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1 Introduction

Let C be a plane curve in P?2. We are interested in several topological
invariants. In this report, we consider Alexander polynomials of some
reduced curves which is defined as the following. Let ) be a reduced
quartic. Suppose that @) has at most A; singularities. Let Cy,...,C), be
smooth conics such that:

1. Each C; is tangent to () with intersection multiplicity 2 at 4 smooth
points for any <.

2. For all pairs (3,5) (¢ # j), C; intersects transversely with C; at all
intersection points.

3. C;NC;NCy=0and C;NC; NQ =0.

Let B := Q + Ci + - - - + C,, be the reduced curve which consists of the
above quartic and smooth conics and let Q@ N C; = {P;1,..., Pu} be the
tangent points of C; and @ for ¢ = 1,...,n. Note that the configurations
of singularities of B is

S(B) = £(Q) + {2n(n — 1)Ay, 4nAs}.
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For example, in [7], Namba and Tsuchihashi considered the case n = 2
and @ is a union of two smooth conics which are intersects transversely
each other.

In this report, we consider the case n = 3 and then we determine their

Alexander polynomials.

2 Alexander polynomials

2.1 Definition of Alexander Polynomials

Let C be an affine curve of degree d. Suppose that the line at infinity
L, intersects transversely with C. Let ¢ : m1(X) — Z be the composition
of Hurewicz homomorphism and the summation homomorphism. Let ¢ be
a generator of Z and we put the Laurent polynomial ring A := C[t,¢71].
We consider an infinite cyclic covering p : X — X such that p,(m(X)) =
ker ¢. Then H; ()~( ,C) has a structure of A-module. Thus we have

Hy(X,C) = A/M(t) @ - & A/An(?)

where we can take \;(t) € A is a polynomial in ¢ such that A;(0) # 0 for
i =1,...,m. The Alexander polynomial As(t) is defined by the product
T2 A(®).

In this report, we use the Loeser- Vaquié formula ([10, 9]) for calculating
Alexander polynomials. Hereafter we follow the notations and terminolo-
gies of [4, 9] for the Loeser-Vaquié formula.

2.2 Loeser-Vaquié formula

Let [X,Y,Z] be homogenous coordinates of P? and let us consider
the affine space C?2 = P?\ {Z = 0} with affine coordinates (z,y) =
(X/Z,X/Y). Let f(x,y) be the defining polynomial of C. Let Sing(C)
be the singular locus of C and let P € Sing(C) be a singular point.
Consider a resolution 7 : U — U of (C, P), and let Ej,..., Es be the
exceptional divisors of 7. Let (u,v) be a local coordinate system centered
at P and k; and m; be respective order of zero of the canonical two form



23

7*(du A dv) and 7* f along the divisor E;. The adjunction ideal Jpq of
Op is defined by

T = {¢ €Op | (n°¢) > 3 (Lkmi/d] - k)E} L k=1,...,d-1

where |*| = max{n € Z | n < *} and we call it the floor function.

Let O(j) be the set of polynomials in z,y whose degree is less than or
equal to j. We consider the canonical mapping o : Clz,y] = P Pesing(c) OP
and its restriction:

or: Ok —3) — @ Op.

PeSing(C)

Put Vi (P) := Op/Jpk 4 and denote the composition of o and the natural
surjection @ Op — € Vi(P) by %. Then the Alexander polynomial of
C is given as follows:

Theorem 1. ([5, 6, 1, §) The reduced Alezander polynomial Ac(t) is
given by the product

d—1
Ao(t) = HAk(t)e’“, £y, := dim coker G, (1)

st r-on () - (25))

The Alexander polynomial Ac(t) is given as

where

Ac(t) = (t = 1) Ac(t)

where r is the number of irreducible components of C.

2.3 The adjunction ideal for non-degenerate singu-

larities

In general, the computation of the ideal Jp 4 requires an explicit com-
putation of the resolution of the singularity (C, P). However for the case
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of non-degenerate singularities, the ideal Jp\ 4 can be obtained combina-
torially by a toric modification. Let (u,v) be a local coordinate system
centered at P such that (C, P) is defined by a function germ f(u,v) and
the Newton boundary I'(f;u,v) is non-degenerate. Let R,,...,Rs be
the primitive weight vectors which correspond to the faces Ay, ..., A, of
I'(f;u,v). Let 7 : U — U be the canonical toric modification and let
E(R,) be the exceptional divisor corresponding to R;. Recall that the
order of zeros of the canonical two form 7*(du A dv) along the divisor
E(R;) is simply given by |R;| — 1 where |Q;| = p + q for a weight vector
R; = *(p;,q;) (see [8]). For a function germ g(u,v), let m(g, R;) be the
multiplicity of the pull-back (7*g) on E(R;). Then

Lemma 1 ([2, 9]). A function germ g € Op s contained in the ideal
JIpka if and only if g satisfies following condition:

(g R) > Em(f, R»J CIRI41, i1,

The ideal Jpyq is generated by the monomials satisfying the above con-
ditions.

