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ABSTRACT. In this article, we first give a classification of simply connected, complexity one
GKM manifolds with extended transitive $G$-actions. This is proved by applying the method

to classify the homogeneous torus manifolds. Motivated by this result (Theorem 1.2), we next
classify the 3-valent complexity one GKM graphs with certain $S_{3}$-actions.

1. Introduction

Let $(M^{2m}, T^{n})$ be a pair of $2m$-dimensional (compact, connected, simply connected) manifold
with (almost) effective $n$-dimensional torus action, where an almost effective means that the $T^{n_{-}}$

action on $M^{2m}$ has a finite kernel. If there is a fixed point and the one-skelton of its orbit space
has the structure of a graph, then we call $(M, T)a$ (generalized) $GKM$ manifold (see [GKM,

GuZa, Da, Kul, MMP Note that this definition is slightly wider than the original definition
in $[GuZa]$ , i.e., we do not assume the existence of an equivariant almost complex structre. By

using the differentiable slice theorem, it is easy to check that $n\leq m$ . So the extremal class of
GKM manifolds would be the class when $m=n$ . Such a GKM manifold is known as a torus

manifold (see [Ma99, HaMa The torus manifold is defined by Hattori-Mausda in 2003 as the

topological generalization of toric manifolds (i.e., non-singular, complete, toric varieties viewed as
complex analytic space) in algebraic geometry.

One of the motivations of toric geometry in algebraic geometry is to study the automorphism
groups of toric varieties (see [Co, De, Od Due to the results of Demazure and Cox, the

root systems of fans or Cox rings determine the Lie algebras of automorphism groups of toric
varieties. On the other hand, in this two decades, motivated by the study of Davis-Januszkiewicz
$[DaJa]$ , the notions in toric geometry have been translated into the notions in topology, and

now it is called toric topology (see $[$BuPa, ToricTop In toric topology, more general class
of manifolds with topological torus $T$-actions, such as torus manifolds, is studied. Moreover, the
problems studied in algebraic geometry inspire topologists to study new topological problems,

such as cohomological rigidity problem (see [CMS]). In particular, from the topological point of
view, the study of automorphism groups may be regarded as the study of extended $G$-actions of
$T$-actions (see [Ku3, Ku4 Assume that $G$ is a compact Lie group. Motivated by the works
of automorphism groups of toric manifolds, the extended $G$-actions of a torus manifold (and a
symplectic toric manifold) are completely classified by several mathematicians in toric topology

(and in symplectic geometry), see [KuMa, MalO, MT, Wi].
In algebraic geometry and symplectic geometry, the manifolds with complexity one torus

actions (not only toric manifolds) are also studied by several mathematicians (see [ADHL, KaTo,
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Mo In particular, Arzhantsev-Derenthal-Hausen-Laface study the automorphism groups of such
manifolds in [ADHL]. The purpose of this article is to study the manifolds with complexity one
torus actions from topological point of view. More precisely, we study the extended actions of
a complexity one $GKM$ manifold, i.e., a GKM manifold $(M^{2m}, T^{n})$ with $m=n+1$ , and give a
partial answer to the following problem:

PROBLEM 1.1. When does a complexity one $GKM$ manifold admit an extended $(M^{2n+2}, G)$

actio$n’$? Here, $G$ is a compact (connected) Lie group with maximal torus $T^{n}.$

In this article, we solve Problem 1.1 for the case of simply connected complexity one GKM
manifolds with transitive extended actions, called a homogeneous complexity one $GKM$ manifold.
In order to state our main result, we define some terminology. We call $M$ an irreducible if $M$ has
the following property: if the manifold has the decomposition $M=M_{1}\cross M_{2}$ then $M_{2}=\{*\}$ . If
$M$ is not irreducible, then we call $M$ a reducible. The following theorem is the 1st main result:

THEOREM 1.2. Let $(M^{2m}, T^{m-1})$ be a simply connected homogeneous $GKM$ manifold with a
complexity one torus action. Then, $M$ has the following decomposition:

