y})$ as well as $\triangle=\Delta’+\partial_{y}^{2}$ . The fourth equation of (SCP) is
transformed via the outer normal $\nu$ of $\Gamma_{+}(t)$ given by

$\nu:=\frac{1}{\sqrt{1+|\nabla’h|^{2}}}(-\partial_{1}h, -\partial_{2}h, 1)$

into

$\partial_{t}h=\Theta^{*}V_{\nu}\sqrt{1+|\nabla’h|^{2}}=\Theta^{*}.\nu\cdot u^{3}\sqrt{1+|\nabla’h|^{2}}=-(u’\cdot\nabla’)h+u^{3}$

In order to compute the transformed stress tensor on $\Gamma_{+}$ , we note first that the
outer normal $\nu$ on the free surface $\Gamma_{+}(t)$ and the outer normal $v_{D}=(0,0,1)$

on $\Gamma+are$ related through

$\nu=\frac{1}{\sqrt{1+|\nabla’ h|^{2}}}(\mathbb{I}+K)\nu_{D}$ with $K:=(\begin{array}{lll}0 0 00 0 0-\partial_{1}h -\partial_{2}h 0\end{array})$

Employing this representation, we compute the transformed stress tensor on
the top boundary to be equal to

$\Theta^{*}\mathbb{T}(U, P)=\nabla(\Theta^{*}u)D\theta^{-1}+D\theta^{-T}\nabla(\Theta^{*}u)-\mathbb{I}q.$
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Writing $D\theta^{-1}$ as $D\theta^{-1}=I_{\frac{\delta}{h}}(\mathbb{I}+K)$ with $I_{\frac{\delta}{h}}$

$:=(\begin{array}{lll}1 0 00 1 00 0 \delta/h\end{array})$ , we obtain

$\Theta^{*}\mathbb{T}(U, P)v$

$= \frac{1}{\sqrt{1+|\nabla’h|^{2}}}[\nabla(\Theta^{*}u)(I_{\frac{\delta}{h}}(\mathbb{I}+K))+(I_{\frac{\delta}{h}}(\mathbb{I}+K))^{T}\nabla(\Theta^{*}u)-\mathbb{I}q](\mathbb{I}+K)^{T}\nu_{D}$

$= \frac{1}{\sqrt{1+|\nabla’h|^{2}}}[(\nabla’, \frac{\delta}{h}\partial_{y})(\Theta^{*}u)+((\nabla’, \frac{\delta}{h}\partial_{y})(\Theta^{*}u))-\mathbb{I}q]\nu_{D}$

$+ \frac{1}{\sqrt{1+|\nabla’h|^{2}}}[-\nabla’(\Theta^{*}u)\nabla’h+\frac{\delta}{h}|\nabla’h|^{2}\partial_{y}(\Theta^{*}u)-((\nabla’, \frac{\delta}{h}\partial_{y})u’)(\nabla’h, 0)$

- $\frac{\delta}{h}\partial_{y}u^{3}(\nabla’h, 0)+\frac{\delta}{h}(\nabla’h, \partial_{y}u’)(\nabla’h, 0)+q(\nabla’h, 0)].$

Analogously, the mean curvature $\kappa$ of $\Gamma_{+}(t)$ is given by

$\kappa=-\nabla’$
$( \frac{\nabla’h}{\sqrt{1+|\nabla’ h|^{2}}})=-\frac{\triangle’h}{\sqrt{1+|\nabla’ h|^{2}}}+\sum_{j,k=1}^{2}\frac{\partial_{j}h\partial_{k}h}{(1+|\nabla h|^{2})^{\frac{3}{2}}}\partial_{j}\partial_{k}h.$

The transformed Navier’s partially slip condition on the bottom reads as

$u’= \Theta^{*}U’=c(\delta+h)^{\alpha}\Theta^{*}\partial_{y}U’=c(\delta+h)^{\alpha}\frac{\delta}{h}\partial_{y}(\Theta^{*}u)=c\delta(\delta+h)^{\alpha-1}\partial_{y}(\Theta^{*}u)$ .

