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1 Introduction

We consider a local in time unique existence theorem for the motion of a compressible
‘barotropic viscous fluid occupying a domain 2 of the N dimensional Euclidean space
RY (N > 2) with the boundary slip condition. Let p = p(z,t) be the density of the
fluid, v = v(z,t) = (v(z,1),...,vn(z,t)) the velocity vector field, and P(p) the pressure

function with z = (z1,...,zn) € Q2 and ¢ being the time variable. The motion is described
by-the following equations:

Oip + div (pu) =0 in Q x (0,7),
p(Bpu+u-Vu) —DivS(u)+ VP(p) =0 in Q x (0,7), (1.1)
D(un— <D(un,n>n=0, u-n=0 on T x (0,T), '

(p,u)|e=0 = (ps +b0,u0)  in

(cf.[4, 6]), where §; = 3/, p.« is a positive constant describing the mass density of the
reference body €2, I' the boundary of €2 and n the unit outward normal to I'. Moreover,
P(p) is a C* function defined on p > 0 satisfying the condition: P'(p) > 0 for p > 0 and
S(u) the stress tensor of the form:

S(u) = aD(u) + (8 — a)divul,

where « and [ are positive constants describing the first and second viscosity coefficients,
respectively, D(v) denotes the deformation tensor whose (j, k) components are D;(v) =
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Ojur + Opv; with 0; = 0/0z;, and I the N x N identity matrix. Finally, for any matrix
field K with components Kji, j,k = 1,..., N, the quantity Div K is an N-vector with
j-th component Zszl 0w Kk, and also for any vector of functions u = (uy,...,uy) we set
divu = Zjvzl andu-V = E;\{_—l ’Ll,jaj with V = ((91, N ,8N>;

A local in time unique existence theorem was proved by Burnat and Zajaczkowski [2]
in a bounded domain of 3-dimensional Euclidean space R, where their velocity field u and
density of the fluid p belong to Sobolev-Slobodetskii spaces Wit®+®/2 and W, t1/2+e/2
with a € (1/2,1), respectively. Moreover, a global in time unique existence theorem was
proved by Kobayashi and Zajaczkowski [5] in the same class as in the local in time unique
existence theorem by the energy method. The purpose of this paper is to prove a local in
time unique existence theorem in a uniform Wq3 Y4 * and our velocity field u and density
of the fluid p belong to W2)(Q x (0,T)) and W}1(Q x (0,T)) with 2 < p < oo and
N < g < 00, where we have set

WER(S x (0,T)) = L((0,T), WA) N W (0,T), Ly(S). (12)

One of the merits of our approach is less compatibility condition than [2].
To obtain such local in time unique existence theorem, it is key to prove the Ly,-L,
maximal regularity for the linearized problem of the following form:

0ip+ yodivu = f in © x (0, 00),
Yo0u — DivS(u) + V(y1ip) = g . inQx (0, ), (1.3)
aDu)ju— <D(un,n>n]=h—~<hn>n, u-n=h onl x(0,00),
(p, u)|e=0 = (po, o) in Q.

v = 7vi(x) (¢ = 0,1,2) are uniformly continuous functions defined on ) satisfying the
assumptions:

Pe/2 < () <200, 0L () <p1 (€ QEk=12), [Vl <o €£=0,1,2)
, ' (1.4)
with some positive constant p;.
In order to show L,-L, maximal regularity, we prove the existence of R-bounded
solution operator to the following generalized resolvent problem corresponding to time
dependent problem (1.3):

A0+ Yodivy = f in §2,
YAV — DivS(v) + V(1) =g in €, (1.5)
o[D(vin— <D(v)n,n>n]=h-<hn>n, v-n=h onl.

In fact, we prove that for any ¢ € (0,7/2), there exist a constant Ay > 1 and an
operator family R(A) € Hol (Zy, £(X(R2), WZ(Q)")) such that for any f € W}(<,
g € L()Y, h € WHQN and A € WA(Q), problem (1.5) admits a unique solu-
tion (p,v) = R(A)(f,g,A\Y/?h, Vh, A\a, A\V/2Vh, V2h) and (A, A2V P,, V2P,)R(}) is R-
bounded for A € Xy, N K. with value in L(X,(Q), W}(Q) x L)M). Here, P, is the

*The definition of W(f ~M9 domain is given in Definition 1.1, below.
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projection such that P,(p,u) = u, N = N + N2+ N3,
Zere = {A€C A = Ao, jargA| < 7 — €},
Y v 2
= . Im A — 1.6
PeClOt s o+ Imaf 2 (g + o7, (16)
X Q) = {F = (F,...,F) | L € W}(Q), Fs € Ly(Q), Fa, F3, Fs € Ly ()7,
F4aF7 € L,q(Q)Nz}v

with v = sup,egn(z)12(z), and Fy, Fy, F3, Fy, Fs5, Fg and Fy are independent vari-
ables corresponding to f, g, A/2h Vh, A, AY2Vh and V2h, respectively. Moreover,
Hol (U, L(X,Y)) denotes the set of all £(X,Y’) valued holomorphic functions defined on
a complex domain U and £(X,Y) the set of all bounded linear operators from a Banach
space X into another Banach space Y. Since the solution (p, u) to problem (1.3) is rep-
resented by the inverse Laplace transform of the solution (6, v) to problem (1.5), so that
the maximal L,-L, result for problem (1.3) is obtained with help of Weis’ operator valued
Fourier multiplier theorem [11].