.
$M^{2m}=M_{1}\cross\cdots M_{k}\cross M^{2n}$

such that $M_{i}s$ are homogeneous irreducible simply connected torus manifolds, i. e., a complex
projective space or an even dimensional sphere (see [Ku3]), and $M^{2n}$ is a simply connected,
irreducible, homogeneous, complexity one $GKM$ manifold. Furthermore, we have $n=3$ or 4 and

if $n=3,$ $M$ is one of the fohowing manifolds:
$A_{2}:\mathcal{F}\ell(\mathbb{C}^{3})\cong SU(3)/T^{2}$ ;
$B_{2}:Q_{3}\cong SO(5)/SO(3)\cross SO(2)$ ;
$B_{2}:\mathbb{C}P^{3}\cong Spin(5)/Sp(1)\cross\tau_{j}^{1}$

$C_{2}:\mathbb{C}P^{3}\cong Sp(2)/Sp(1)\cross T^{1}$ ;
$G_{2}:S^{6}\cong G_{2}/SU(3)$ ,

if $n=4,$ $M$ is one of the following manifolds:
$A_{3}:G_{2}(\mathbb{C}^{4})\cong SU(4)/S(U(2)\cross U(2))$ ;
$C_{3}:\mathbb{H}P^{2}\cong Sp(3)/Sp(2)\cross Sp(1)$ ;
$D_{3}:Q_{4}\cong SO(6)/SO(4)\cross SO(2)$ ,

where $G_{2}(\mathbb{C}^{4})\cong Q_{4}.$

As a consequence of Massey in [Ma62] and well-known results, we can easily check which
manifolds in Theorem 1.2 have stably complex structures.

COROLLARy 1.3. Let $M$ be a homogeneous, irreducible, complexity one GKM manifold. If
there is a $T$-invariant stably complex structure on $M$ , i.e., a unitary GKM manifold, then $M$ is
one of the followings:

$\mathcal{F}\ell(\mathbb{C}^{3})$ , $Q_{3},$ $\mathbb{C}P^{3},$ $S^{6}$ or $G_{2}(\mathbb{C}^{4})$ .

Furthermore, every manifold as above also has a $T$-invariant almost complex structure.

REMARK 1.4. In Theorem 1.2, the manifolds $\mathcal{F}\ell(\mathbb{C}^{3})$ , $Q_{3)}\mathbb{H}P^{2}$ and $G_{2}(\mathbb{C}^{4})$ are not torus
manifolds. This can be proved by using their cohomology rings $($see $[BuPa])$ . On the other hand,
$\mathbb{C}P^{3}$ and $S^{6}$ are torus manifolds; furthermore, they are unitary toric manifolds (see [Ma99]).

From the unitary GKM manifold, we can define a labelled graph, so-called genelraized $GKM$

graph. Moreover, if a GKM manifold $(M, T)$ has an extension $(M, G)$ such that $G$ preserves the
unitary structure, then its Weyl group $W(G)=N_{G}(T)/T$ acts on the GKM graph induced from
$(M, T)$ . Motivated by this facts and Theorem 1.2, we may ask the following question:

PROBLEM 1.5. When does a 3 (resp. $4$)-valent $GKM$ graph admit a rank 2 (resp. 3) Weyl
group actions 2

In this article, we also give a partial answer to Problem 1.5. More precisely, we also classify
the 3-valent GKM graphs (not generalized GKM graph) with certain $S_{3}$-actions. The 2nd main
result can be stated as follows:

136



COMPLEXITY ONE GKM MANIFOLDS WITH SYMMETRIES

THEOREM 1.6. Let $(\Gamma, \mathcal{A})$ be a 3-valent complexity one $GKM$ graph with an $S_{3}$ -action. Assume

that for every Weyl subgroup $W’\subset S_{3}$ and every vertex $p\in V(\Gamma)$ , there is a $GKM$ subgraph
$(\Gamma’, \mathcal{A}|_{E(\Gamma’)})$ such that $W’$ acts on it transitively and $p\in V(\Gamma’)$ . Then, $(\Gamma, \mathcal{A})$ is one of the $GKM$

graphs in Figure 1.