Summarizing, the transformed equations (TE) are

$\{\begin{array}{ll}u_{t}-\triangle u+\nabla q=\chi_{R}\Lambda\cross(\Lambda\cross(x’, y))+F_{1}(u, q, h) in (0, T)\cross D,\nabla\cdot u=F_{d}(u, h) in (0, T)\cross D,\mathbb{T}(u, q)\nu_{D}-\sigma\triangle’h\nu_{D}=G_{+}(u, q, h) on (0, T)\cross r_{+},\partial_{t}h-u^{3}=H(u, h) on (0, T)\cross\Gamma+,u’-c\delta^{\alpha}\partial_{y}u’=G_{-}(u, h) on (0, T)\cross\Gamma_{-},u^{3}=0 on (0, T)\cross\Gamma_{-},u|_{t=0}=u_{0} in D,h|_{t=0}=h_{0} in \mathbb{R}^{2}.\end{array}$

For the sake of simplicity, we take $\rho=\mu=1$ . Here, the new functions on
the right hand side above are given by

$F_{1}:=-(u, \nabla)u+\frac{y\partial_{t}h}{\delta+h}\partial_{y}u+(\frac{\delta^{2}}{(\delta+h)^{2}}-1)\partial_{y}^{2}u-\frac{2y}{\delta+h}(\nabla’h,\nabla’)\partial_{y}u$

$+ \frac{y^{2}}{(\delta+h)^{2}}|\nabla’h|^{2}\partial_{y}^{2}u-\frac{y\triangle’h}{\delta+h}\partial_{y}u+\frac{2y}{(\delta+h)^{2}}|\nabla’h|^{2}\partial_{y}u+\frac{y\partial_{y}q}{\delta+h}(\nabla’h, 0)$
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$+ \frac{hu^{3}}{\delta+h}\partial_{y}u+\frac{y(u’,\nabla’)h}{\delta+h}\partial_{y}u+\frac{h}{\delta+h}(0,0, \partial_{y}q)$ ,

$F_{d}:= \frac{h}{\delta+h}\partial_{y}u^{3}+\frac{y}{\delta+h}(\partial_{y}u’, \nabla’)h,$

$G_{+}:=(1- \frac{\delta}{h})\partial_{y}(u’, 2u^{3})+\sigma(\frac{1}{\sqrt{1+|\nabla’h|^{2}}}-1)\triangle’h\cdot\nu_{D}$

$- \sum_{j,k=1}^{2}\frac{\sigma\partial_{j}h\partial_{k}h\partial_{j}\partial_{k}h}{(1+|\nabla’ h|^{2})^{\frac{3}{2}}}\nu_{D}-\frac{\sigma}{\sqrt{1+|\nabla’h|^{2}}}(\triangle’h-\sum_{j,k=1}^{2}\frac{\partial_{j}h\partial_{k}h\partial_{j}\partial_{k}h}{1+|\nabla h|^{2}})(\nabla’h, 0)$

$-[-( \nabla’h, \nabla’)u+\frac{\delta}{h}|\nabla’h|^{2}\partial_{y}u-((\frac{\delta}{h}\partial_{y})u’, \nabla’)\nabla’h-\frac{\delta}{h}(\partial_{y}u^{3})(\nabla’h, 0)$

$+ \frac{\delta}{h}(\partial_{y}u’, \nabla’)h(\nabla’h, 0)+q(\nabla’h, 0)],$

$H:=-(u’, \nabla’)h,$

$G_{-}:=c\delta(h^{\alpha-1}-\delta^{\alpha-1})\partial_{y}u.$

Obviously, the toughest part in our analysis is to deal with the fourth equa-

tion (where $H$ appears in the right hand side), because that is a quasilinear

equation of hyperbolic type. In what follows, we rather discuss the trans-

formed equations (TE) than (SCP).

3 Maximal regularity estimates

We first give the definition of function spaces. Let $s\in \mathbb{R},$ $1<p<\infty,$ $J\subset \mathbb{R}$

be an open interval, $\Omega$ a domain in $\mathbb{R}^{n}$ for $n\in \mathbb{N}$ with regular boundary
$\Gamma$ $:=\partial\Omega$ , and let $X$ be a Banach space. As usual, $L_{p}(\Omega)$ is the Lebesgue

space with integral exponent $p$ in $\Omega$ . We denote by $H_{p}^{S}(\Omega)$ the Bessel potential
space in $\Omega$ of differential order $s$ and integral exponent $p$ as well as $H_{p}^{s}(J;X)$

