
FROM PRIMITIVE FORM TO MIRROR SYMMETRY
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ABSTRACT. This is a report on the recent joint work [29] on LG-LG mirror symmetry for
the 14 exceptional unimodular singularities.1

1. INTR0DUCT10N

1 Present note is worked out with the help of the coauthors Changzheng Li, Si Li and Yefeng Shen, to
whom the author expresses his deep gratitudes.
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Primitive forms are about universal deformations $F$ of functions, giving flat structures
on the deformation spaces. Hence, the theory is relevant in the complex geometric (B-

model) aspects of $N=(2,2)$ supersymmetric Landau-Ginzburg (LG) theory with the su-
perpotential $F$ . However, this pattern of the mirror symmetry was not mathematically
rigorously worked out until recently. This is because of (1) lack of mathematical theory
of $A$-model LG-theory at that early time, and (2) the difficulty of calculating primitive
forms until recently, where explicit expressions of primitive forms were known only for
weighted homogeneous polynomials of central charge less than or equal to 1. Both diffi-

culties were resolved as follows.

In around 2007, Fan, Jarvis and Ruan constructed a so-called quantum singularity theory
by counting virtual cycles associated with a weighted homogeneous polynomial, whose
potential (generating series) gives again a Frobenius manifold structure on the so-called
$FJR\mathcal{W}$ state space [14, 15]. This is considered as an $A$-model Landau-Ginzburg theory.
They immediately realized that such Frobenius manifold for an ADE-polynomial $W$ is

actually isomorphic to the Frobenius manifold arising from the primitive form (i.e. B-

side) of another ADE-polynomial $\mathcal{W}^{T}$ . The superpotential polynomial $W^{T}$ on $B$-side is
obtained by the transposition of exponents of monomials in the polynomial $\mathcal{W}$ on $A$-side
[2, 3, 26], which is later called Berglund-H\"ubsch-Krawitz mirror. As an application of this
mirror theorem, they solved the so-called generalized Witten conjecture, which says that
the generating functions arising from the Landau-Ginzburg model for ADE-singularities
should be governed by some ADE-integrable hierarchies. Also a similar observation for

simply elliptic singularities [37] was achieved [27,32,33]. We remark that the relationship
between FJRW theory and Gromov-Witten theory (both are in $A$-model side) is studied

under the name of $LG/CY$-correspondence, for which one is referred to [6-8,27,32,35].

On the other hand, in 2013, jointly with Changzheng Li and Si Li, the author came to

a new perturbative construction of primitive forms [28], where Birkhoff decomposition
theorem used in the original formulation [42] was replaced by the asymptotic expansion
of oscillatory integrals. This enables us to calculate primitive forms explicitly as a power
series in an algorithmic way (at least for weighted homogeneous polynomials). With

the perturbative approach, we can calculate further the flat coordinate system and the

pre-potential function up to any finite order. This will be sufficient to $dete-\dot{m}e$ the flat

coordinate system and the pre-potential function with a help of WDVV-equations.

These two new developments thoroughly changed the view on the LG-LG mirror sym-
metry. Namely, up to a choice of primitive forms, one asks whether the pre-potential at-
tached to FJRW theory for a weighted homogeneous polynomial could coincide with the

prepotential associated to a primitive form for the mirror dual-polynomial. Such a mirror
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symmetry is called the Landau-Ginzburg to Landau-Ginzburg (LG-LG) mirror symmetry.
Its study has developped rapidly in the last years. In the present note, we briefly intro-

duce the theories on both sides and the mirror map construction connecting them. Then,

we confirm the LG-LG mirror symmetry for the 14 unimodular singularities, which are
the first case of weighted homogeneous polynomials whose central charge exceeds 1.