FIGURE 1. The list of complexity one GKM graphs with certain $S_{3}$-symmetries.

Furthermore, by using the invariants in [Ta] or [Ku5], we also have the following corollary:

COROLLARy 1.7. In Theorem 1.6, $(\Gamma, \mathcal{A})$ extends to the torus graph if and only if (2), (3), (4).

The organization of this article is as follows. In Section 2, we prove Theorem 1.2. In Section
3, we quickly recall GKM graphs with Weyl group symmetry. In Section 4, we give a sketch of

the proof of Theorem 1.6.

2. Proof of Theorem 1.2 and observations

In this section, we prove Theorem 1.2 with the method similar to that demonstrated in [Ku3].

Moreover, we also give the method to construct infinitely many complexity one GKM manifolds

with extended $G$-actions.

2.1. Proof of Theorem 1.2. Let $(M^{2n}, T^{n-1})$ be a simply connected GKM manifold. As-
sume $(M^{2n}, T^{n-1})$ has an extended $(M^{2n}, G)$ , where $G$ is a compact (connected) Lie group with

maximal torus $T^{n-1}$ . Then, we may put $M=G/H$ such that rank $G=$ rank $H=n-1$ and

$\dim G/H=2n$ for some closed subgroup $H\subset G$ . Because $M$ is simply connected, $H$ is a connected
subgroup.

Let $(\tilde{G},\tilde{H})$ be the universal covering of $(G, H)$ . Then, by using Borel and De Siebenthal’s
result in $[BoSi]$ and the assumption that the $T^{n-1}$ -action is almost effective, we have

$\tilde{G}=G_{1}\cross\cdots\cross G_{m}$

$\tilde{H}=H_{1}\cross\cdots\cross H_{m},$

where $G_{i}$ is simply connected simple Lie group and $H_{i}$ is its closed subgroup for $i=1$ , }
$m$ such

that rank $G_{i}=$ rank H $=n_{i}$ and $\dim G_{i}-\dim H_{i}=2d_{i}$ . Because the $T_{i}$-action on $G_{i}/H_{i}$ has

a fixed point where $T_{i}$ is $a$ maximal torus of $G_{i}$ and $H_{i}$ , we have $n_{i}\leq d_{i}$ for all $i$ . Moreover, we
have the following lemma:

LEMMA 2.1. We may assume $d_{i}=n_{i}$ for all $i=1$ , . . . , $m-1$ and $d_{m}=n_{m}+1.$
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PROOF. By using the assumption, we have that

$n_{1}+\cdots+n_{m}=d_{1}+\cdots+d_{m}-1<d_{1}+\cdots+d_{m}.$

If $n_{i}=d_{i}$ for all $i$ , then it is easy to show the contradiction to this inequality. Therefore, we may
assume $n_{m}<d_{m}$ . If $n_{m}\leq d_{m}-2$ , then it follows from $n_{i}\leq d_{i}$

$d_{1}+\cdots+d_{m}-1=n_{1}+\cdots+n_{m}\leq d_{1}+\cdots+d_{m-1}+(d_{m}-2)$ .

This also gives a contradiction. Thus, the equation $n_{m}=d_{m}-1$ holds. Hence, by the above
equation and $n_{i}\leq d_{i}$ , we also have $n_{i}=d_{i}$ for $i\neq m$ . 口

By Lemma 2.1, we have $n_{i}=d_{i}$ for $i\neq m$ . Hence, it follows from the main theorem of [Ku3]
that we have the following decomposition:

$\tilde{G}=\prod_{i=1}^{a}SU(\ell_{i}+1)\cross\prod_{j=1}^{b}Spin(2m_{j}+1)\cross G_{m}$

$\tilde{H}=\prod_{i=1}^{a}S(U(1)\cross U(\ell_{i}))\cross\prod_{n=1}^{b}Spin(2m_{j})\cross H_{m},$

where $m_{j}\geq 2,$ $a+b=m-1$ . Here, rank $G_{m}=$ rank H $=n_{m}$ and $\dim G_{m}/H_{m}=2d_{m}=2n_{m}+2.$