is the space of $X$-valued Bessel potential functions in $J$ . The Slobodeckij
space $W_{p}^{s}(J;X)$ is defined as $W_{p}^{s}(J;X)$ $:=B_{p,p}^{s}(J;X)$ , where $B_{p,p}^{s}$ denotes the

corresponding Besov space. Moreover, for $T\in(0, \infty)$ , we sometimes omit
the notation of the time-interval $J=(O, T)$ as $L_{p}(H_{p}^{s}(\Omega))$ $:=L_{p}(0, T;H_{p}^{s}(\Omega))$ ,

if no confusion occurs likely.
Let $oW_{p}^{s}(0, T;X)$ be the zero-trace subspace of $W_{p}^{s}(X)$ at $t=0$ defined

for $s\geq 0$ with $s-1/p\not\in \mathbb{N}_{0}:=\mathbb{N}U\{O\}$ as

$0^{W_{p}^{s}(0,T;X):=}\{\begin{array}{l}\{u\in W_{p}^{s}(0, T;X) : u(O)=\ldots=u^{(k)}(0)=0\},if s\in(k+\frac{1}{p}, k+1+\frac{1}{p}) for k\in \mathbb{N}_{0},W_{p}^{s}(0, T;X) , if 0\leq s<\frac{1}{p}.\end{array}$
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The spaces $0^{H_{p}^{s}(0,T;X)}$ are defined, analogously. The homogeneous version

of the above spaces will be denoted by $\hat{H}_{p}^{s}(0, T;X)$ and $\hat{W}_{p}^{s}(0, T;X)$ . We

furthermore set $0\hat{H}_{p}^{1}(0, T;\Gamma)$ $:=\{\varphi\in\hat{H}_{p}^{1}(\Omega) : \gamma\varphi=0 on \Gamma\}$ and

$0^{\hat{H}_{p}^{-1}(0,T;\Gamma)} :=(^{0}\hat{H}_{p}^{1},(0, T;\Gamma))’$

Here, $\gamma$ denotes the trace operator $u\mapsto u|_{\Gamma},$ $p’=p/(p-1)$ is the H\"older

conjugate exponent of $p$ , and $X’$ means the topological dual space of $X.$

It is the aim of this section to prove maximal regularity estimates for the
linearized problem of (TE).

To this end, we introduce the function space $\mathbb{F}$ associated with the right
hand side of (TE) as

$\mathbb{F}:=\mathbb{F}_{1}\cross \mathbb{F}_{d}\cross \mathbb{G}_{+}\cross \mathbb{H}\cross \mathbb{G}_{-}\cross \mathbb{I}_{u}\cross \mathbb{I}_{h}$

with

$\mathbb{F}_{1} :=\mathbb{F}_{1}(0, T;D) :=L_{p}(0, T;L_{p}(D)^{3})$ ,

$\mathbb{F}_{d} :=\mathbb{F}_{d}(0, T;D) :=H_{p}^{1}(_{0}\hat{H}_{p}^{-1}(D))\cap H_{p}^{1/2}(L_{p}(D))\cap L_{p}(H_{p}^{1}(D))$ ,

$\mathbb{G}_{+}:=\mathbb{G}_{+}(0, T;\Gamma^{+}):=W_{p}^{1/2-1/2p}(L_{p}(\Gamma^{+})^{3})\cap L_{p}(W_{p}^{1-1/p}(\Gamma^{+})^{3})$ ,

$\mathbb{H}:=\mathbb{H}(0, T;\mathbb{R}^{2}) :=W_{p}^{1-1/2p}(L_{p}(\mathbb{R}^{2}))\cap L_{p}(W_{p}^{2-1/p}(\mathbb{R}^{2}))$ ,

$\mathbb{G}_{-}:=\mathbb{G}_{-}(0, T;\Gamma_{-}):=W_{p}^{1/2-1/2p}(L_{p}(\Gamma_{-})^{2})\cap L_{p}(W_{p}^{1-1/p}(\Gamma_{-})^{2})$ ,

$\mathbb{I}_{u}:=\mathbb{I}_{u}(D):=W_{p}^{2-2/p}(D)^{3},$

$\mathbb{I}_{h}:=\mathbb{I}_{h}(\mathbb{R}^{2}):=W_{p}^{3-2/p}(\mathbb{R}^{2})$ .