Remark. We remark that the primitive form theory depends only on the analytic equiv-
alence class of the singularity of the function $W^{T}$ , although associated primitive forms

may not be unique but form a family. On the other hand, FJRW theory depends on the

polynomial $W$ itself together with a symmetry group of $W$ . Hence, to achieve the mirror

symmetry to FJRW theory on $W$, both the analytic equivalence class of $\mathcal{W}^{T}$ and the choice
of the primitive form for $\mathcal{W}^{T}$ depend on the choice of the polynomial $W$ . We do not yet
understand this phenomenon conceptually.

2. PRIMITIVE FORM THEORY.

The origin of a Landau-Ginzburg $B$-model (with respect to trivial group symmetry) at

genus zero is the theory of primitive forms [28, 38, 40-42, 44]. The starting data of the

theory is a holomorphic function $f$ : $(X, 0)arrow(\mathbb{C},0)$ defined on a Stein domain $X\subset \mathbb{C}^{n}$

with finite critical points. For our purpose on the LG-LG mirror symmetry, it is sufficient
to consider a weighted homogeneous polynomial $f=f(x_{1}, \cdots, x_{n})$ with an isolated

critical point at the origin $0\in X=\mathbb{C}^{n},$

$f(\lambda^{q_{1}}x_{1\prime \prime}\lambda^{q_{n}}x_{n})=\lambda f(x_{1\prime \prime}x_{n}) , \forall\lambda\in \mathbb{C}^{*},$

Here $(q_{1}, \cdots,q_{n})$ in $\mathbb{Q}_{>0}^{n}$ are called the weights of the coordinates $(x_{1}, \cdots, x_{n})$ , and each

weight $0<q_{\iota’} \leq\frac{1}{2}$ is unique [36]. In [41], the author introduced the formal completion of

the Brieskorn lattice together with a semi-infinite $z$-adic filtration by a formal variable $z$ :

$\hat{\mathcal{H}}_{f}^{(0)}:=\Omega_{X,0}^{n}[[z]]/(df+zd)\Omega_{X,0}^{n-1}[[z]],$

and constructed a higher residue pairing

$K_{f}:\hat{\mathcal{H}}_{f}^{(0)}\otimes\hat{\mathcal{H}}_{f}^{(0)}arrow z^{n}\mathbb{C}[[z]]$

which satisfies a number of properties, and plays a key role in the theory of primitive
forms. A universal unfolding of $f$ is given by

$F:( X\cross S,0\cross 0)arrow(\mathbb{C},0) , F(x, s)=f(x)+\sum_{\alpha=1}^{\mu}s_{\alpha}\phi_{\alpha/}$
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Proposition 2.1. Given a good basis $\{[\phi_{\alpha}d^{n}x]\}_{\alpha=1}^{\mu}\subset\hat{\mathcal{H}}_{f}^{(0)}$ , there exists a unique pair $(\zeta, \mathcal{J})$

satisfying thefollowing: (1) $\zeta\in B[[z]][[s]]$ , (2) $\mathcal{J}\in[d^{n}x]+z^{-1}B[z^{-1}][[s]]\subset\hat{\mathcal{H}}_{f}[[s]]$ , and

($\star$) $e^{(F-f)/z}\zeta=\mathcal{J}.$

Moreover, we embed $z^{-1}\mathbb{C}[z^{-1}][[s]]\mapsto z^{-1}\mathbb{C}[[z^{-1}]][[s]]$ and decompose

$\mathcal{J}=[d^{n}x]+\sum_{m=-1}^{-\infty}z^{m}\mathcal{J}_{m}$ , where
$\mathcal{J}_{m}=\sum_{\alpha}\mathcal{J}_{m}^{\alpha}[\phi_{\alpha}d^{n}x],$

$\mathcal{J}_{m}^{\alpha}\in \mathbb{C}[[s]].$

Then $\zeta$ gives aformal primitiveform, and $\{\mathcal{J}_{-2}^{\alpha}\}$ give aformal Frobenius manifold structure on
$S$ withflat coordinates $\{\mathcal{J}_{-1}^{\alpha}\}_{\alpha}$ . In particular, both $\zeta$ and $\mathcal{J}$ can be computed recursively by an
algebraic algorithm via the aboveformula.