Consequently, the problem is reduced into the classification of $(G_{m}, H_{m})$ . To classify $(G_{m}, H_{m})$

we consider the following two cases.
CASE 1: Assume $H_{m}$ is a maximal same rank subgroup of a compact connected simply

connected Lie group $G_{m}$ . Then, by using the table [Ku3, Table 1, 2], we have that $(G_{m}, H_{m})$ is
one of the following:

$A_{3}:(SU(4), S(U(2)\cross U(2)))$ , i.e., $M^{8}=G_{2}(\mathbb{C}^{4})$ ;
$B_{2}:(SO(5), SO(3)\cross SO(2))$ , i.e., $M^{6}=Q_{3}$ ;
$C_{2}:(Sp(2), Sp(1)\cross T^{1})$ , i.e., $M^{6}=\mathbb{C}P^{3}$ ;
$C_{3}:(Sp(3), Sp(1)\cross Sp(2))$ , i.e., $M^{8}=\mathbb{H}P^{2}$ ;
$D_{3}:(SO(6), SO(4)\cross SO(2))$ , i.e., $M^{8}=Q_{4}$ ;
$G_{2}:(G_{2}, SU(3))$ , i.e., $M^{6}=S^{6}.$

Note that $Q_{4}\cong G_{2}(\mathbb{C}^{4})$ .
CASE 2: Assume $H_{m}$ is a non-maximal same rank subgroup of $G_{m}$ such that rank $G_{m}=$

rank $H_{m}=n$ and $\dim G_{m}/H_{m}=2n+2$ . Then, there is a maximal same rank subgroup $K_{m}$

such that $H_{m}\subset K_{m}\subset G_{m}$ . Because $\dim G_{m}/H_{m}=2n+2>\dim G_{m}/K_{m}$ (i.e., $\dim G_{m}/K_{m}\geq$

$2$rank G $)$ , we have that $\dim G_{m}/K_{m}=2n$ . Therefore, $G_{m}/K_{m}$ must be the homogeneous torus
manifold and $K_{m}/H_{m}\cong SU(2)/T^{1}\cong S^{2}$ . Hence, by [Ku3], $(G_{m}, K_{m})$ is on) of the following:

$(SU(k+1), S(U(1)\cross U(k)))$ ;

$($Spin$(2k+1),$ $Spin(2k))$ .

Because $K_{m}/H_{m}\cong S^{2}$ , we also have $k=2$ . Therefore, we have $(G_{m}, K_{\pi\iota}, H_{m})$ is one of the
followings:

$(SU(3), S(U(1)\cross U(2)), T^{2})$ ;

$($Spin(5), $Spin(4),$ $Sp(1)\cross T^{1})$ ,

where Spin(4) $\cong Sp(1)\cross Sp(1)$ and Spin(5) $\simeq Sp(2)$ . Because $\dim SU(3)/T^{2}==6$ and $\dim Spin(5)/Sp(1)\cross$

$T^{1}=6$ , we have that $(G_{m}, K_{m})$ is one of the following:

$A_{2}:(SU(3), T^{2})$ , i.e., $M^{6}=\mathcal{F}\ell(\mathbb{C}^{3})$ ;
$B_{2}:(Spin(5), Sp(1)\cross T^{1})$ , i.e., $M^{6}=\mathbb{C}P^{3}.$

Consequently, we establish Theorem 1.2.
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2.2. 0bservations. By using the GKM manifolds appearing in Theorem 1.2, we can con-
struct other GKM manifolds; in particular, we can construct infinitely many complexity one GKM

manifolds with extended $(SU(3)\cross T^{n})$ -actions. Here, we show the construction.