Before ending the introduction, we summarize several symbols and functional spaces
used throughout the paper. For the differentiations of scalar f and N-vector g, we use
the following symbols:

Vf=(0if,...,0nf), Vif = (8:0;f | 4,j=1,...,N),
Vg=(0g;|4j=1,...,N), Vg= (80 |45k=1,...,N)
with 8; = 8/8z;. For any Banach space X with norm || - ||x, X% denotes the d-product
space of X, while its norm is denoted by || - || x instead of || - || x4 for the sake of simplicity.

For any domain D, L,(D) and W(D) denote the usual Lebesgue space and Sobolev
space, while || - ||,(py and || - lwm(p) denote their norms, respectively. We set

WD) = {(f,8) | f € W(D), g € WE(D)M}

with WQ(D) = Lg(D). For 1 < p < oo, Ly((a,b), X) and W;*((a,b), X) denote the usual
Lebesgue space and Sobolev space of X-valued functions defined on the interval (a,b),
while || - ||z, ((,),x) and || - ”WE"((G»")'X) denote their norms, respectively. Set

Ly (R, X) = {f(t) € Lytoc(R, X) | e f(t) € Lp(R, X)},
Lpy o(R, X) = {f(t) € Lpy (R, X) | f(t) =0 (¢t <O)},

Wi (R, X) = {f(t) € Ly (R, X) | e8] f(t) € Ly(R, X) (j =1,...,m)},
prno(R, X) =

p'h(R X) N Ly o(R, X)),
le™ fllwpu.x) = Z(/(e_ﬁllatjf(t)ﬂx)p dt)
j=0 1

Let F, = F and F¢ ! = F~! denote the Fourier transform and the Fourier inverse
transform, respectively, which are defined by

FAA© = [ et dn, 7w = o | e=tale)de



We also write f(¢) = Fo[f](€). Let £ and £~! denote the Laplace transform and the
Laplace inverse transform, respectively, which are defined by

cio = [ ey, £oGO) = ~ me“gmdf
. —oo 27r

with A =y + 47 € C. Given s € R and X-valued function f(t), we set
ASF(t) = LIV LIFIN]@).

Moreover, the Bessel potential space of X-valued functions of order s is defined by the
following:

Hpo, (R, X) = {f € Ly(R, X) | e "AS[fI(t) € Lyp(R, X) for any v > m},

Y2948
v p’”YlvO(R’X) {f € 1771(R X) | f( ) (t < 0)}
The letter C' denotes generic constants and the constant C, ... depends on a, b, ---. The

values of constants C' and C,,... may change from line to line. N and C denote the set of
all natural numbers and complex numbers, respectlvely, and we set Ng = NU {0}.

Finally, we introduce the definition of a uniform W;~ yr domain, R boundedness of
operator families and the Weis operator valued Fourier multiplier theorem.

Definition 1.1. Let 1 < r < oo and let 2 be a domain in RY with boundary I'. We say

that € is a uniform W2 ™/" domain if there exists positive constants «, 8 and K such that
for any ¢ = (zo1,...,Zon) € T there exist a coordinate number 7 and a W2V function
h(z') (z' = (z1,...,%;,...,2n)) defined on B} (zp) with 2y = (@01, - - ., Zoj, - - - Ton) and

”h“W3 1/"(3/( )) < K SUCh that

QN Bp(zo) = {z € RY | z; > h(a') (z' € By(p))} N Ba(zo),
I'N Bg(zo) = {z € R" | 2; = h(z') (2" € By(x5))} N Bp(xo)-

Here, B, (zy) = {z' € RV7! | |2/ — z}| < a}, Bs(zo) = {z € RY | |z — | < B} and
W7 (B! (x})) denotes the set of all function h € W2(B.(z})) such that

NIiT 1r
{// |0xOih (, ') — Iavkazzh( ¥l da:'dy’} < oo
B!, (o) x B, (z0) A T

for k,1 # j with dxOih = 0%h/0x40x,;.

