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The quantum Kalman filter and LQG controller provides enough specification for

accurate estimation and control in linear quantum system, though this holds only

in the case when a trustful mathematical model of the system is available. In this

paper, we consider an optomechanical oscillator which is continuously monitored via

an optical laser, although the laser phase is unknown. For this system, we propose a

robust scheme of both filtering and control against the phase uncertainty of the optical

laser. The filter estimates the uncertain parameter using an auxiliary estimator that

adaptively changes the filtering and control algorithm so that it aquires the better

estimation and control performance near to that of the optimal one. The robustness

is demonstrated in a numerical simulation.

1 Introduction

To realize various nano-architectures including quantum information processors [9],

we need accurate measurement and control of the system under consideration. Quan-

tum filtering theory [2, 3, 4] and its application to quantum feedback control [13, 14]

serve basic methodologies satisfying these requirements and have actually shown the

potential usefulness [1, 6, 11]. For linear quantum systems, especially, the filter and
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the controller have completely the same form as the traditional Kalman filter and

LQG controller, thus such a quantum Kalman filter and a quantum $LQG$ controller

are enough implementable in reality.

However, as in the classical case (we here call “classical only because they are not

quantum systems), the quantum Kalman filter and the quantum LQG controller work

well only when a trustful mathematical model of the system under consideration is

available. Fortunately, for this long-standing issue, the classical system theory has

provided a number of solutions; they are largely classified to two approaches.

The first is based on the notion of “soft sensing that is, the estimation algorithm

is modified, without adding a real sensor, so that the filter and the controller acquire

robustness against the model uncertainty [8, 10].

The second is the “hardware sensing” method that simply introduces actual sensors

so as to obtain more information utilizable for the better estimation under uncertain-

ties. This method is, classically more or less, never inferior to the above soft sensing

technique, if one affords to buy an expensive high-quality sensor required. In the

quantum case, however, we cannot always have such a hopeful statement. This is due

to the unavoidable quantum back-action property; that is, introducing a hardware

sensor must bring additional noise to the system, thus it sometimes happens that the

estimation performance gets worse. The hardware sensing method for robust quantum

filtering and control has, presumably because of this fact, not yet been examined.

In this paper, despite of the back-action issue mentioned above, we apply the idea

of hardware sensing to the quantum case and propose a new configuration of the

quantum Kalman filter and the quantum LQG controller that has robustness against

a certain practical uncertainty.

Let us first describe the uncertainty we treat in this paper. Fig.1 depicts a gen-

eral linear quantum system coupling with an optical laser field. The output light

is measured using so-called balanced homodyne detector, and the signal generated is

then processed in the filter to calculate the estimate of the system variable. Also

we can control the system with the estimate so that the system has nice property.

In reality, an uncertainty appears in this input laser field; that is, the phase of the

input laser cannot be determined in any real experiment. As shown later on, the

phase uncertainty is explicitly contained in all the system, the filter and the con-

troller equations, and thus it may cause large degradation of the estimation and the
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図 1 Schematic of the quantum Kalman filter. First, the system couples with a

input laser. The output laser is mixed, by a beam splitter(BS), with a strong ref-

erence light called the local oscillator(LO), and two outputs are then respectively

detected via a photon detector. This whole measurement configuration is called

the homodyne detection. Finally, the quantum Kalman filter uses the output to

calculate the best estimation $\pi(\hat{x}_{t})$ .

control performance. It should be mentioned that this sort of indirect measurement

scheme through a laser is commonly used for various quantum systems, for instance

an atomic system in the cavity QED setup [5, 7] and an opto-mechanical system in

an optical interferometer [12]. In this sense, the robust Kalman filtering and LQG

control technique under the phase uncertainty of the input laser should be widely

useful and significant.

We next mention briefly about the hardware sensing scheme for robust Kalman

filtering and LQG control. This is built up by first dividing the input laser before it

goes into the system and then putting another homodyne detector along the second

optical path to obtain further information; see Fig. 3 in Section 3. $A$ (probabilistic)

back-action is brought when one does this additional measurement. Nonetheless,

the hardware sensing scheme proposed allows us to estimate the unknown parameter

itself; the result can then be fed back to adaptively change the filtering and control

algorithm and, eventually, the filter and the controller acquire robustness property

despite of the back-action mentioned above. We call this scheme the adaptive Kalman

filter and the adaptive $LQG$ controller.