EXAMPLE 2.2. Let $X$ be a $2n$-dimensional torus manifold with $n\geq 2$ and $\rho$ : $T^{2}arrow T^{n}$ be a
faithful representation. Define the manifold $M_{\rho}(X)$ by the twisted product

$SU(3)\cross T^{2}X$

by the standard (right) $T^{2}$-action on $SU(3)$ and the $T^{2}$ -action on $X$ via $\rho$ . Because the elements

of the image $\rho(T^{2})$ commutes with the elements in $T^{n}$ , the manifold $M_{\rho}(X)$ has the $(T^{2}\cross T^{n})-$

action by the left $T^{2}$ -action on the $SU(3)$ -factor and the $T^{n}$-action on the $2n$-dimensional torus
manifold $X$ . Because there is a fibre bundle structure $Xarrow M_{\rho}(X)arrow SU(3)/T^{2}$ , we also have

$\dim M_{\rho}(X)=2n+6$ . Moreover, it is easy to check that its one-skeleton has the structure of

a fibre bundle over the one-skeleton of $SU(3)/T^{2}$ whose fibre is that of $X$ . Therefore, this is
a complexity one GKM manifold. Moreover, there is an extended $SU(3)\cross T^{n}$-action because
$SU(3)$ acts naturally on the $SU(3)$ -factor in $M_{\rho}(X)$ . Because there are infinitely many torus
manifolds $X$ , we can construct infinitely many complexity one GKM manifolds with extended
$SU(3)\cross T^{n}$-actions.

EXAMPLE 2.3. Let $Y$ be $a(2n-4)$-dimensional torus manifold for $n>2$ , and $\sigma$ : $T^{1}arrow T^{n-2}$

be a faithful representation. Define the twisted product $N_{\sigma}(Y)$ by

$S^{5}x_{T^{1}}Y$

such that $T^{1}$ acts on $S^{5}\subset \mathbb{C}^{3}$ diagonally and on a torus manifold $Y$ via $\sigma$ . Then, $N_{\sigma}(Y)$ is a
$2n$-dimensional torus manifold with extended $(SU(3)\cross T^{n-2})$ -actions (see [Ku4] for details of

this construction). Here, $SU(3)$ acts on the $S^{5}$ -factor transitively. Now we can add the $G_{2}$-factor

as follows:

$G_{2}\cross N(Y)$

$\simeq G_{2}\cross SU(3)(S^{5}\cross T^{1}Y)$

$\simeq G_{2}\cross sU(3)((SU(3)/SU(2))\cross T^{1}Y)$

$\simeq (G_{2}/SU(2))\cross T^{1}Y.$

This is an $N_{\sigma}(Y)$ -bundle over $S^{6}$ (or a $Y$-bundle over $G_{2}/S(U(2)\cross U(1))$ , also see [Ku2, Example

1.4]), Therefore, $\dim(G_{2}\cross sU(3)N_{\sigma}(Y))=2n+6$ . Moreover, because $\sigma(T^{1})$ commutes with
$T^{n-2}$ , the structure of a $Y$-bundle over $G_{2}/S(U(2)\cross U(1))$ induces the $(T^{2}\cross T^{n-2})$ -action on
$G_{2}\cross N(Y)$ . Because both of the fibre and the base space have structures of GKM manifolds,
$(G_{2}\cross N(Y), T^{n})$ is $a(2n+6)$-dimensional GKM manifold, i.e., complexity 3 GKM manifold

with an extended $G_{2}\cross T^{n-2}$-action. However, this might not be a complexity one GKM manifold
(see [Ta] or [Ku5]).

Similarly, we can also construct other GKM manifolds (might not be a complexity one GKM
manifold) with extended non-abelian Lie group actions, by using the other irreducible homogeneous

complexity one GKM manifolds.
In particular, we can generalize the construction in Example 2.2 as follows.