Definition 1.2. A family of operators 7 C L(X,Y) is called R-bounded on L(X,Y),
if there exist constants C' > 0 and p € [1,00) such that for any n € N, {T;}}_, C T,
{fi}}=1 C X and sequences {r;(u)}}_, of independent, symmetric, {1, 1}-valued random
variables on [0, 1] there holds the inequality:

{/01 H i Tl du}% < C{ I i ri(u)z;l% du} g

The smallest such C i$ called R-bound of T, which is denoted by Ry (T).
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Let D(R, X) and S(R, X) be the set of all X valued C* functions having compact
supports and the Schwartz space of rapidly decreasing X valued functions, respectively,
while S'(R, X) = L(S(R,C), X). Given M € Ly oc(R \ {0}, X), we define the operator
Ty : F-ID(R, X) — S'(R,Y) by

Tu¢ = FI[MF[g]], (Fl¢] € D(R,X)). (1.7)
The following theorem is obtained by Weis [11].
Theorem 1.3. Let X and Y be two UMD Banach spaces and 1 < p < 0o. Let M be a
function in C*(R\ {0}, L(X,Y)) such that

LY M@r) | TER\{OY) Sa<oo (¢€=0,1)

-

with some constant k. Then, the operator Ty defined in (1.7) is extended to a bounded
linear operator from L,(R,X) into L,(R,Y’). Moreover, denoting this extension by T,
we have

Rexyy{(

1T |l ez, ® %), L@ ¥)) < CK
for some positive constant C depending on p, X and Y.

Remark 1.4. For the definition of UMD space, we refer to a book due to Amann [1].
For 1 < q < 0o, Lebesgue space L,(2) and Sobolev space W*(2) are both UMD spaces.

2 Main Results

The following local in time unique existence theorem for (1.1) is our main result.

Theorem 2.1. Let 2 < p < 00, N < ¢ < 00, R > 0 and assume that 2 be a uniform
W: M domain in RN. Let p« be a positive constant and let P(p) be a C* function
defined on p > 0 such that p; < P'(p) < ps with some positive constants p, and ps for
any p € (p./4,4p.). Let 33,5.}‘1/”)(9) be the space defined in (2.2). Then, there exists a
time T depending on R such that for any initial data (6p,u0) € W}(Q) x Bg,(,}‘l/”)(ﬂ)
with ||6ollwy ) + “uollng-l/m(Q) < R satisfying the range condition:

P«/2 < pe + o(x) < 2p.  (2€RN) (2.1)
problem (1.1) admits a unique solution (p,u) with

pEWLQ % (0,T)), ueW2(Qx(0,T)).

To obtain Theorem 2.1, first, we show the following result for the equation (1.3) with
f=0,g=0,h=0and h=0.

Theorem 2.2. Let 1 < p,q < 0o, N < r < oo, max(q,¢) <7 (¢ = ¢q/(qg —1)),
0 <e<mf2, 8 >0 and g > 0. Assume that Q is a uniform W,-B—l/r domain and that
I(Sl S 60. Set

ng—l/p)(ﬂ) = (W;,O(Q)>DQ(Q))1——1/p,p (22)



with real interpolation functor (-,-)ep. Then, for any (po,u) € W}(Q) x BXi-1/p (Q),
problem (1.3) with f =0, g =0, h =0 and h = 0 admits a unique solution (p, u) with

Wl

Y2151

((0,00), W7 (), 1 € Ly ((0,00), W7 (2)) N W, ((0,00), Lg(92))
possessing the estimate:

lle™pllw 0,00, w2 + lle”"Bull (0,000, La()) + lle |z, (0,00, w2(52)

< Clllpollwy @) + Iluoll g2a-1/m )
for any v > vy, with some constant C dépending onp,q, v and N.

Secondly, we show the maximal L,-L, regularity result for the equation (1.3) with
po =0 and up = 0.

Theorem 2.3. Let 1 < p,q< oo, N <1 < o0, max(q,q') <7 (¢ =¢q/(g—1)),0<e<
/2, 8 > 0 and \g > 0. Assume that Q2 is a uniform W2 domain and that 18] < bo.
Then, there exists a positive constant vy, such that for any (f,8) € Ly, o(R, W, °(Q)), h €

Lo 0B, W (ON) N H,L o(R, L(Q)Y), and ho € Ly o(R, WE(Q)) N Wplm,o(R, Ly(92)),

P,72,0
problem (1.3) with p =0 and u = 0 admits a unique solution (p,u) with

Wl

PyY2,0

(Rv qu (Q))a u€ LP»“/z,O(R’ qu(Q)N) n Wpl,'yz,O(R’ LQ(Q)N)v

possessing the estimate

le™ (0, Oep) |z, mwz ey + lle™™ (7w, Be) ||z, w, (o)) + e ullz, mwzco)
< Ol (£, &)L, @wpowm) + lle7(Vh, A1) |, k. 2o(o0)
+ e hllwaw o) + e hllz,®wz)) (2:3)

for any v > o with some constant C' depending on N, p and q.

