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Abstract

A computer-assisted proof which proves the existence of non-trivial steady-state solu-
tions for the Kolmogorov flows is presented. The method is based on the infinite-dimensional
fixed-point theorem using Newton-like operator. This paper also proposes a numerical ver-
ification algorithm which generates automatically on a computer a set including the exact
non-trivial solution with mathematical rigorous error bounds. All discussed numerical re-
sults are taken into account of the effects of rounding errors in the floating point computa-
tions.

1 Introduction

Consider the Navier-Stokes equations:

$u_{t}+uu_{x}+vu_{y}= \nu\Delta u-\frac{1}{\rho}p_{x}+\gamma\sin(\frac{\pi y}{b})$ , (1)

$v_{t}+uv_{x}+vv_{y}= \nu\triangle v-\frac{1}{\rho}p_{y}$ , (2)

$u_{x}+v_{y}=0$ , (3)

where $(u, v)$ , $\rho,$ $p$ and $\nu$ are velocity vector, mass density, pressure and kinematic viscosity,
respectively and $\gamma$ is a constant representing the strength of the sinusoidal outer force. Also
$*\xi$

$:=\partial/\partial\xi(\xi=t, x, y)$ and $\triangle$ $:=\partial^{2}/\partial x^{2}+\partial^{2}/\partial y^{2}$ . The flow region is a rectangle $[-a, a]\cross[-b, b]$

and the periodic boundary conditions are imposed in both directions. The aspect ratio is
denoted by $\alpha$ $:=b/a.$

The above equations (1-3) describe the Navier-Stokes flows in a two-dimensional flat torus
under a special driving force proposed by Kolmogorov [1, 5], [6, Chapter 5] and have a basic
solution which is written as

$(u, v,p)=(k\sin(\pi y/b), 0, d)$ ,

where $k$ $:=b^{2}\gamma/(\pi^{2}v)$ and $d$ is any constant. It is known that non-trivial solutions bifurcate
from the basic solution at a certain Reynolds number, which is defined below, if and only if
$0<\alpha<1[1]$ . Okamoto-Shoji [5] computed numerically bifurcation diagrams with the Reynolds
number as a bifurcation parameter varying the aspect ratio as a splitting parameter. They also
strongly suggested stability of the bifurcating solutions for all $0<\alpha<1$ . Nagatou [2] took
an another approach to this stability problem by employing the theory of verified computation
and showed that the stability of the bifurcating solutions is mathematical rigorously assured
for the cases of $\alpha=0.4$ , 0.7 and 0.8.

In the previous paper [10], we proposed a method to prove the existence and the local unique
ness of the steady-state solutions of the Navier-Stokes equations (1-3) for a given Reynolds
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number and aspect ratio by a computer-assisted proof with some verified results. It was also
the first theoretical results to the non-trivial solutions of the equations (1–3).

The aim of this paper is to apply our other verification method: FN-Int[3, 4, 9] to prove
the existence of the steady-state solutions of problem (1-3) and to ascertain its effectiveness in
the actual numerical computation.

In FN-Int, the equation is decomposed into the finite-dimensional part and the infinite-
dimensional error part, and if the both part lead to the retraction maps under suitable as-
sumptions, an infinite-dimensional fixed-point theorem implies the existence of the solution
in a certain function set. In the self-validating process in computer, Newton-like iteration is
executed for the finite-dimensional part, and the computation comes down to solving interval
linear systems. Note that we have also proposed some verification algorithms which assure the
local uniqueness of the solution in the enclosed set [11, 12] We will discuss about them in
future works. We also note that our verification methods described above can be formulated as
a more general form and one may apply it to many kind of differential equations and integral
equations which can be transformed into fixed-point equations.

We admit that our study in this paper has some restrictions (a driving force, two-dimensional
rectangle region, boundary condition, etc however, we belieVe that our idea, not our results
themselves, will pave the way to a tool to study the global bifurcation structure for partial
differential equations arising in more practical, or even industrial problems.