Explicitly, let us denote by $f$ ) and $*$ the flat metric (the first residue pairing) and the
product structure on the tangent bundle of $S$ , respectively. For simplicity, let us denote
by $t_{1}$ , , $t_{\mu}$ the flat coordinate system on $S$ and by $\partial_{l_{1}},$

$\cdots,$
$\partial_{t_{\mu}}$ their partial derivatives.

Then, as a consequence of the flat structure, the following 3-tensor

$A(\partial_{t_{i’}}\partial_{t_{j’}}\partial_{t_{k}}):=I(\partial_{t_{j}}*\partial_{t_{j’}}\partial_{t_{k}})=I(\partial_{t_{i’}}\partial_{t_{i}}*\partial_{t_{k}})$ $\in\ulcorner(S, \mathcal{O}_{S})$ $1\leq i,$ $j,$ $k\leq\mu$

is symmetric in the three variables, and satisfies the following integrability conditions

$\partial_{t_{l}}A(\partial_{f_{j}},\partial_{t_{j}},\partial_{t_{k}})=\partial_{t_{i}}A(\partial_{t_{1}},\partial_{t_{j}},\partial_{t_{k}})$ for alll $\leq i,$ $j,$ $k,$ $l\leq\mu.$

Therefore, there exists a function (formal power series in the flat coordinates) $\mathcal{F}_{0^{G}}^{s_{f}}$

, on $S,$

called the prepotential, such that

$\partial_{t_{j}}\partial_{t_{j}}\partial_{t_{k}}\mathcal{F}_{0^{G}}^{s_{f}},=A(\partial_{t_{i’}}\partial_{t_{j’}}\partial_{t_{k}})=I(\partial_{t_{i}}*\partial_{t_{j’}}\partial_{t_{k}})$

(where the quadratic terms are normalized to be O).

We are enabled to compute the prepotential $\mathcal{F}_{0^{G}}^{s_{f}}$

, of the associated formal Frobenius mani-,

fold structure in a perturbative way, for an arbitrary weighed homogeneous singularity.
On the other hand, it is shown in [28] that the formal power series $\zeta$ is in fact the Taylor
series expansion of the associated (analytic) primitive form around the origin $0\in S$ . This
explains the geometric origin of the induced (formal) Frobenius manifold structure in the
.above proposition together with the analyticity of its prepotental $\mathcal{F}_{0^{G},}^{s_{f}}.$

Let us restrict our attention to the case of exceptional unimodular singularities now.
Originally, there are 14 exceptional unimodular singularities by Arnold [1], which are one
parameter families of singularities with three variables. Each family contains a weighted
homogenous singularity characterized by the existence of only one negative degree but
no zero-degree deformation parameter [43]. Hence in the present note, by exceptional
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unimodular singularities, we mean the weighted homogeneous polynomials in these one

parameter families, which are given in Table 1.

TABLE 1. Exceptional unimodular singularities

There is a partial classification [43] of weighted homogeneous polynomial with iso-

lated singularity by using the central charge

$\hat{c}_{f}:=\sum_{i=1}^{n}(1-2q_{i})$ .

The case $\hat{c}_{f}\leq 1$ \’is characterized as ADE-singularities if $\hat{c}_{f}<1$ , or simple elliptic singular-

ities if $\hat{c}_{f}=1$ . The first examples of $\hat{c}_{f}>1$ are the exceptional unimodular singularities,

the central charge of which are listed in Table 2 by direct calculations.

TABLE 2.