Remark 2.4. As was seen in Shibata and Shimizu [8], we know that

Hy2 (R, WHSQ)) C Ly, o(R, WAN) "W, o(R, Ly()™),

1™ A2V fll @ Lo < CLlle™ fllwpm o) + e FllL,®wan}-

3 R-boundedness

Employing the similar argumentation to that in Enomoto and Shibata [3], Shibata and
Shimizu [8], we can show Theorem 2.2 and Theorem 2.3 by R-boundedness of solution
operators to the generalized resolvent problem. Thus, the main part of this section is
devoted to the proof of the existence of R-bounded solution operators to problem (1.5).
First, we are concerned with generalized resolvent problem (1.5). '

153



154

Theorem 3.1. Let 1 < ¢ < 00, N < 1 < o0, max(q,¢') <7 (¢ = ¢/(¢g —1)), and
0 < e < m/2. Assume that Q is a uniform Wi ir domain. Let X »,, K. and X,(2) be
the sets defined in (1.6) and set A¢x, = Xier, N K. Moreover, we define the space Xq(2)

by
Xo(Q) = {(f,&n,h) | (f,8) € W, °(Q2), he W} ()", he W ()}
Then, there exist a positive constant Ao and an operator family

R(X) € Hol(Ac,,, L(X4(2), W5*(2)))

such that for any (f,g,h,h) € X ¢(Q) and X € Ay,
(8,v) = RO\)(f, g, A\/?h, Vh, \h, )\1/2Vh V2h) is a unique solution to problem (1.5).
Moreover, there exists a constant C' depending on ¢, Ao, ¢ and N such that

Re L(X(2), W) {(T8:-){(AR(N)) | A € Aep}) < C,
Rz w0y ({(70 ) (YR(N) | A € Aax}) < C, 51)

R ix,(), L) ({(707) EA2VP,R(N) | A € Aepo}) < C,

Rc(xq(o),Lq(n)W)({( ) (VPP,R(N)) | A€ Acx}) < C

with \=~v+1i7 and £ =0,1.

To prove Theorem 3.1 in the case A # 0, inserting the formula: 6 = A7}(f —7;(z)div v)
into the second equation in (1.5), we have

v — *yo“lDiv S(v) — )\_1’)'0—1V(’)’1’)’2diVV) =g - A_lfyO_IV(*/lf).

Thus, instead of (1.5), we mainly consider the equations:

YoAv — DivS(v) — §V(ysdivv) = f in Q
a[D(viIn—- <D(vin,n>n]=h—<hn>n, v.-n=~h on [
(3.2)

with v3 = y172. Let 0 < e <7/2 and Ag > 0. As §, we consider the following three cases:
(Cl) d=XA1land )€ Ay,

(C2) &€ %, with Red <0, \e C with Re) > IB;;g||ImA| and [A| > Xo;

(C3) Red >0, and XA € C with Re A > Ao|Im A| and |A| > M.

In the following, for §, > 0 we assume that |6| < Jp in any cases of (C1), (C2) and (C3).
In particular, in (C1), d = A\g'. In (C2), we note that Imé # 0, because § € £, and
Red < 0. We may include the case where é§ = 0 in (C1), which is corresponding to the
Lamé system. The case (Cl) is used to prove the existence of an R-bounded solution
operator pertaining to (1.5) and the cases (C2) and (C3) enable us the application of
a homotopic argument in proving the exponential stability of the analytic semigroup



associated with (1.3) in a bounded domain. Such homotopic argument already appeared
in [9] and [3] in the non-slip condition case. For the sake of simplicity, we introduce the
set ['¢ zo,5, defined by

A for (C1)
Laraso = { {A € CReA > [Be2lim A, A 2 20} for (C2) (3.3)
{AEC|ReA> AofImAl, A=} for (C3)

We have Theorem 3.1 immediately with help of the following Theorem 3.2 in the case
(C1).

Theorem 3.2. Let1 < g < 00, N < r < 0o, max(q,¢') <7 (¢ =¢/(g—1)),0< e < 7/2,
80> 0 and Ao >.0. Assume that  is a uniform W™ domain and that 18] < 8o. Let
L xo.50 e the set defined in (3.3). Set

Y(Q) = {(f,h,h) | f € L)Y, he W)Y, he WA},

V() ={F = (Fy,...,F) | By, Fs, Fy € L(Q)", Fy, Fre L ()Y, Fye L,(Q)}.
(3.4)

Then, there exist a positive constant Ao and an operator family

AN € Hol(FE,AO,(;g, E(yq(Q),W?l(Q)N)) such that for any (f,h, h) € Y () and A € Ay,
v = A(A)F\(f, h, h) is a unique solution to problem (3.2), and A()) satisfies the following
estimates:

d i
Rﬁ(yq(ﬂ),Lq(Q)ﬁ)({(TE)Z(GAA()‘)) A€ A} <C (£=0,1)

with some constant C depending on €, Ao, b, a, b, ¢ and N. Here and in the fol-
lowing, we set N = N° 4+ N> + 2N, Gyv = (Av,yv, A\Y2Vv, V?v), and Fy\(f,h,h) =
(£, \'/2h, Vh, Ah, \1/2Vh, V2h).