This paper is organized as follows. In Section 2, the standard quantum Kalman

filter and LQG controller are described by taking an opto-mechanical oscillator as

a system, then the uncertainty issue is explained. Section 3 is devoted to show the

configuration and the algorithm of the adaptive Kalman filter and LQG controller. Its

robustness property is further given. Finally, in Section 4, we numerically demonstrate

the efficiency of our method.
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図 2Schematic of the optomechanical oscillator. The right end mirror of the

Fabry-Perot cavity serves as the oscillator, where $\hat{x}_{t}$ is the system variable, $\^{a}_{t}$ is

an annihilation operator corresponding to the intra-cavity, and $\mathcal{A}_{in}$ is the mean
amplitude of the input laser.

2 The quantum Kalman filter and LQG controller

The system we focus on is an optomechanical oscillator. Consider now a Fabry-

Perot cavity composed of a moving mirror which interacts with an input field $A_{in_{t}}.$

The mirror is modeled with position operator $\hat{q}_{t}$ , momentum operator $\hat{p}_{t}$ , mass $m,$

and resonant frequency $\omega_{m}$ . The intra-cavity optical field \^a decays at rate $\gamma$ due to

coupling through the partially transmitting mirror to the output beam $A_{out_{t}}$ . The

intra-cavity optical field assumed to be resonant at the input beam’s carrier frequency

$\omega_{0}$ , at which point the roundtrip length is $2L$ . The mirror position $\hat{q}_{t}$ is defined relative

to this equibirium position. The operators obey canonical commutation relations:

$[\hat{q}_{t},\hat{p}_{t}]=i\hslash,$ $[\^{a}_{t}, \^{a}_{t}^{\dagger}]=1.$

Removing mean fields and defining amplitude and phase quadrature operators for

the fluctuations that remain, $A_{in_{t}}=\mathcal{A}_{in}+(\hat{\xi}_{1_{t}}+i\hat{\xi}_{2_{t}})$ , $A_{out_{t}}=\mathcal{A}_{in}+(\hat{\eta}_{1_{t}}+i\hat{\eta}_{2_{t}})$ ,

and $\hat{a}_{t}=\alpha+\^{a}_{1_{t}}+i\^{a}_{2_{t}}$ where $\alpha=\mathcal{A}_{in}\sqrt{2}/\gamma$ , We can obtain the system dynamics

with the variable $\hat{x}_{t}=(\hat{q}_{t},\hat{p}_{t},\hat{a}_{1_{t}},\hat{a}_{2_{t}})^{T}$ which is found in a form of so-called quantum

stochastic differential equation:

$d\hat{x}_{t}=A\hat{x}_{t}dt+B(u_{t}dt+d\hat{\xi}_{t})$ , (1)

$A=[-\kappa(\alpha_{2})-\gamma 0-\kappa(\alpha_{1})0-\gamma$
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where $u_{t}=(u_{1_{t}}, u_{2_{t}})^{T}$ is the control input, $\hat{\xi}_{t}=(\hat{\xi}_{1_{t}},\hat{\xi}_{2_{t}})^{T}$ is the input laser,

$\kappa(\alpha)=\alpha\omega_{0}/L$ is an optomechanical coupling strength, and $\alpha=(\alpha_{1}, \alpha_{2})^{T}.$

The output light of the system is subjected to the following equation:

$d\hat{Y}_{t}=C\hat{x}_{t}dt+D(u_{t}dt+d\hat{\xi}_{t})$ , (3)

$C=HB^{T}, D=\{\begin{array}{ll}-1 00 -1\end{array}\}$ , (4)

where $\hat{Y}_{t}=(\hat{\eta}_{1_{l}},\hat{\eta}_{2_{t}})^{T}$ , and $H$ is a 2-dimentional row vector satisfying $HH^{T}=4.$