2 Nondimensionalization and function spaces

The letter $T_{\alpha}$ denotes the rectangular region $(-\pi/\alpha, \pi/\alpha)\cross(-\pi, \pi)$ for a given aspect ratio
$0<\alpha<1$ (see Fig. 1). Introducing the stream function $\phi$ satisfying $u=\phi_{y}$ and $v=-\phi_{x}$ so

Figure 1: Shape of $T_{\alpha}$

that $u_{x}+v_{y}=0$ , the equations (1-3) can be rewritten as

$( \triangle\phi)_{t}-\nu\triangle^{2}\phi-J(\phi, \Delta\phi)=\frac{\gamma\pi}{b}\cos(\frac{\pi y}{b})$ (4)

by cross-differentiating equations (1) and (2) and eliminating the pressure $p$ . Here $J$ is a bilinear
form defined by

$J(u, v) :=u_{x}v_{y}-u_{y}v_{x}$ . (5)

133



The equation (4) is nondimensionalized by using change of variables

$(x’, y’)=( \frac{\pi x}{b}, \frac{\pi y}{b}) , t’=\frac{\gamma b}{\nu\pi}t, \phi’(t’, x’, y’)=\frac{\nu\pi^{3}}{\gamma b^{3}}\phi(t, x, y)$

and the Reynolds number $R:= \frac{\gamma b^{3}}{\nu^{2}\pi^{3}}$ . After dropping the primes, an equation

$( \Delta\phi)_{t}-\frac{1}{R}\Delta^{2}\phi-J(\phi, \Delta\phi)=\frac{1}{R}\cos(y)$ (6)

is obtained.
We shall find steady-state solutions, where $(\Delta\phi)_{t}$ is equated to $0$ in equation (6) in the

region $T_{\alpha}$ , namely consider the following nonlinear problem:

$\Delta^{2}\phi=-RJ(\phi, \Delta\phi)-\cos(y)$ in $T_{\alpha}$ . (7)

Assume that $\phi$ is subject to periodicity conditions in $x$ and $y$ , and the symmetry condition

$\phi(x, y)=\phi(-x, -y)$ (8)

as well as the normalization $\int_{\Omega}\phi dxdy=0[2]$ , then the equation (7) has a trivial solution
$\phi=-\cos(y)$ for any $R>0$ (Fig. 2). The aim of this paper is to enclose a non-trivial solution

Figure 2: Shape of the trivial solution $\phi=-\cos(y)$ and stream line of $[\phi_{y}, -\phi_{x}]^{T}.$

of (7) by computer-a.ssisted proof.

3 Function spaces

From the periodicity, the stream function.$\phi$ can be expanded to double Fourier series by

$\phi(x, y)=\sum_{(0,0)\neq(mn)\in \mathbb{Z}},a_{m,n}e^{im\alpha x+iny}, a_{m,n}\in \mathbb{C}.$

Note that if $\phi$ is a solution of (7), $\phi+c(\forall c\in \mathbb{C})$ is also the solution. Then we exclude the

case $(m, n)=(O, 0)$ . By using Euler’s formula and symmetry condition $\phi(x, y)=\phi(-x, -y)$ , it
holds that

$\phi(x, y)=\sum_{(0,0)\neq(mn)\in \mathbb{Z}},a_{m,n}(\cos(m\alpha x+ny)+i\sin(m\alpha x+ny))$
,
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$\phi(-x, -y)=\sum_{\backslash }a_{m,n}(\cos(m\alpha x+ny)-i\sin(m\alpha x+ny))(0,0)\neq(m,n)\in \mathbb{Z}.$

Then adding equations and translating coefficient $a_{m,n}$ , we have

$\phi(x, y)=\sum_{(0,0)\neq(m,n)\in \mathbb{Z}}a_{m,n}\cos(m\alpha x+ny)$
.

Now decomposing indices and using the property of cosine together with replacing $a_{m,n}$ , we
obtain

$\phi(x, y)=\sum_{1\leq n\leq\infty}a_{n}\cos(ny)+ \sum \sum a_{m,n}\cos(m\alpha x+ny)$
.

$1\leq m\leq\infty-\infty\leq n\leq\infty$

Consequently, we can define function space $X^{k}(k\geq 0)$ by the closure in $H^{k}(T_{\alpha})$ of the
linear hull of all functions

$\cos(m\alpha x+ny) , m\in \mathbb{N}_{0}, n\in \mathbb{Z}, (m, n)\neq(O, O)$ .