Secondly, we are concerned with time dependent problem (1.3). Let B be a linear
operator defined by

B(8,v) = (—ydiv v, DivS(v) — 71 V(m:0)) for (8,v) € W;(Q) X Dq(82)

with Dy(Q) = {v € W2(Q) | [D(v)n— < D(v)n,n > nljr = 0, v-n = 0}. Since
Definition 1.2 with n = 1 implies the boundedness of the operator family 7, it follows
from Theorem 3.1 that A ), is contained in the resolvent set of B and for any A € Ay,
and (f,g,h,h) € X,(Q),

INlI0llwg @) + |, X290, V2V) | @)

_ o (3.5)
< C(I(f, 8)llwpog) + I(AY?h, Vh)||z,@) + [|(Ah, A2V R, V2R) | Ly0)-

By (3.5), we have the following theorem.
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Theorem 3.3. Let 1 < g < 0o, N < r < 00, max(q,q') <7 (¢ =q/(g—1)),0<
€ < w2, 8 > 0 and A\g > 0. Assume that Q is a uniform W3 domain and that
|6] < 8. Then, the operator B generates an analytic semigroup {T'(t)}:>0 on W2O(S).
Moreover, there exists constants v > 0 and M > 0 such that for any (f,g) € W}°(Q),
(p(t),u(t)) =T()(f,g) solves (1.3) with f =0, g =0, h=0 and h=0 and satzsﬁes the
following estimate:

1T, 8)llwao@ + 2 IVETE) ()l + V2RI (f, 8l
< Me™|(£,8)lyioq:  (36)

Combining Theorem 3.3 with a real interpolation method (cf. Shibata and Shimizu
[8, Proof of Theorem 3.9]), we have Theorem 2.2.

Employing the similar argumentation to that in Shibata and Shimizu (8], we can show
the existence part of Theorem 2.3 by using Theorem 3.1 and Theorem 1.3. Moreover, the
uniqueness of solutions to (1.3) can be proved by using the existence of solutions to the
dual problem as was seen also in Shibata and Shimizu [8]. Thus, we may omit the proof
of Theorem 2.2 and Theorem 2.3.

4 Local in time unique existence theorem for nonlin-
ear problem (1.1)

As was done in Burnat and Zajaczkowski [2] and Kobayashi and Zajaczkowski [5], in
order to prove Theorem 2.1, we formulate (1.1) in Lagrangian coordinates. Let velocity
fields v(&,t) and u(z,t) be known as vectors of functions of the Lagrange coordinates
¢ and the Euler coordinates z of the same fluid particle, respectively. In this case, the
connection between the Lagrange coordinate and the Euler coordinate is written in the
form:

:c=€+/0 v(£, s)ds = X, (€, 1), (4.1)

and v(&,t) = u(z,t). Let A, be the Jacobi matrix of the transformation z = Xv(é,t;)
with element a;; = 6;; + fot (Ov;/0€;)(&, 8) ds. There exists a small number o such that
A, is invertible, that is det A, # 0, provided that

x| / (805/96))(-+8) sl < 0 (0<t<T). (4.2)

In this case, we have V, = A;'V, = (I + V( fo Vv(¢,s)ds))VE, where Vo(K) is an
N x N matrix of C* functions with respect to K = (ki;) defined on |K| < 20 and
Vo(0) = 0, where k;; are corresponding variables to fo (0v;/0&;)(+,s)ds. Assume that
p(z,t) and u(z,t) are solutions of (1.1) in the Euler coordinate. Setting p(X,(£,t),t) =
ps + 60(§) + 0(&,t), we write (1.1) in the Lagrangian coordinate introduced by (4.1) as



follows:
( 80 + (ps + bo)divv = F(6,v) in Q x (0,7),
(s + 60)0v — DivS(v) + V(P'(ps + 60)0) = g + G(6,v) in Q x (0,7),
< a[D(viIn— < D(v)n,n > n] = H(v) onI'x (0,7), (4.3)
‘ , v.n=-v-(n,—n) onl x(0,7),
{ (6, V)|t=0 = (0, ) in Q,

where fi, = n(X,(€,t)), g = —P'(p.+00) V6 and F(6,v), G(9,v) and H(v) are nonlinear
functions of the following forms:

F(0,v) = —0divv — (p. + 6o + B)Vl(/t Vvds)Vv,
0 .
G(0,v) = —00,v + Div [an(/t Vvds)Vv + (8 — a)Vl(/t Vvds)VvI]
0 0
+ Vg(/t Vvds)V[aD(v) + an(/t Vvds)Vv
0 0
t
+ (B —a)divvI+ (8 — a)Vl(/ Vvds)Vv]
/o

1 . t
_ v / P"(pu+ 6+ 70)(1 — 7) dr6?) — P'(ps + 0 + 0) Vo / Vvds)V (0 + 0),
0 0
H(v) = —aD(v)(fiy — n) — a{< D(v)fy, i, > A,— < D(V)n,n > n}

— a{ (Vs /O Vv ds) V)i — < (Val /0 Vv ds)Vv)iy, iy > fiv}. (4.4)

Here, V((K), V1(K), Vo(K) and V3(K) are some matrices of C* functions with respect
to K defined on |K| < o, which satisfy conditions:

Vo(0) =0, V1(0) =0, V5(0) =0, V5(0)=0 (4.5)

and relations: A;' = I+ V([ Vvds), div,w = divew + Vi(f) Vivds)Vw, D,(w) =
De(W) + Vo[ VWwds)VWw and Div,K(w) = Div(K + V,([; VWds)VK with w =
w(X,(&,),t) and K = K(X,(€,1),1). - -

Since we can show eventually that the correspondence z = X, (£,t) is invertible by
using the argument due to Strohmer [10], our main task is to prove the following theorem.