PRoposiTioN 2.4. Let $G$ be a compact, connected, non-abelian Lie group with rank $G=n,$

and $X$ be a $2m$-dimensional torus manifold such that $n\leq m$ . Then, for any faithful representation
$\rho$ : $T^{n}arrow T^{m}$ , the following manifold is $a(\dim G-n+2m)$ -dimensional GKM manifold with the
$T^{n+m}$-action:

$G\cross T^{n}X$

where $T^{n}$ is a maximal torus in $G$ and acts on $X$ via $\rho.$

Furthermore, this has the extended $(G\cross T^{m})$ -action and a complexity $(\dim G-3n)/2.$

3. GKM graphs

In this section, we recall GKM graphs introduced in $[GuZa]$ , and prepare to prove Theorem

1.6.
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3.1. Notations. Let $\Gamma=(V(\Gamma), E(\Gamma))$ be an abstract graph, where $V(\Gamma)$ is the set of vertices
and $E(\Gamma)$ is the set of oriented edges of $\Gamma$ . Let $e\in E(\Gamma)$ . We denote its initial vertex by $i(e)$ ,
the terminal vertex by $t(e)$ , $($e.g. $i(pq)=p$ and $t(pq)=q)$ and the reversed oriented edge of $e$ by
$\overline{e}$ . It is easy to check that $i(e)=t(\overline{e})$ and $t(e)=i(\overline{e})$ . Put the set of all outgoing edges from the
vertex $p$ by $E_{p}(\Gamma)$ , i.e., the set of all edges $e$ such that $i(e)=p$ . We say $\Gamma$ is an $m$ -valent graph if
$\# E_{p}(\Gamma)=m$ for all $p\in V(\Gamma)$ .

A map between two graphs $\Gamma=(V(\Gamma), E(\Gamma))$ and $\Gamma’=(V(\Gamma’), E(\Gamma’))$ is defined as the pair
of maps $f=(f_{V}, f_{E})$ : $\Gammaarrow\Gamma’$ such that the following diagram commutes

$E(\Gamma)\downarrow arrow^{f_{E}} E(\Gamma’)\downarrow$

$V(\Gamma) arrow^{f_{V}} V(\Gamma’)$

where two vertical maps are the maps taking the initial vertex, i.e., $e\mapsto i(e)$ . In other wards, the
map of vertices preserves the edges. An automorphism group of $\Gamma$ , say $Aut(\Gamma)$ , is defined by the
set of all maps $f$ on $\Gamma$ such that both of $f_{V}$ and $f_{E}$ are bijective.

Let $H^{*}(BT^{n})$ be the cohomology ring of $BT$ over $\mathbb{Z}$-coefficient, i.e., $H^{*}(BT^{n})$ is isomorphic
to the polynomial ring $\mathbb{Z}[\alpha_{1}, . . . , \alpha_{n}]$ in the variables $\alpha_{i}\in H^{2}(BT)(i=1, \ldots, n)$ .

3.2. Abstract GKM graph. Throughout of this paper, $\Gamma$ is an $m$-valent (connected) graph,
where $n\leq m$ . Put

$\mathcal{A}:E(\Gamma)arrow H^{2}(BT)$ .

If $\mathcal{A}$ satisfies the following three conditions:

(1) $\mathcal{A}(e)=-\mathcal{A}(\overline{e})$ ;
(2) the set $\{\mathcal{A}(E_{p}(\Gamma))\}$ is pairwise linearly independent for all $p\in V(\Gamma)$ ;
(3) there is a bijective map $\nabla_{e}$ : $E_{p}(\Gamma)arrow E_{q}(\Gamma)$ for $p=i(e)$ and $q=t(e)$ such that

(a) $\nabla_{e}=\nabla_{e}^{-1}$ ;
(b) $\nabla_{e}(e)=\overline{e}$ ;
(c) $\mathcal{A}(\nabla_{e}(f))-\mathcal{A}(f)\equiv 0$ mod $\mathcal{A}(e)$ for every $f\in E_{p}(\Gamma)$ (called a congruence relation),

then the map $\mathcal{A}$ is called an axial function on $\Gamma$ and the collection $\nabla=\{\nabla_{e}|e\in E(\Gamma)\}$ is called
a connection. We call the pair $(\Gamma, \mathcal{A})$ a $GKM$ graph, where $\Gamma$ is an $m$-valent graph and $\mathcal{A}$ is an
axial function on $\Gamma.$

Assume an axial function $\mathcal{A}$ : $E(\Gamma)arrow H^{2}(BT^{n})$ satisfies that the image of $\mathcal{A}$ spans $H^{2}(BT^{n})$ .
Then, we call the number $m-n$ a complexity of $(\Gamma, \mathcal{A})$ .