Especially we define
$X:=X^{3}.$

For each $\psi\in X^{k}$ can be represented by

$\psi=\sum_{(m,n)\in Q}A_{mn}\cos(m\alpha x+ny) , A_{mn}\in \mathbb{R},$

where

$Q:=\{(m, n)\in \mathbb{Z}\cross \mathbb{Z}| \langle m=0andand-\infty\leq n\leq\infty"1\leq n\leq\infty^{J/}or\}$ , (9)

and it is noted that the base function of $X^{k}$ satisfies

$(\cos(m\alpha x+ny), \cos(k\alpha x+ly))_{L^{2}}=\{\begin{array}{ll}\frac{2\pi^{2}}{\alpha} if k=m and l=n0 else\end{array}$ (10)

for any $(m, n)$ , $(k, l)\in Q$ , where $(\cdot, \cdot)_{L^{2}}$ means the usual $L^{2}$-inner product in $T_{\alpha}.$

4 Projection and an a priori error estimate

Let $X_{N}$ be the finite-dimensional subspace of $X$ , which depends on a non-negative integer
parameter $N$ , defined by

$X_{N} := \{\sum_{(m,n)\in Q_{N}}A_{mn}\cos(m\alpha x+ny) A_{mn}\in \mathbb{R}\}$ , (11)

where

$QN$ $:=\{(m, n)\in \mathbb{Z}\cross \mathbb{Z}|$ $\langle m=0and1\leq m\leq Nand-N\leq n\leq N"1\leq n\leq N"or\}$ . (12)

Then

$K :=\dim X_{N}=2N(N+1)$ .
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Let $X_{*}$ denote the orthogonal complement of $X_{N}$ in $X$ such that $X=X_{N}\oplus X_{*}$ , then for any
$\psi_{*}\in X_{*}$ can be represented by

$\psi_{*}=\sum_{(m,n)\in Q_{*}}A_{mn}\cos(m\alpha x+ny) , A_{mn}\in \mathbb{R}$
, (13)

where

$Q_{*}:= \{(m, n)\in \mathbb{Z}\cross \mathbb{Z} (1\leq m\leq Nand0\leq m\leq NandN+1\leq m\leq\infty and-\infty\leq n\leq\infty\frac{N}{}\infty\leq n\leq-N-1"+1\leq n\leq\infty"or, or \}.$ (14)

Figure 3 indicates the area of $Q_{*}.$

Areal $=\{(m, n)\in \mathbb{Z}\cross \mathbb{Z}|0\leq m\leq N$ and $N+1\leq n\leq\infty\},$

$A_{I}e_{c}’\iota 2=\{(m_{\}}n)\in \mathbb{Z}\cross \mathbb{Z}|1\leq m\leq NaIld-\infty\leq n\leq-N-1\},$

Area3 $=\{(m, n)\in \mathbb{Z}\cross \mathbb{Z}|N+1\leq m\leq\infty$ and $-\infty\leq n\leq\infty\}.$

Figure 3: Area of $Q_{*}$

Now we define the projection $Xarrow X_{N}$ by the N-th truncation of Fourier expansion. Note
that by the orthogonality of of the basis $P_{N}$ coinsides with usual $H_{0}^{2}$-projection:

$(\Delta(\psi-P_{N}\psi), \Delta\psi_{N})_{L^{2}}=0, \forall\psi_{N}\in X_{N}$ , (15)

and we obtain the following a priori error estimate for the liner problem of $\Delta^{2}\xi=g.$

Lemma 4.1 For each $g\in X^{0}$ let $\xi\in X^{4}$ the solution of $\Delta^{2}\xi=g$ , then

$\Vert\xi-P_{N}\xi\Vert_{X}\leq C_{5}\Vert g\Vert_{L^{2}}$

holds, where

$C_{5}= \frac{1}{\alpha(N+1)}$ . (16)
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5 Some estimations for $X$

Since

$|\psi|_{H^{3}(\Omega)}^{2}=\Vert u_{xxx}\Vert_{L^{2}}^{2}+3\Vert u_{xxy}\Vert_{L^{2}}^{2}+3\Vert u_{xyy}\Vert_{L^{2}}^{2}+\Vert u_{yyy}\Vert_{L^{2}}^{2}$