Example 1. Let C be a plane curve of degree 2n + 4 such that C has
only Ay and Az singularities. Let P be a singular point.

(1) Assume that P is an A, singularity. Then the adjunction ideal is

k
TPk 2ont+a = <u“'ub la+b> [m} _ 1> = Op,

forallk =3,...,2n+ 3. Hence A; singularity do not contribute to
computations of Alexander polynomials because Vp(k) is O for all k.

(2) Assume that P is an As singularity. Then the adjunction ideal is

2k
TPk2nt+e = <u“vb | a -+ 2b > {mJ _ 2>

Op, 3<k< [%(n+2)],
mp, [—g(n+2)—l <k<2n+3

where [*¥] = min{n € Z | * < n} and we call it the ceil function.



2.4 The Alexander polynomials of subconfigurations

of reduced curves

Let B be a reduced curve on P2, B = B; + - -- + B, be its irreducible
decomposition. Let I be a non-empty subset of the index J := {1,...,r}
and By := ), .; B;, We define Alex(B) as follows:

Alex(B) = (Ap,(t))1e27\(0}-

Clearly, Alex(B) is a topological invariant of (P?, B). We also define
Alex(B) as the set of the reduced Alexander polynomials of subconfigu-
rations of B. We consider subsets of Alex(B):

Alex(B), = (Ap,(t)y—s, 1<s<

We say that Kl\é;c(B)s is trivial if any reduced Alexander polynomial in
Alex(B), is 1.

For our curves, Xl\é;c(B)l and Xl?e;c(B)g are trivial.

Now we consider Xl\é;c(B) s Where s > 3. Let I be a non-empty subset
of {1,...,n+ 1}. We correspond n + 1 to the quartic Q. If n +1 & I,
then ABI (t) = 1 as By has only A; singularities. Hence we consider the
Alexander polynomial of By where I contains n + 1.

To determine the Alexander polynomial of By, we consider the adjunc-
tion ideals and the map &4 : O(k — 3) — V' (k). The adjunction ideals
for each singular point are computed in Example 1. Now we consider the

multiplicity ¢y in the formula (1) of Loeser-Vaquié which is given as
¢, = dim coker 6 = p(k) + dim ker 5.

where p(k) = ) peging(p,) dim Vi(P) — dim O(k — 3). For fixed k, the
integer p(k) is determined by only the adjunction ideal. Hence we should

consider the dimension of ker .

By Lemma 1, if k < [%(n—!— 2)], then V(k) = 0. That is £, = 0. For
other cases, V(k) = C* and g € kerd;, if and only if {g = 0} passes
through all As singular point P. Hence we investigate the linear series
Ni—3(P). In general, the dimension of Nj_3(P) is greater than or equal

to N := E=2¢=1) _ 4 Note that if dim AV,_3(P) = N, then £; = 0.

Lemma 2. Ifk =2n+ 3, then dim Ny, (P) = N.

25



26

Proof. Assume dim Ny,(P) > N +1. We take 4(n —r) — 3 distinct points
Q,on Cpp\Pu_rforr=0,...,n—1. Put Q:=QyU---UQ, 1 U{R}
where R ¢ C;. Then Q = N and dim N5, (P, Q) > Nau(P) — N = 1.
Hence we can take a non-zero element D € N, (P, Q). As Qp C Cp \ Py,
we have I(D,C,) > 4+4n—3=2-2n+ 1. Hence D € CpoNop_o(P', Q')
where P’ = P\ P, and Q@ = Q\ Qp. By the same argument for r =
1,...,n—2, then D is contained in C,,C,_; - - - CoNa(P1, Qn—1, R). But
No(Py, Qn_1, R) = {0} because R ¢ C;. This is a contradiction. a

Lemma 3. Ifn > 3 and k = 2n + 2, then dim Ny,_1(P) = N.

Proof. We assume dim Ny,_1(P) > N + 1. We divide our considerations
into two cases dim N3(P;;) = 0 for all (i, 5) or dim N2(P;;) > 1 for some
(1,7). The first case is proved by the same argument of Lemma 2.

Now we consider the second case. We may assume that (i, 5) = (1,2)
and we take a non-zero conic Dy € N3(P12). We take 4n—9 distinct points
Qo on Dy \ P15 and 4(n—r)—9 distinct points Q, on Cp_r1\Pr_pt1 forr =
1,...,n—=3. Put @ = QyU---UQ, 3U{Ry, R, R3} where Ry, R; and R3
are not collinear. Then $Q = N and dimN,_1(P, Q) > Nop_1(P)—N =
1. Hence we can take a non-zero element D € N,_1(P, Q). By the same
argument, D is in DyC,, - - - CsN1(Ry, R, R3). But NM1(Ry, Rs, R3) = {0}
because R;, R, and Rj3 are not collinear.

n

Corollary 1. Xl\e/x(C)4 is trivial.
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