The outputs commute with each other, i.e., $[\hat{Y}_{t}, \hat{Y}_{s}]=0,$ $\forall s,$ $t$ , thus the sequence of

scalars $y_{t}=\{y_{s} : 0\leq s\leq t\}$ is obtained. For the observer, the variables can be

regarded as classical random variables, which implies the existence of classical condi-

tional expectations $\pi(\hat{x}_{t})$ $:=\mathbb{E}(\hat{x}_{t}|\mathcal{Y}_{t})$ . The quantum Kalman filter is the algorithm

that updates the estimates $\pi(\hat{x}_{t})$ depending on the measurement outcome $y_{t}$ :

$d\pi(\hat{x}_{t})=A\pi(\hat{x}_{t})dt+Bu_{t}dt+(V_{t}E^{T}+F)d\tilde{y}_{t}$ , (5)

$\dot{V}_{t}=(A-FE)V_{t}+V_{t}(A-FE)^{T}$

$+2V_{t}E^{T}EV_{t}+BB^{T}-4FF^{T}$ , (6)

$E=HC, F=- \frac{1}{4}BH^{T}$ , (7)

where $d\tilde{y}_{t}=dy_{t}-\mathbb{E}(d\hat{Y}_{t}|\mathcal{Y}_{t})$ represents the innovation term showing the difference

of $dy_{t}$ and the estimate of $d\hat{Y}_{t}.$
$V_{t}$ represents the (symmetrized) error covariance

matrix.

To cool the oscillator, it is expected that a feedback controller minimizing the

estimated value of the position operator $\hat{q}_{t}$ and momentum operator $\hat{p}_{t}$ . Because

of the linearity of both the dynamics and the output equation, this requirement is

satisfied with the LQG control. We can construct an optimal control law $u_{t}^{*}$ that

minimizes the following quadratic-type cost function:

$J= \langle\frac{1}{2}\int_{0}^{T}(\hat{x}_{t}^{T}Q\hat{x}_{t}+u_{t}^{T}Ru_{t})dt\rangle$ (8)

where $Q\geq 0$ and $R>0$ represents the penalty for the variables and the control input,

respectively.
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図 3Schematic of the adaptive quantum Kalman filter and LQG controller.

The LQG control theory gives the explicit form of the optimal controller:

$u_{t}^{*}=-R^{-1}B^{T}P_{t}\pi(\hat{x}_{t})$ (9)

where $P$ is the solution to the following algebric Riccati equation:

彦 $+P_{t}A+A^{T}P_{t}-P_{t}BR^{-1}B^{T}P_{t}+Q=0$ (10)

We here explain the issue of uncertainty. In reality the input laser field amplitude

$\mathcal{A}_{in}=|\mathcal{A}_{in}|(\cos\theta+i\sin\theta)$ is not the value that can be determined beforehand. That

is, the phase $\theta$ takes a different value in every experiment and thus should be treated

as an unknown parameter. As shoun in equation (2), $\mathcal{A}_{in}$ explicitly appears in the $A$

matrix (note that $\alpha=\mathcal{A}_{in}\sqrt{2}/\gamma$). Therefore, we can never carry out precise updates

of the estimates, which eventually degrade the total performance of the filtering and

control.

3 The adaptive filtering and control

We here describe the hardware sensing scheme. The input laser is divided into two

optical paths via a beam splitter, and the new second path is then measured by the

dual homodyne detector. That is, we measure both the sine and cosine elements of this

second laser field, generating the signal $d\gamma_{t}=\mathcal{A}_{in}dt+dv_{t}$ , where $v_{t}$ is a 2-dimensional

standard Gaussian noise with their entries independent with each other. Note that
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to build the adaptive filter we must introduce vaccum fluctuations that subsequently

produce the additional noise $v_{t}$ ; this is the unavoidable probabilistic back-action

brought by the hardware sensing. The signal $\gamma_{t}$ is then processed through a low-pass

filter (LPF) with the cut-off angular frequency $b>0$ . The LPF variable $\pi(\mathcal{A}_{in})$ obeys

$\pi(\mathcal{A}_{in})=e^{-bt}\mathcal{A}_{in_{0}}+b\int_{0}^{t}e^{-b(t-s)}(\mathcal{A}_{in}ds+dv_{s})$