REMARK 3.1. Let $(M, T)$ be a $2m$-dimensional GKM manifold with invariant almost complex
structure. Then, the one-skeleton of $M/T$ induces the $m$-valent graph $\Gamma_{M}$ . Moreover, we can define
the axial function $\mathcal{A}_{M}$ by the complex tangential representation on each fixed point (to define this
complex structure canonically, we need a complex structure around fixed points). Namely, the
$m$-valent GKM graph $(\Gamma_{M}, \mathcal{A}_{M})$ is define by an almost complex $2m$-dimensional GKM manifold
$(M, T)$ .

More generally, we can also define the generalized GKM graph, i.e., the condition (1) in the
axial function $\mathcal{A}$ is changed to the condition $\mathcal{A}(e)=\pm \mathcal{A}(\overline{e})$ , from an unitary GKM manifold $(M, T)$

$(i.e.,$ there $is an$ invariant stably complex structure $on M)$ such as an even dimensional sphere.
We omit the precise definition of the (generalized) GKM graph induced from a GKM manifold in
this article $(see [Da], [GuZa], [Kul] or [MMP] for$ precise definition) .

Note that a more general labelled graph (i.e., there might not exist any connections) can be
defined by an omnioriented GKM manifold (i.e., there is a fixed orientations on $M$ and all invariant
2-spheres) such as a quaternionic projective space whose dimension is greater than four.

3.3. Automorphism group of GKM graph. Let us define the automorphism group of a
GKM graph $(\Gamma, \mathcal{A})$ with $\mathcal{A}$ : $E(\Gamma)arrow H^{2}(BT^{n})\simeq \mathbb{Z}^{n}$ . Let $f\in Aut(\Gamma)$ and $\rho\in GL(n;\mathbb{Z})$ . We call
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$(f, \rho)$ is an automorphism on $(\Gamma, \mathcal{A})$ if the following diagram commutes:

$E(\Gamma)\downarrow arrow^{f_{E}} E(\Gamma)\downarrow$

$H^{2}(BT) arrow^{\rho} H^{2}(BT)$

where the vertical maps are both of $\mathcal{A}$ . We call the set

{ $(f, \rho)\in Aut(\Gamma)\cross GL(n;\mathbb{Z})|(f, \rho)$ is an automorphism on $(\Gamma, \mathcal{A})$ }

an automorphism group of $(\Gamma, \mathcal{A})$ and denote it by $Aut(\Gamma, \mathcal{A})$ .
The following proposition is one of the motivations to considering the 2nd main result in this

paper (Theorem 1.6) (also see [Kaj]).

PRoposiTioN 3.2. If an almost complex GKM manifold $(M, T)$ extends to an almost complex
$(M, G)$ , then $W(G)=N_{G}(T)/T$ acts on $(\Gamma_{M}, \mathcal{A}_{M})$ , i.e., $W(G)\subset Aut(\Gamma_{M}, \mathcal{A}_{M})$ .

PROOF. Let $(M, T)$ be a GKM manifold with an almost complex structure $J$ . Assume that
there is an extended $G$-action $(M, G)$ preserving $J$ . Let $g\in W(G)$ and $S_{\alpha}^{2}$ be an invariant 2-sphere
in $(M, T)$ , where $\alpha\in t^{*}$ is the element corresponding to $S_{\alpha}^{2}$ (i.e., the element appearing in the
tangential representation on $S_{\alpha}^{2}$ ) Then, $gS_{\alpha}^{2}$ satisfies that

$TgS_{\alpha}^{2}$

$=$ $(9^{T}9^{-1})gS_{\alpha}^{2}$ (because $g\in N_{G}(T)$ )

$= 9^{TS_{\alpha}^{2}}$

$=$ $9^{S_{\alpha}^{2}}$ (because $S_{\alpha}^{2}$ is $T$-invariant).