Theorem 4.1. Let N < ¢ < 00, 2 < p < 00 and R > 0. If the initial data (6o, uo) for
(1.1) satisfy the condition (2.1) and ||0ollw; (o) + l[uol| g2a-1/2) ) < R, then there egists a
q9,P
time T > 0 depending on R such that the problem (4.3) admits a unique solution (6,v)
with
9 WHO,T), WAQ), v € WHO,T), L) N Ly((0,7), WA(S)).
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To prove Theorem 4.1, first we show the maximal L,-L, regularity for the following
time local linear problem:

Op+ ydivu=f, y0u—DivS(u)+V(nip)=g in @ x (0,7),
a[D(uyjn— < D(u)n,n>n]=h—-<h,n>n, u-n= h onI x (0,7),
(0, u)|e=0 = (po, o) in Q.
(4.6)

For this purpose, we have to replace the nonlocal operator Ai/ 2 with value in Lq(9) by
the local operator d; with value in W;'(Q). For this purpose, according to Shibata [7], we
introduce the extension map ¢ : L joc(2) = L1 10c(RY) having the following properties:

(e-1) For any 1 < ¢ < oo and f € Wj(Q), of € W}(RY), of = f in Q and lefllwemny <
Coll fllwe@y for £=0,1 with some constant Cy depending on ¢, r and 2.

(e-2) For any 1 < ¢ < oo and f € W}(), [[(1 = A)7 2V f)ll,@¥) < Coll fllLy@) with
some constant C, depending on g, r and .

Here, (1 — A)~"/2 is the operator defined by (1 — A)™Y2f = F7![(1 + [€])YAF([£](€)]. In
the following, such extension map ¢ is fixed. We define Wq_l(ﬂ) by

W (@) = {f € Lijoc() | (1 = A)7V2:f € Lo(Q)}-

Employing the similar argumentation to the proof of Proposition 2.8 in Shibata and
‘Shimizu [8] (cf. also the appendix in Shibata [7]), we have

W ro0(R, W H(€0) N Ly o0 (R, W2 (Q)) € HyL2 (R, Le(2)), (4.7)
le ™A FllL,m L@y < C{lle™8[(1 = D)2 (h)l,mzq@) + e fll,@mwzn}-
(4.8)

Combining Theorem 2.2, Theorem 2.3 and (4.7), we have the following theorem.

Theorem 4.2. Let 1 < p,q < 00, N < r < 00 and max(q,q') <r (¢ =q/(q—1)). Let

T and R be any positive numbers and BZ5~/7 )(Q) be the same set as in (2.2). Assume

that 8y € W, () satisfies the range condition (2.1) and |[Vo|| @ < R. Then, there
exists a positive number vy = yo(R) depending on R and p, such that for any initial data
(po, wo) € W;(Q) x B,i(,.}_l/p)(ﬂ) and right members f, g, h and h with

f e W,((0,T),W;()Y)), &€ Ly((0,T), Ly(S)),
h € L,((0,T), WH(Q)) nW((0,T), W, (),
h € Ly((0,T), WZ() N W, ((0,T), Lg(€2))

satisfying the conditions: hleo = 0 and h|e—o = 0, problem (4.6) admit unique solutions
p and u with

p € W, ((0,T), W, (Q), u€ Ly((0,T), W7 (2)) N W, ((0,T), Lg(€2))



possessing the estimate:

lellwon.we@) + lullz,o.wze) + lallwpos, .o
< C(R)e™{[[(po, wo)ll &, p() + 1 (f, &)1, 0.9 w20y + Bl 00,0, w3 (e)
+ 10[(1 = A)2eh] 1, (0., Lg() + IBll o0 w20 + I1Rllwi (0,200 }

for any t € (0,T) and v > o with some constant C(R) depending on R but independent
of v > and t € (0,T].