$= \mathcal{A}_{in}(1-e^{-bt})+b\int_{0}^{t}e^{-b(t-s)}dv_{s}$ . (11)

We find $\mathbb{E}(\pi(\mathcal{A}_{in}))arrow \mathcal{A}_{in}$ as $tarrow\infty$ , thus $\pi(\mathcal{A}_{in})$ asymptotically gives an unbiased

estimate of $\mathcal{A}_{in}.$

The adaptive Kalman filter estimates $\hat{x}_{t}$ , using the LPF variable $\pi(\mathcal{A}_{in})$ instead

of the unknown parameter $\mathcal{A}_{in}$ . Writing such an estimater as $\pi^{A}(\hat{x}_{t})$ , the adaptive

Kalman filter and LQG controller are given as follows:

$d\pi^{A}(\hat{x}_{t})=A^{A}\pi^{A}(\hat{x}_{t})dt+Bu_{t}^{A}dt+(V_{t}E^{T}+F)d\tilde{y}_{t}^{A}$ , (12)

$u_{t}^{A}=-R^{-1}B^{T}P_{t}^{A}\pi^{A}(\hat{x}_{t})$ , (13)

where $A^{A}$ is the $A$ matrix using the LPF variable $\pi(\mathcal{A}_{in})$ instead of the unknown

parameter $\mathcal{A}_{in}$ , and $P^{A}$ is the matrix which follows equation (8) using $A^{A}$ instead of
$A$ , and

$d\tilde{y}_{t}^{A}=d\tilde{y}_{t}+E(\pi(\hat{x}_{t})-\pi^{A}(\hat{x}_{t}))dt$

which indicates that the adaptive Kalman filter is driven with a difference of the true

filter and the adaptive filter.

4 Numerical examples
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図 4The difference between the adaptive (or nominal) and the true estimates for $\hat{q}_{t}$

Let us here see some actual trajectories of the estimates of the adaptive filter and

controller. We particularly focus on three types of the filter where the cut-off fre-

quency is chosen as $b=0.5,$ $b=0.1$ , or $b=0.01$ . The true laser amplitude is

$\mathcal{A}_{in}=(1,0)^{T}$ , which can be used to run the true Kalman filter. For comparison, we

also examine a nominal filter that set $\mathcal{A}_{in}$ to be $(0,1)^{T}$ Fig.4 shows the difference

between the adaptive (or the nominal) and the true estimates of $\hat{q}_{t}$ . We see that the

nominal filter fails in the estimation, while the adaptive Kalman filters well estimate,

particularly when $b=0.1$ . We can numerically see the optimal cut-off frequency which
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cut-off frequency

図 5The cut-off frequency dependence of the cost function

minimizes the cost function $J$ . Fig.5 shows the cut-off frequency dependence of the

cost function. The final time $T$ in this simulation is 3. At lower cut-off frequencies,

the cost function takes large value. The cost function takes the minimum value at

$b=0.03$ , and gradually takes larger value as $b$ get larger. In general, with smaller

value of $b$ , we can obtain more precise estimation in the steady state case, but it shows

the more slowly convergence to the true filter. In other words, in the early stage of

the estimation, the adaptive Kalman filter with small value of $b$ has almost no infor-

mation of $\mathcal{A}_{in}$ , and thus has the same quality as that of the nominal filter. On the

other hand, with larger value of $b$ , the adaptive Kalman filter has fast convergence,

though it cannot achieve precise estimation in the steady state. Fig.5 implies that
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when we take a feedback control which requires rapid convergence and accuracy, there

exists the optimal value of the cut-off frequency in terms of the trade-off between the

convergence and the accuracy.

5 Conclusion

In this paper, for an optomechanical oscillator coupling with a laser field, we have

proposed an adaptive filtering and control scheme that estimates both the system

variables and the unknown phase parameter of the input field. It was then shown

that, by choosing the cut-off angular frequency in the LPF for the adaptive filtering,

we can obtain the robust filter and controller against the phase uncertainty.

Though we have assumed that the uncertainty is constant and only appears in the

phase, in reality these assumptions may not be satisfied. The robust filtering problem

in the more general setting remains open.
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