$= \frac{2\pi^{2}}{\alpha} \sum (\alpha^{6}m^{6}+3\alpha^{4}m^{4}n^{2}+3\alpha^{2}m^{2}n^{4}+n^{6})A_{mn}^{2}$

$(m,n)\in Q$

$= \frac{2\pi^{2}}{\alpha} \sum (\alpha^{2}m^{2}+n^{2})^{3}A_{mn}^{2},$

$(m,n)\in Q$

we have

(17)

Therefore since semi-norm $|\psi|_{H^{3}(\Omega)}$ becomes norm of $X$ , we define the norm and the inner-
product of $X$ by

$\Vert\phi\Vert_{X}:=|\psi|_{H^{3}(\Omega)},$

$(u, v)_{X} :=(u_{xxx}, v_{xxx})_{L^{2}}+3(u_{xxy}, v_{xxy})_{L^{2}}+3(u_{xyy}, v_{xyy})_{L^{2}}+(u_{yyy}, v_{yyy})_{L^{2}},$

respectively.
For the norm $\Vert\cdot\Vert_{X}$ , the following estimations hold.

Lemma 5.1 For any $\psi\in X$ , and $\forall\psi_{*}\in X_{*}$ , it can be checked that

$\Vert\psi\Vert_{L^{2}}\leq\alpha^{-3}\Vert\psi\Vert x, \Vert\psi_{*}\Vert_{L^{2}}\leq C_{1}\Vert\psi_{*}\Vert_{X},$

$\Vert\psi_{x}$ II $L^{2}\leq\alpha^{-2}\Vert\psi\Vert_{X},$ $\Vert(\psi_{*})_{x}\Vert_{L^{2}}\leq C_{2}\Vert\psi_{*}\Vert_{X},$

$\Vert\psi_{y}\Vert_{L^{2}}\leq C_{3}\Vert\psi\Vert_{X}, \Vert(\psi_{*})_{y}\Vert_{L^{2}}\leq C_{4}\Vert\psi_{*}\Vert_{X},$

$\Vert\nabla\psi\Vert_{L^{2}}\leq\alpha^{-2}\Vert\psi\Vert_{X}, \Vert\nabla\psi_{*}\Vert_{L^{2}}\leq C_{2}\Vert\psi_{*}\Vert_{X},$

$\Vert\nabla\psi_{x}\Vert_{L^{2}}\leq a^{-1}\Vert\psi\Vert_{X}, \Vert\nabla(\psi_{*})_{x}\Vert_{L^{2}}\leq C_{5}\Vert\psi_{*}||x,$

$\Vert\nabla\psi_{y}\Vert_{L^{2}}\leq C_{6}\Vert\psi\Vert_{X}, \Vert\nabla(\psi_{*})_{y}\Vert_{L^{2}}\leq C_{7}\Vert\psi_{*}\Vert_{X},$

$\Vert\triangle\psi\Vert_{L^{2}}\leq\alpha^{-1}\Vert\psi\Vert_{X}, \Vert\Delta\psi_{*}\Vert_{L^{2}}\leq C_{5}\Vert\psi_{*}\Vert_{X},$

$\Vert\triangle\psi_{x}\Vert_{L^{2}}\leq\Vert\psi\Vert x, \Vert\triangle(\psi_{*})_{x}\Vert_{L^{2}}\leq \Vert\psi_{*}\Vert_{X},$

$\Vert\Delta\psi_{y}\Vert_{L^{2}}\leq\Vert\psi\Vert_{X}, \Vert\triangle(\psi_{*})_{y}\Vert_{L^{2}}\leq \Vert\psi_{*}\Vert_{X},$

where

$C_{1}$ $=$ $\frac{1}{\alpha^{3}(N+1)^{3}},$ $C_{2}$ $=$ $\frac{1}{\alpha^{2}(N+1)^{2}},$

$C_{3}$ $=$ $\max\{1,$ $\frac{2\sqrt{3}}{9\alpha^{2}}\},$ $C_{4}$ $=$ $\max\{\frac{1}{(N+1)^{2}},9\alpha^{2}(N+1)^{2}2\sqrt{3}\},$