For the 14 singularities $f$, the good basis is already known to be unique [20, 28, 47],

and is simply given by a basis of Jacobian algebra $Jac(f)$ . Hence, the primitive form

is unique (up to a nonzero scalar). By Proposition 2.1, we can obtain the data on LG
$B$-model at genus zero in a perturbative way, and in particular we can calculate the

four-point function $\mathcal{F}_{0}^{(4)}$ (that is, the degree 4 terms of the prepotential $\mathcal{F}_{0_{J}^{G}}^{s_{f}}$ with re-

spect to the flat coordinate system) of the Frobenius manifold structure associated to

the primitive form. For instance for $U_{12}$-singularity, $f=x^{3}+y^{3}+z^{4}$ , we let $\{\phi_{i}\}_{i}=$

$\{1, z, x, y, z^{2}, xz, yz, xy, xz^{2}, yz^{2}, xyz, xyz^{2}\}$ . By direct calculations, we obtain the four-

point function in flat coordinates $(t_{1}, \cdots, t_{12})$ with respect to the primitive form $\zeta=$
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dxdydz $+O(s)$ ,

$- \mathcal{F}_{0}^{(4)}=\frac{1}{8}t_{5}^{2}t_{6}t_{7}+\frac{1}{6}t_{3}t_{6}^{2}t_{8}+\frac{1}{6}t_{4}t_{7}^{2}t_{8}+\frac{1}{4}t_{2}t_{5}t_{7}t_{9}+\frac{1}{6}t_{3}^{2}t_{8}t_{9}+\frac{1}{4}t_{2}t_{5}t_{6}t_{10}+\frac{1}{6}t_{4}^{2}t_{8}t_{10}$

$+ \frac{1}{8}t_{2}^{2}t_{9}t_{10}+\frac{1}{8}t_{2}t_{5}^{2}t_{11}+\frac{1}{6}t_{3}^{2}t_{6}t_{11}+\frac{1}{6}t_{4}^{2}t_{7}t_{11}$

Here we make boxes for the last three monomials, which will be compared with the data
on the LG $A$-side, studied in the next section.

3. MIRROR CONSTRUCTION AND THE FAN-JARVIS-RUAN-WITTEN THEORY

For the mirror symmetry purpose, we restrict our singularity into an invertible poly-
nomial, where the number of variables is the same as the number of monomials in the
polynomial. We consider a pair $(\mathcal{W}, G)$ , where $\mathcal{W}$ is an invertible polynomial with $n$

variables $x_{1},$ $\cdots,$ $x_{n}$ and has no monomials of the form $x_{i}x_{j}$ for $i\neq j$ . By rescaling the
variables, we can always write this polynomial by

$W= \sum_{i=1}^{n}\prod_{j=1}^{n}x_{j}^{a_{ij}}.$

The matrix $Ew$ $:=(a_{ij})_{n\cross n}$ of exponents is called the exponent matr\’ix of $W$ . Let us use
$Aut(W)$ to denote the group ofdiagonal symmetries of $W,$

$Aut(W):=\{diag(\lambda_{1\prime}\lambda_{n})|W(\lambda_{1}x_{1\prime}\lambda_{n}x_{N})=\mathcal{W}(x_{1\prime}x_{n}),\lambda_{j}\in \mathbb{C}^{*}\}.$

Then $G$ is a subgroup in $Aut(W)$ containing

$Iw$ $:=$ diag ($\exp(2\pi\sqrt{-1}q_{1}),$
$\cdots,$ $\exp(2\pi\sqrt{-1}q_{n}))$ ,

with $q_{1},$ $\cdots,$ $q_{n}$ are the weights of variables in $W$ . Berglund and H\"ubsch constructed a
mirror polynomial $\mathcal{W}^{T}[2]$ by taking

$\mathcal{W}^{T}=\sum_{i=1}^{n}\prod_{j=1}^{n}x_{j}^{a_{ji}}$

where $E_{w^{T}}$ is the transpose matrix of $Ew$ . In general, the LG-LG mirror symmetry relates
the pair $(W, G)$ to a mirror pair $(\mathcal{W}^{T}, G^{T})$ , where $G^{T}$ is constructed by [3,26].

In particular, if $G=Aut(W)$ , then $G^{T}$ is the group with only an identity element. $A$

LG-LG mirror symmetry conjecture can be formulated as the equivalence of Frobenius
manifold structure associated with the primitive form theory of $W^{T}$ and that associated
with the genus-O Fan-farvis-Ruan-Witten theory (FJRW) theory of $(W, G=Aut(W))$ .