Proof of Theorem 4.1. In the following, we assume that 2 < p < co and N < ¢ <
0o, that  is a uniform W, ~/% domain in R¥ (N > 2). By Sobolev’s embedding theorem
we have

Wi () C Loo(Q), ] fillwzey < CTT IS Iwr - (4.9)
j=1 j=1
Let T and L be any positive numbers and we define a space Irr by

Irr ={(0,v) |0 € W,((0,T), W (Q)), veW,((0,T),Lg()) N Lp((0,T), W2 ()
(0, V)li=o = (0,u0) in Q, |0lwiomywi@) + 10, T) < L},

(4.10)

where we have set 1,(0,7) = Ivllz,(0mwz@) + 10:vIlL,(0.1),L4()- Since we choose -

T > 0 small enough eventually, we may assume that 0 < T < 1 in the following. Given
(k,w) € Ip 1, let 6 and v be solutions to problem:

( 80 + (ps + 0o)divv = F(k, w) in Q x (0,7),
(s + 60)0rv — Div S(v) + V(P'(ps + 6p)0) = g + G(k, W) in Qx (0,7),
. a[D(v)n— < D(v)n,n > n] = H(w) onI'x (0,T),
v.-n=-w-(fly —n) onI' x (0,T),
\ (6,V)|t=0 = (0, up) in Q,
(4.11)

First, we estimate the right-hand sides of (4.11). By (4.9), Holder’s inequality and the
identity: k(-,t) = [y dsk(-,s)ds, we have

t t

sup || [ Vw(-,8)ds||u@ < MiTY”L, sup || [ Vw(,s)ds|lwi < CTV?L,
te(0,7) Jo ‘ te(0,T) Jo
sup ||6( )| zoi) < MATVP'L, sup [|&(-, t)llwa) < CTPL,
te(0,T) te(0,T)

(4.12)

with p’ = p/(p—1). Here and in the following, C' denotes a generic constant independent
of T and R and we use the letters M; to denote a special constants independent of T
and L. The value of C may change from line to line. To treat polynomials of functions
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with respect to xk and f(f Vw(-, s)ds, in view of (2.1) and (4.2) we choose T so small that
MTV" L < p,/4 and MTY? L < o, so that

t
/A< put O+ 7k <dps (rE[0,1]), sup u/ Vw(s) sl <o (4.13)
te(0,T") 0

Recall that ||60||W1(Q) + ||u0||Bg<;_1/p>(Q) < R. By (4.12), (4.13), and (4.5), we have

t
sup ||V vw t)ds)|lwy@ < CTY? L, sup [|[VW( / Vw(-,t)ds)|| L@ < CTYP'L
0

t€(0,T) t€(0,T)

sup ||V P”(p* + 60+ 76)(1 — 7) drl|Ly@) < C(R+TYP L),
te(0,T) 0

(4.14)

where i = 1,2,4,5 and 6, and W = W(K) is any matrix of polynomials with respect to
K. By (4.9), (4.4), (4.12), (4.13) and (4.14), we have

IF (5, w)lwg omwiay < CT + L)), lgliyom saan < ORI,
”G(n’w)HLp((O,T),Lq(Q)) < C{Lle/p' + L3(T1/p’)2
+ (1 + R+ LTY?)(LTY?\*T'/? 4 (R + LTY? (LT \T7}.
(4.15)
To obtain

sup (|w(-,? a-1/p) 0y < CIw(0,T + e ||lu (1-1/p) , 4.16
te(OT)” ( )HB“ Vrqy = (W( ) ” 0”35,; 1 P(Q)) ( )

we use the embedding relation:
L,,((O, OO), Xl) M Wpl(((), OO), Xo) C BUC(J, [X(), Xl]l—l/p,p) (417)

for any two Banach spaces X, and X; such that X is dense in Xy and 1 < p < oo (cf.
[1]). Since BIYP(Q) ¢ W}(Q) as follows from the assumption: 2 < p < oo, by (4.16)
and (4.13)

sup. [[w(-,8)lwyier < O(L + &7 o]l gaa-s/mgy)

te(o T)
(4.18)
sup ||8tW( VW( S) dS)”Lq(Q) < C(L+ 67T||U()|| 2(1 l/p)(Q)) ’
te(0,T)
In the following, we assume that LT'/? <1 and 0 < ¢ < 1 to obtain
sup [lhw — nllwe) < C(R+ L)T. (4.19)
te(0,T)
we write iy, — n = fo (Vn)(¢€ + Tfo w(€,s)ds) d’r‘(f0 s)ds). Using the following

estimates

t
Inllwywyy <C,  hwllwg@ <C, [[(Vn)(: +T/0 w(+8)ds)||L.@) < C (1 €[0,1)),
(4.20)



(4.9) and (4.18) we have |[iw — n||z, @) < C(R+ L)T. To estimate V(fi, —n), we write
V(ﬁw - Il) = Al + AQ with

A = /Ol(vn)(uf/otw(g, 5)ds) df(/oth(g, 5)ds),
Ay = /01(v2n)(§+r/0tw(g, s) ds)‘(IM/t Vw(¢,s)ds) dT(/Otw(g, s)ds).