$C_{5}$ $=$ $\frac{1}{\alpha(N+1)},$ $C_{6}$ $=$ $\max\{1,$ $\frac{1}{2\alpha}\},$

$C_{7}$ $=$ $\max\{\frac{1}{N+1},$ $\frac{1}{2\alpha(N+1)}\}.$

In actual calculations, $L^{\infty}$-estimates proposed by Plum [7] are also needed.
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Lemma 5.2 (Plum,1992 [7]) For any $\psi\in X$ , the following assertion holds true:

$\Vert\psi\Vert_{L\infty}\leq C_{8}\Vert\psi\Vert_{L^{2}}+C_{9}\Vert\nabla\psi\Vert_{L^{2}}+C_{10}\Vert\Delta\psi\Vert_{L^{2}}$ , (18)

where $\Vert\cdot\Vert_{L}\infty$ is the $\sup$-norm and

$C_{8}= \frac{\sqrt{\alpha}}{2\pi}, C_{9}=\frac{1.1548}{\sqrt{3}}\sqrt{\frac{\alpha^{2}+1}{\alpha}}, C_{10}=\pi\frac{0.44722}{3}\sqrt{\frac{9\alpha^{4}+10\alpha^{2}+9}{5\alpha^{3}}}.$

Lemma 5.1 and Lemma 5.2 imply $L^{\infty}$-estimates immediately.

Lemma 5.3 For $\forall\psi\in X$ and $\forall\psi_{*}\in X_{*}$ , it is ture that

$\Vert\psi\Vert_{L\infty}\leq C_{11}\Vert\psi\Vert_{X}, \Vert\psi_{*}\Vert_{L}\infty\leq C_{12}\Vert\psi\Vert_{X},$

$\Vert\psi_{x}\Vert_{L}\infty\leq C_{13}||\psi\Vert_{X}, \Vert(\psi_{*})_{x}\Vert_{L}\infty\leq C_{14}\Vert\psi_{*}\Vert_{X},$

$\Vert\psi_{y}\Vert_{L}\infty\leq C_{15}\Vert\psi\Vert_{X}, \Vert(\psi_{*})_{y}\Vert_{L^{\infty}}\leq C_{16}\Vert\psi_{*}\Vert_{X},$

where

$C_{11} = a^{-3}C_{8}+a^{-2}C_{9}+\alpha^{-1}C_{10}, C_{12} = C_{1}C_{8}+C_{2}C_{9}+C_{5}C_{10},$

$C_{13} = \alpha^{-2}C_{8}+\alpha^{-1}C_{9}+C_{10}, C_{14} = C_{2}C_{8}+C_{5}C_{9}+C_{10},$

$C_{15} = C_{3}C_{8}+C_{6}C_{9}+C_{10}, C_{16} = C_{4}C_{8}+C_{7}C_{9}+C_{10}.$

We mention about partial integrations at finite-dimensional part. Let

$Y^{1} := \{v=\sum_{(m,n)\in Q}A_{mn}\sin(\alpha mx+ny)|A_{mn}\in \mathbb{R}, \Vert\nabla v\Vert_{L^{2}}<\infty\},$

then it holds true.

Lemma 5.4

$(\psi_{x}, \phi)_{L^{2}}=-(\psi, \phi_{x})_{L^{2}}, \psi\in X^{1}, \phi\in Y^{1}.$

$(\psi_{y}, \phi)_{L^{2}}=-(\psi, \phi_{y})_{L^{2}}, \psi\in X^{1}, \phi\in Y^{1}.$

$(\Delta\psi, \phi)_{L^{2}}=(\psi, \Delta\phi)_{L^{2}}, \psi, \phi\in X^{2}.$

$(\triangle\psi, \Delta\phi)_{L^{2}}=(\Delta^{2}\psi, \phi)_{L^{2}}, \psi\in X^{4}, \phi\in X^{2}.$

$(J(u, v), w)_{L^{2}}=(J(w, u), v)_{L^{2}}=-(J(u, w), v)_{L^{2}}, u, v, w\in X^{2}.$

The following is an important property of Jacobian for (7).