The FJRW theory is introduced by Fan, Jarvis and Ruan in a series of papers [14, 15],

based on a proposal of Witten [52]. The theory works for the pair $(W, G)$ in general,
where $\mathcal{W}$ is a weighted homogenous polynomial which has an isolated critical point at
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the origin and $G$ is a subgroup in $Aut(\mathcal{W})$ . The theory also requires that $G$ contains $Iw.$

For technical reasons, $\mathcal{W}$ does not contain any monomial term $xy$ . In the present note, we
will focus only on the case $G=Aut(\mathcal{W})$ .

For a pair $(W,Aut(W))$ , there is an FJRW state space $Hw$ which collects all $Aut(\mathcal{W})-$

invariant part of middle dimensional Lefschetz thimble on the fixed locus of each group
element $\gamma$ in Aut (W) ,

$Hw$ $:=$ $\oplus$ $H^{mid}($Fix(y); $W_{\gamma}^{\infty};\mathbb{C})^{Aut(w)}.$

$\gamma\in Aut(W)$

Here $W_{\gamma}^{\infty}$ is the preimage of $[M, \infty$ ), for $M\gg 0$ , under the real part of $\mathcal{W}$ restricted on
the fixed locus Fix ( $\gamma$ ) .

Fan, Jarvis and Ruan [14, 15] studied the space of solutions of Witten equations for $\mathcal{W}$

$\frac{\partial u_{i}}{\partial\overline{z}}+\overline{\partial_{i}W}(u_{1}, \cdots, u_{n})=0, i=1, \cdots, n$

where $z$ is a local coordinate of the curve in consideration (but not the formal variable in

primitive form theory) and $u_{i}(1\leq i\leq n)$ is a section of a line bundle $L_{i}$ with suitable de-

grees over the curve (for algebraic construction, see [5,34]), and constructed a cohomolog-

icalfield theory (in the sense of Kontsevich-Manin [25]) $\{\Lambda_{g,k}^{w} : (Hw)^{\otimes k}arrow H^{*}(\overline{\mathcal{M}}_{g,k},\mathbb{C})\}$

on moduli space of stable curves $\overline{\mathcal{M}}_{g,k}$ . As a consequence, this gives the $FfRW$ invariants

(3.1) $\langle\alpha_{1}\psi_{1}^{\ell_{1}}, \cdots, \alpha_{k}\psi_{k}^{p_{k}}\rangle_{g,k}^{w}=\int_{\overline{\mathcal{M}}_{g,k}}\Lambda_{g,k}^{w}(\alpha_{1}, \ldots,\alpha_{k})\prod_{j=1}^{k}\psi_{j}^{\ell_{i}}, \alpha_{j}\inHw.$

Here $\psi_{j}$ is the j-th psi-class on $\overline{\mathcal{M}}_{g,k}$ . The genus-O invariants without $\psi$-class involved

give a formal Frobenius manifold structure on $Hw$ . The prepotential of this formal Frobe-

nius manifold is

$\mathcal{F}_{0,w}^{F\int RW}=\sum_{k\geq 3}\frac{1}{k!}\langle t_{0}, \cdots, t_{0}\rangle_{0,k\prime}^{w} t_{0}=\sum_{j=1}^{\mu}t_{0,\alpha_{\mathfrak{j}}}\alpha_{j}.$

It is a formal power series of $t_{0,\alpha_{i}},$ $j=1,$ $\cdots,$ $\mu$ . More generally, the FJRW total ancestor

potential $\mathscr{A}_{w^{IRW}}^{F}$ is defined to be

$\mathscr{A}_{w^{I^{RW}}}^{F}=\exp(\sum_{g\geq 0}\hslash^{g-1}\sum_{k\geq 0}\frac{1}{k!}\langle t(\psi_{1})+\psi_{1}, \ldots,t(\psi_{k})+\psi_{k}\rangle_{g,k}^{w})$ .