We also put the similar solution classes:

$\mathbb{E}:=\mathbb{E}_{u}\cross \mathbb{E}_{q}\cross \mathbb{E}_{h}$

with

$\mathbb{E}_{u}$ $:=H_{p}^{1}(0, T;L_{p}(D)^{3})\cap L_{p}(0, T;H_{p}^{2}(D)^{3})$ ,

$\mathbb{E}_{q}:=\{q\in L_{p}(0, T;\hat{H}_{p}^{1}(D)):q\in W_{p}^{1/2-1/2p}(L_{p}(\Gamma^{+}))\cap L_{p}(W_{p}^{1-1/p}(\Gamma^{+}))\},$

$\mathbb{E}_{h}:=W_{p}^{2_{\backslash }-1/2p}(L_{p}(\mathbb{R}^{2}))\cap H_{p}^{1}(W_{p}^{2-1/p}(\mathbb{R}^{2}))\cap L_{p}(W_{p}^{3-1/p}(\mathbb{R}^{2}))$ .

We are now position to state the maximal regularity estimates for the
solutions to the linearized (TE) around the trivial solution when $\Lambda_{0}=0.$

Proposition 3.1. Let $\Lambda_{0}=0,$ $T>0,$ $p\in(1, \infty)$ with $p\neq 3/2$ , 3. Then
there exists a unique $\mathcal{S}$olution ($u, q, h)\in \mathbb{E}$ to (TE) if and only if the terms in
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the right hand side and initial data $(F_{1}, F_{d}, G_{+}, H, G_{-}, u_{0}, h_{0})\in \mathbb{F}$ and satisfy

the following compatibility conditions

$G_{+}(0)=\partial_{y}u_{0}’+\nabla’u_{0}^{3}$ on $\Gamma_{+},$ $G_{-}(O)=u_{0}’-c\delta^{\alpha}\partial_{y}u_{0}’$ on $\Gamma_{-}$ if $p>3,$

$u_{0}^{3}=0$ on $\Gamma_{-},$ $F_{d}(0)=\nabla\cdot u_{0}$ if $p>3/2.$

We can derive the maximal regularity estimates in above classes as follows:

Lemma 3.2. Let $p\in(1, \infty)$ with $p\neq 3/2$ , 3, $\Lambda=F_{1}=F_{d}=G_{+}=G_{-}=$

$u_{0}=h_{0}=0$ , and let $H\in \mathbb{H}$ . Then there exist $T>0,$ $C>0$ and a solution
$(u, q, h)\in \mathbb{E}$ of (TE) in $(0, T)$ satisfying

$\Vert(u, q, h)\Vert_{\mathbb{E}}\leq C\Vert H\Vert_{\mathbb{H}}.$

Note that one can apply the lemma of superposition for the solutions

to the linearized equations of (TE). For making this note short, we skip its
detail of other cases.

In order to derive the maximal regularity estimates we consider the cor-
responding resolvent equations. By Laplace transform (roughly speaking,
$\mathcal{L}^{-1}$ : $\partial_{t}\mapsto\lambda\in \mathbb{C})$ and Fourier transform (roughly speaking, $\mathcal{F}^{-1}$ : $x’\mapsto\xi’\in$

$\mathbb{R}^{2})$ , we deduce the Stokes resolvent problem

(RP) $\{\begin{array}{ll}\lambda\hat{u}+|\xi’|^{2}\hat{u}-\partial_{y}^{2}\hat{u}+(i\xi’, \partial_{y})\hat{q}=\hat{F}_{1} in D,i\xi’\cdot\hat{u}’+\partial_{y}\hat{u}^{3}=\hat{F}_{d} in D,\lambda\hat{h}+\hat{u}^{3}=\hat{H} on r_{+},\partial_{y}\hat{u}’+i\xi’\hat{u}^{3}=\hat{G}_{+}’ on r_{+},2\partial_{y}\hat{u}^{3}-\hat{q}+\sigma|\xi’|^{2}\hat{h}=\hat{G}_{+}^{3} on \Gamma_{+},\hat{u}’-c\delta^{\alpha}\partial_{y}\hat{u}’=\hat{G}_{-} on \Gamma_{-},\hat{u}^{3}=0 on \Gamma_{-}.\end{array}$

Here, we take $\Lambda=0$ and $i:=\sqrt{-1}.$

To solve (RP), we put ‘Ansatz’ for $(\hat{u},\hat{q},\hat{h})$ for $\lambda\in \mathbb{C}$ as follows:

$\hat{h}=\hat{h}(\xi’)$ ,

$\hat{q}(\xi’, y)=\hat{\psi}_{-}(\xi’)e^{-|\xi’|y}+\hat{\psi}_{+}(\xi’)e^{|\xi’|y},$

$\hat{u}’(\xi’, y)=\hat{\phi}_{-}’(\xi’)e^{-\omega y}-\int_{0}^{\delta}k_{-}(\xi’, y, s)i\xi’\hat{q}(\xi’, s)ds$

$+ \hat{\phi}_{+}’(\xi’)e^{\omega y}-\int_{0}^{\delta}\ell_{-}(\xi’, y, s)i\xi’\hat{q}(\xi’, s)ds,$

$\hat{u}^{3}(\xi’, y)=\hat{\phi}_{-}^{3}(\xi’)e^{-\omega y}-\int_{0}^{\delta}k_{+}(\xi’, y, s)\partial_{y}\hat{q}(\xi’, s)ds$
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$+ \hat{\phi}_{+}^{3}(\xi’)e^{\omega y}-\int_{0}^{\delta}\ell_{+}(\xi’, y, s)\partial_{y}\hat{q}(\xi’, s)ds.$

Here, for $\lambda\in \mathbb{C}$ and $\xi’\in \mathbb{R}^{2}$ we denoted $\omega$ $:=\sqrt{\lambda+|\xi’|^{2}}$ , and for $y,$ $s\in(0, \delta)$

$k_{\pm}( \xi’, y, s):=\frac{1}{2\omega}(e^{-\omega|y-s|}\pm e^{-\omega(y+s)})$ , $\ell_{\pm}(\xi’, y, s):=\frac{1}{2\omega}(e^{\omega|y-s|}\pm e^{\omega(y+s)})$ .

Our task is to find 9 functions $(\hat{h}, \psi \hat{\psi}_{+},\hat{\phi}_{-}^{1},\hat{\phi}_{+}^{1},\hat{\phi}_{-}^{2},\hat{\phi}_{+}^{2},\hat{\phi}_{-}^{3}, \hat{\phi}_{+}^{3})$ by equations
and boundary conditions.

In what follows, we take $\delta=c=\alpha=1$ for simplicity. Computing the
inverse of $9\cross 9$ matrix, we have e.g.,

$\hat{h}=\frac{\omega^{3}+\lambda|\xi’|+3\omega|\xi’|^{2}}{\lambda(\omega^{3}+\lambda|\xi’|+3\omega|\xi|^{2})+\sigma|\xi’|^{3}(\omega+|\xi’|)}\hat{H}=:\frac{m_{1}}{m_{2}}\hat{H}.$

Note that $m_{2}(\lambda, |\xi’|)=\lambda(\omega^{3}+\lambda|\xi’|+3\omega|\xi’|^{2})+\sigma|\xi’|^{3}(\omega+|\xi’|)$ contains the
parabolic scale $(\lambda\sim|\xi’|^{2})$ and the hyperbolic scale $(\lambda\sim|\xi’|)$ at once. So,
it is difficult to apply the standard methods, at least directly, for guarantee
non-zero of the denominators and for deriving the resolvent estimate.

4 Method of Newton polygon

The method of Newton polygon was developed by Euler, and is the way
to seek the direction for the biggest gradient of a complex-value function.
More precisely, taking $\lambda\sim|\xi’|^{k}$ for $k>0$ , we observe which is the dominant
terms. We refer to the description of Newton polygon approach in [GV92]
and [DMV98].

In here, we give a brief idea of Newton polygon. We settle

$z:=|\xi’|\in \mathbb{R}_{+},$ $\omega$
$:=\sqrt{\lambda+z^{2}},$ $\lambda\sim z^{k}$ for $k>0.$

So, 5 terms of $m_{2}(\lambda, z)=\lambda(\omega^{3}+\lambda z+3\omega z^{2})+\sigma z^{3}(\omega+z)$ are of ordering as

$\bullet 0<k<1\Rightarrow m_{2}\sim z^{k+3}+z^{2k+1}+z^{k+3} +z^{4} +z^{4},$

$\bullet k=1 \Rightarrow m_{2}\sim z^{4} +z^{3} +z^{4} +z^{4} +z^{4},$

$\bullet 1<k<2\Rightarrow m_{2}\sim z^{k+3}+z^{2k+1}+z^{k+3} +z^{4} +z^{4},$

$\bullet k=2 \Rightarrow m_{2}\sim z^{5} +z^{5} +z^{5} +z^{4} +z^{4},$

$\bullet k>2 \Rightarrow m_{2}\sim z^{5k/2}+z^{2k+1}+z^{3k/2+2}+z^{k/2+3}+z^{4}.$