Lemma 5.5 $\forall\psi_{1},$ $\psi_{2}\in X^{1},$

$J(\psi_{1}, \psi_{2})\in X^{0},$

namely $J(\psi_{1}, \psi_{2})$ can be re-expanded by $\cos(m\alpha x+ny)((m, n)\in Q)$ .
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6 Verification procedure

This section is devoted to detailed verification procedure of the steady-state Kolmogorov prob-

lem (7).

6.1 Matrices

For fixed $\phi_{N}\in X_{N}$ , define $H,$ $D,$ $L,$ $G\in \mathbb{R}^{K\cross K}(1\leq i,j\leq K)$ by

$H_{ij}:=((\phi_{j})_{xxx}, (\phi_{i})_{xxx})_{L^{2}}+3((\phi_{j})_{xxy}, (\phi_{i})_{xxy})_{L^{2}}+$

$3((\phi_{j})_{xyy}, (\phi_{i})_{xyy})_{L^{2}}+((\phi_{j})_{yyy}, (\phi_{i})_{yyy})_{L^{2}}$ , (19)

$D_{ij}:=(\triangle\phi_{j}, \triangle\phi_{i})_{L^{2}}$ , (20)

$L_{ij}:=(\phi_{j}, \phi_{i})_{L^{2}}$ , (21)

$G_{ij}:=(\triangle\phi_{j}, \Delta\phi_{i})_{L^{2}}+R(J(\phi_{N}, \Delta\phi_{j})+J(\phi_{j}, \Delta\phi_{N}), \phi_{i})_{L^{2}}$ . (22)

6.2 Residual and fixed-point formulation

By setting
$r_{2N}:=-\triangle^{2}\phi_{N}-RJ(\phi_{N}, \triangle\phi_{N})-\cos y$ , (23)

$r_{2N}$ is able to be re-expanded as an element in $X_{2N}$ and we can compute its inner-product with
$\{\phi_{i}\}_{i=1}^{K}$ and $L^{2}$-norm by interval arithmetic.

For fixed approximate solution $\phi_{N}\in X_{N}$ of (7), setting

$\phi=\phi_{N}+\psi$ , (24)

we try to find residual term $\psi$ . Substituting (24) to (7), we obtain a residual equation

$\triangle^{2}\psi=-RJ(\phi_{N}+\psi, \Delta\phi_{N}+\triangle\psi)-\cos(y)-\triangle^{2}\phi_{N}$ in $T_{\alpha}$ . (25)

By denoting the right hand side of (25) by

$f(\psi):=-RJ(\phi_{N}+\psi, \triangle\phi_{N}+\triangle\psi)-\cos(y)-\Delta^{2}\phi_{N}$ , (26)

from Lemma 5.5, $f$ : $Xarrow X^{0}$ is continuous and maps any bounded set of $X$ to a bounded set
of $X^{0}.$

Denote $F:=\triangle^{-2}f$ : $Xarrow X$, then $F$ becomes compact operator and problem (25) is
equivalent to a fixed-point equation $\psi=F(\psi)$ in $X.$

6.2.1 Newton-like operator

By using the projection $P_{N}$ , the fixed-point residual equation (25) can be decomposed into
finite-dimensional part $X_{N}$ and infinite-dimensional part $X_{*}$ as

$\{\begin{array}{l}P_{N}\psi = P_{N}F(\psi) ,(I-P_{N})\psi = (I-P_{N})F(\psi) .\end{array}$

Now we define Newton-like operator $\mathcal{N}_{N}$ : $Xarrow X_{N}$ by

$\mathcal{N}_{N}(\psi) :=P_{N}\psi-[I-F’[0]]_{N}^{-1}P_{N}(\psi-F(\psi))$ ,
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and re-formulate the finite-dimensional part equivalently to

$P_{N}\psi=\mathcal{N}_{N}(\psi)$ .

Here $[I-F’[0]]_{N}^{-1}$ : $X_{N}arrow X_{N}$ is the inverse operator of $P_{N}(I-F’[O])$ : $Xarrow X_{N}$ whose
definition is restricted to $X_{N}$ . Next we definie Newton-like operator $T$ on $X$ by

$T(\psi):=\mathcal{N}_{N}(\psi)+(I-P_{N})F(\psi)$

which is the compact map.