Here $t(z)=\Sigma_{m\geq 0}\Sigma_{j=1}^{\mu}t_{m,\alpha_{j}}\alpha_{j}z^{m}.$

4. MIRROR SYMMETRY FOR EXCEPTIONAL UNIMODULAR SINGULARITIES

In [29], the following isomorphism between two types of Frobenius manifolds is proven.
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Theorem 4.1. Let $W^{T}$ be one of the 14 exceptional unimodular singularities in Table 1. There
exists a mirror map $\Psi:\int ac(\mathcal{W}^{T})\cong H_{w}$ , which induces an equality

(4.1) $\mathcal{F}_{0,\mathcal{W}^{T}}^{SG}=\mathcal{F}_{0,w}^{FJ^{RW}}$

The mirror map $\Psi$ : $Jac(W^{T})arrow Hw$ is constructed by Krawitz [26] and proven that
it is a ring isomorphism under a technical condition that $W$ (in the FJRW side) is not
allowed to be a chain type polynomial with one weight 1/2. For exceptional unimodular
singularities, this condition excludes two examples, $\mathcal{W}^{T}=x^{2}y+y^{3}z+z^{3}(Q_{11})$ , $x^{2}y+$

$y^{2}z+z^{4}(S_{11})$ . However, in [29], the technical condition is removed by using the Getzler’s
relation in $\overline{\mathcal{M}}_{1,4}[17].$

The proof of Theorem 4.1 mainly uses the axioms of cohomological field theories, in
particular, the Witten-Dijkgraaf-Verlinde-Verlinde (WDVV) equations. Combined with
the special properties on the weights of the exceptional unimodular singularities, it was
proved in [29] that both $\mathcal{F}_{0,\mathcal{W}^{T}}^{SG}$ and $\mathcal{F}_{0,W}^{FJ^{RW}}$ are determined by the underlying ring isomor-
phism and a few initial invariants $\langle\cdots\rangle_{0,4}$ . The invariants on the primitive form theory
side can be calculated by the perturbative formula. On the other hand, again by some
WDVV equations, the invariants on the FJRW side can be reduced to invariants which
can be calculated by the so-called orbifold-Grothendieck-Riemann-Roch formula. Under
the mirror map which identifies the deformation parameter space in primitive form side
to the FJRW state space together with the ring structure and the inner product, the in-
variants on both sides are identified up to a scale $-1$ . Then, by rescaling mirror map
appropriately, we obtain the desired equality (4.1).

This equality of the pre-potentials in genus $0$ is lifted to the equality of higher genus
potentials as follows. For the generic point $s\in S$ in the universal unfolding $F$ of $\mathcal{W}^{T},$

the $F(x, s)$ is a Morse function in $x$ so that its Jacobian ring is a direct sum of the one
dimensional algebra $\mathbb{C}$ . That is, after the Kodaira-Spencer map identification, the Frobe-
nius algebra structure on the tangent space of $S$ at $s$ is semi-simple. Such a generic point
is called semisimple. Givental defined a total ancestor potential (or a higher genus formula)
[18] using only the genus zero data near the generic point together with the knowledge
of the Witten-Kontsevich tau-function. The later is just also called the total ancestor poten-
tial of the Gromov-Witten theory with the target being a point. Teleman [51] proved that
this higher genus formula in a cohomological field theory is uniquely determined by the
underlying Frobenius manifold at the semisimple point. The origin in the universal un-
folding space $S$ is not semisimple, however, Givental’s formula can be uniquely extended
to $\mathscr{A}_{w^{T}}^{SG}$ at the origin by Milanov [31] (see also Coates-Iritani [9]). The uniqueness of the
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extension will upgrade Theorem 4.1 to an identity of higher genus potential function:

$\mathscr{A}_{w^{T}}^{SG}=\mathscr{A}_{w^{JRW}}^{F}$

This completes a proof of LG-LG mirror symmetry.

Acknowledgement: The author is partially supported by JSPS Grant-in-Aid for Scientific

Research (A) No. 25247004.
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