Note that the highest order terms dominate. In fact, putting $(r, s)$ the ex-
ponents of the terms $\lambda^{r}z^{s}$ , every point $(r, s)$ in above is in the convex hull
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$N(P)$ of 4 points $P$ $:=\{(0,0), (5/2, 0), (1, 3), (0,4)\}$ in clockwise direction;

this convex hull $N(P)$ is so-called Newton polygon. In addition, all coeffi-
cient of five terms is a positive real number. So, we can see that there exist
$\lambda_{0}>0$ and $\varphi\in(0, \pi)$ such that $m_{2}(\lambda, |\xi’|)\neq 0$ for all $\lambda\in\lambda_{0}+\Sigma_{\varphi}$ and
$\xi’\in \mathbb{R}^{2}$ . Here, $\Sigma_{\varphi}$ $:=\{\lambda\in \mathbb{C};|\arg\lambda|<\varphi\}$ is the sector region in the complex
plane.

Moreover, the method of Newton polygon leads us to derive the maximal
regularity estimates due to the Fourier multiplier theory by Kalton-Weis
[KWOI]. Weis’ Fourier multiplier theory is a strong tool for mathematical
analysis on fluid dynamics. Idneed, there are a lot of papers as application

of it, for example, [DHP03, DHP07, DSS08, PS12, SSII].
Let $M_{2}$ $:=\mathcal{L}^{-1}\mathcal{F}^{-1}m_{2}\mathcal{F}$ be Fourier multiplier of symbol $m_{2}.$

Lemma 4.1. If $1<p<\infty,$ $r,$ $s\geq 0$ , then there exists $\rho_{0}\geq 0$ such that

$M_{2}\in Isom(\mathcal{K}_{p,\rho}^{r+5/2}(\overline{\mathcal{K}}_{p}^{s})\cap \mathcal{K}_{p_{)}\rho}^{r+1}(\mathcal{K}_{p}^{s+3})-\cap \mathcal{K}_{p,\rho}^{r}(\overline{\mathcal{K}}_{p}^{s+4}), \mathcal{K}_{p,\rho}^{r}(\overline{\mathcal{K}}_{p}^{s}))$

for all $\rho\geq\rho_{0}$ , where $\mathcal{K}_{p,\rho}^{r}(\overline{\mathcal{K}}_{p}^{S})$ $:=0^{\mathcal{K}_{p,\rho}^{r}}(\mathbb{R}_{+};\overline{\mathcal{K}}_{p}^{s}(\mathbb{R}^{2}))$ ; $\mathcal{K},$ $\overline{\mathcal{K}}\in\{H,$ $B_{p}$

$0^{H_{p,\rho}^{r}(\mathbb{R}_{+};\overline{\mathcal{K}})}$ $:=\{u;e^{-\rho t}\partial_{t}^{k}u\in L_{p}(\mathbb{R}_{+};\overline{\mathcal{K}})$ , $\forall_{k}\in \mathbb{N}_{0},$ $0\leq k\leq r,$ $u(O)=0\}.$

The proof of this lemma is shown by [DGHSSII], we omit the detail. We
would emphasize that $(r, s)$ the differential orders in the image of isomor-
phism is added to the the corner of $N(P)$ in the domain. By this lemma, we

therefore $prove\backslash$ that for $H\in B_{p,p}^{1-1/2p}(L_{p}(\mathbb{R}^{2}))\cap L_{p}(B_{p,p}^{2-1/p}(\mathbb{R}^{2}))$ ,

$\mathcal{L}^{-1}\mathcal{F}^{-1}\frac{m_{1}}{m_{2}}\hat{H}=h\in B_{p,p}^{2-1/2p}(L_{p}(\mathbb{R}^{2}))\cap H_{p}^{1}(B_{p,p}^{2-1/p}(\mathbb{R}^{2}))\cap L_{p}(B_{p,p}^{3-1/p}(\mathbb{R}^{2}))$

in $(0, T)$ for $T<\infty$ . This calculation completes the proof of Lemma 3.2.
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