6.2.2 Candidate set

Let $\mathbb{I}\mathbb{R}$ be the set of $K$-dimensional interval vector. A finite-dimensional set $U_{N}\subset X_{N}$ is taken
to be a set of linear combinations of base functions in $X_{N}$ with interval coefficient $\{B_{i}\}_{1\leq i\leq K}$

such as

$U_{N}:= \sum_{i=1}^{K}B_{i}\phi_{i}$ , (27)

where $B_{i}$ has upper and lower bounds such that $B_{i}=[\underline{B}_{i}, \overline{B}_{i}]$ . Here $\sum_{i=1}^{K}B_{i}\phi_{i}$ is interpreted as
the set of functions in which each element is linear combination of $\{\phi_{i}\}_{1\leq i\leq K}$ whose coefficient
of $\phi_{i}$ belongs to the corresponding interval $[\underline{B}_{i}, \overline{B}_{i}]$ for each $1\leq i\leq K$ , namely,

$U_{N}= \{\sum_{i=1}^{K}v_{i}\phi_{i}\in X_{N} v_{i}\in \mathbb{R}, v_{i}\in B_{i}, 1\leq i\leq K\}$ . (28)

For $\alpha>0$ , a infinite-dimensional set $U_{*}\subset X_{*}$ and a candidate set $U\subset X$ is taken to be

$U_{*}:=\{\psi_{*}\in X_{*}|\Vert\psi_{*}\Vert_{X}\leq\beta\}$ , (29)

$U:=U_{N}+U_{*}$ . (30)

6.2.3 Verification condition

Theorem 6.1 Assume that the candidate set $U\subset X$ is defined by (29) and (27) with
(30), and that any element $\psi\in U$ is represented by

$\psi=\psi_{N}+\psi_{*}, \psi_{N}\in U_{N}, \psi_{*}\in U_{*}.$

Let $d=[d_{i}]\in \mathbb{I}\mathbb{R}^{K}$ denote an interval enclosure of the set whose i-th component consists
of

$\{(f(\psi)-f’[0]\psi_{N}, \phi_{i})_{L^{2}}\in \mathbb{R}|\psi\in U\}, 1\leq i\leq K$ . (31)

If, for an interval vector $v=[v_{i}]\in I\mathbb{R}^{K}$ enclosing the solution $x\subset \mathbb{I}\mathbb{R}^{K}$ for the linear
equation

$Gx=d$, (32)

the conditions
$v_{i}\subset B_{i}, 1\leq i\leq K$ , (33)

and

$\psi\in$
Usup $\Vert(I-P_{N})F(\psi)\Vert_{X}\leq\beta$ (34)

hold, then there exists a fixed-point of $F$ in $U.$
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7 Some verification results

We use Sun Fortran 95 Ver.8.6 Linux-i386 (supporting interval arithmetic) and the inter-
val arithmetic toolbox INTLAB [8] Version 6 with MATLAB 7.14.0.739 $(R2012a)$ on Fujitsu
PRIMERGY TX300 S5 (CPU: Intel Xeon E55202.$27GHz$ , OS: Red Hat Enterprise Linux
Server release 5.6).

In the case of $\alpha=0.7$ , the basic flow (trivial solution) $-\cos(y)$ loses stability at a critical
Reynolds number $R_{c}$ and another steady state bifurcates. Okamoto-Shoji strongly suggested
that there is no secondary bifurcation from this branch. Nagatou [2] also enclosed the $R_{c}$ in
the interval [3.011528364444, 3.011528364446].

Figure 4 shows the bifurcation diagram, where $|A_{0,1}|$ means the absolute value of the coef-
ficient to the base $\cos(ny)$ for obtained approximate solution.

$|A_{0,1 ,\downarrow}|$

$arrow R$

Figure 4: Bifurcation diagram for $\alpha=0.7$

Figure 5 shows verification results for $R=3.015$ , 3.02, 3.05, 3.1, 3.2, and 3.5 by IN-Linz.
We will report on various verification results for various a in another article.
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