By (4.18) and (4 20), we have ||A1|z,@) < C(R+ L)T. On the other hand, by properties

of uniform W™ domain and (4.12) we have || Asl|z,@) < supse,r) CTIW(- t)llwp (),
which combined with (4.18) furnishes (4.19). We also have

17 (V*0)llze@ < Cllflzg@,  1F(Vhw)lz @ < Cllflwio.- (4.21)
By (4.9), (4.14), (4.18), (4.19), (4.20), and (4.21) we have

|1 H(W)|z, 0.y w2 ) < C((R+ L)LT + L*TV7),

(4.22)
Iw - (w — )L, (0my w2y < C((R+ L)LT + (R + L)T'/?). '
Since Oy, = (Vn)(Xw)w, by (4.20) we have
100w | 2g(2) < Cllw (- )|y, (4.23)
so that by (4.9), (4.18), (4.19) and (4.23), we have
18:(w - (Biw = 1)) |, (0,10, Lq0) < C((R+ L)LT + (R + L)*T*/?). (4.24)

To estimate ||G,[(1 — A)™2H(W)]||,((0.1),L, &), We Prepare the following lemma.

Lemma 4.3. Let1 <p < oo, N < q,r < 00 and let €2 be a uniform W3 domain. Let
L be the extension map satisfying the properties (e-1) and (e-2). Then,

18.0(1 = A 2(V )|, 01,20
< C{ (/0 (18 ¢ )|z 119G Ollwa )P dt)l/p

+ ([ 0956 Dlzgola0. Ol mp ) )

Applying Lemma 4.3 and using (4.20) and (4.23), we have

t
1041 = &) HO, 1wy < C 1030 9l = 1y

t s
+ / IV, )2, W (s )1, oy s + / 10w (-, )[2_ IVl / V() dr) By o ds

+ / 9w, )2, + [V / YW, 7)) @ IVWCr ) Lz 19 )l o) ds.
(4.25)
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Applying (4.13), (4.14), (4.18) and (4.19) to the right-hand side of (4.25), we have
18:[(1 — &)"2HW) 1,01y < CU(R+ L)LT + (R + L*T + L*T"7).  (4.26)

Noting that 6 satisfies the condition (2.1) and ||V6o||z,@) < R, by Theorem 4.2, (4.15),
(4.22), (4.24) and (4.26), we have

10wy wi@) +Iv(0,T) < C(R){||uol y2a-1m g + C(R, L, T)}, (4.27)
where we have set

C(R,L,T) = My{L*T"" + L3(TY?)? + (1 + R+ LT\ (LT? )T/
+ (R+ LTY"\(LTY"YTY? + (R+ L)LT + (R+ L)*T + (R + L)T"/?}

with some special constant M, independent of R and T'. Recalling that ||u0|| 20-1/7) (Q)

R, setting L = 2C(R)R and choosing T € (0,1) so small that C(R, L, T) < R by (4.27)
we have
10llwz o) wecp +1v(0,T) < L. (4.28)

If we define a map ® by ®(k,w) = (6,v), then by (4.28) ® is the map from Zp 1
into itself. Considering the difference ®(x1, w1) — ®(k2, W) for (k;, w;) € I (1 = 1,2),
employing the same argument and choosing T' € (0,1) smaller if necessary, we see that
® is a contraction map on 7, r, so that by the Banach fixed point theorem there exists
a unique fixed point (6,v) € Iy r such that (6,v) = ®(0,v) which solves the nonlinear
equation (4.3). Since the existence of solutions to (4.3) is proved by the contraction
mapping principle, the uniqueness of solutions automatically follows, which completes
the proof of Theorem 4.1. ‘

Proof of Theorem 2.1. Following Strohmer [10], we see that the correspondence z =
X, (&, ) is injective for any t € [0, T provided that (4.2) holds with some small constant
o > 0. Let I be defined by F(z) = 0 locally. Since n, is parallel to (VF)(X, (¢, 1)), so
that the fact that v-n, = 0 on I" implies that 0F(X,(&,t))/0t = 0, which furnishes that
F(X,(¢,t) = F(X,(£,0)) = F(§) = 0 for € € I'. Therefore, we have {X,(£,t) | £ €T} C
I' for each t € (0,T). Note that X, € C°([0,T], W2(Q) N W, ((0,T), W2(Q)). Let us fix
t € (0,T). Employing the same argument as in proving the inverse mapping theorem for
a non-degenerate C! map, we see that X, gives us a local diffeomorphism. We see that
{Xy(&,t) | € € T'} is non-empty, open and closed subset of I, so that the connectedness
of I implies that I' = {X(&,t) | £ € ['}. Thus, we also see that {X,(£,t) | £ € Q} C Q,
because of the injectivity of X,. Since £ is a connected open set, we also see that
Q= {Xy(& 1) | € € Q}. Moreover, the inverse map: £ = X7 (z,t) € W, ((0,T), W2(Q)),
and therefore setting p = 0(X;(z,t),t) and u = v(X;(z,t),t), we see that (p,u)
satisfies the non-linear equations (1.1) and

p € W ((0,T), Ly(2)) N Lyp((0,T), W, (),  u € W,((0,T), Ly(€)) N Ly((0, T), Wg(2)).

The uniqueness for (1.1) follows from the uniqueness of solutions to problem (4.3), which
completes the proof of Theorem 2.1.
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