This implies that $gS_{\alpha}^{2}$ is an invariant 2-sphere; therefore, $W(G)\subset Aut(\Gamma)$ .
By definition, the axial function $\mathcal{A}_{M}$ is induced by the complex structure around fixed points

induced from $J$ . Therefore, it is easy to check that $W(G)\subset Aut(\Gamma_{M}, \mathcal{A}_{M})$ , because $G$ preserves
the almost complex structure $J$ of M. $\square$

By the proof described as above, we may think

$gS_{\alpha}^{2}=S_{\beta}^{2}$

where $\beta=g^{*}\alpha\in t^{*}$ for $g^{*}\in W(G)$ . Therefore, the Weyl group $W$ action on an abstract GKM
graph $(\Gamma, \mathcal{A})$ can be defined as follows. It is well known that $W$ is generated by the reflections on
$t$ ; in particular, this preserves the weight lattice (see [Hu]). Hence, for $g\in W$ , the isomorphism $g$

on $t_{\mathbb{Z}}$ induces the isomorphism $g^{*}:t_{\mathbb{Z}}^{*}arrow t_{\mathbb{Z}}^{*}$ , i.e., the dual of $9\in W$ . Therefore, the automorphism
$g:(\Gamma, \mathcal{A})arrow(\Gamma, \mathcal{A})$ is defined by

(3.1) $g^{*}(\mathcal{A}(e))=\mathcal{A}(g_{E}(e))$ ,

where $e\in E(\Gamma)$ , $9E:E(\Gamma)arrow E(\Gamma)$ is the bijective map induced from $g\in W\subset Aut(\Gamma)$ (we often
abuse two notations $g_{E}$ and $g$ ).

REMARK 3.3. If the extended action $G$ does not preserve the almost complex structure $J$

(even more generally the stably complex structure) on $M$ , then $W(G)$ do not act on $(\Gamma_{M}, \mathcal{A}_{M})$ .
However, if $M$ is a unitary GKM manifold and there is an extended $G$-action (which might not
preserve the stably complex structure), then $g\in W(G)$ action changes the relation (3.1) as fohows:

$g^{*}(\mathcal{A}(e))=\pm \mathcal{A}(g_{E}(e))$ .

Therefore, $g\in W(G)$ gives the equivalence between $(\Gamma, \mathcal{A})$ and $(\Gamma, \mathcal{A}’)$ where $\mathcal{A}’$ satisfies $\mathcal{A}(e)=$

$\pm \mathcal{A}’(e)$ for all edges $e\in E(\Gamma)$ . In $[KuMa]$ , we also study the extended actions for the cases when
$G$ does not preserve the stably complex structures (more generally omniorientations) on torus
manifolds by introducing root systems on torus graphs.
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4. Sketch of a proof of Theorem 1.6

Let $(\Gamma, \mathcal{A})$ be an abstract $m$-valent GKM graph. Motivated by Theorem 1.2, we classify the

following GKM graphs:

(1) $\Gamma$ is a 3 or 4-valent graph;
(2) $(\Gamma, \mathcal{A})$ is a complexity one, i.e., if $\mathcal{A}$ : $\Gammaarrow H^{2}(BT^{n})$ then $n=2$ $($ for $m=3)$ or 3 (for

$m=4)$ , called $a(3, 2)$-type GKM graph or $(4, 3)$ -type GKM graph, respectively;

(3) if $(\Gamma, \mathcal{A})$ is $a(3,2)$-type (resp. $(4, 3)$-type), there is the symmetric group $S_{3}$ , the signed

symmetric group $S_{2}^{\pm}$ or the dihedral group $D_{6}$ (resp. $S_{4}$ or $S_{3}^{\pm}$ ) action on it;

(4) for every Weyl subgroup $W’\subset W$ and every vertex $p\in V(\Gamma)$ , there is a GKM subgraph
$(\Gamma’, \mathcal{A}|_{E(\Gamma’)})$ such that $W’$ acts on it effectively and $p\in V(\Gamma’)$ ;

The assumption (4) as above is induced from the fact that there is a connected $K$-orbit of
$p\in M^{T}$ for all $K$ such that $T\subset K\subset G.$

In this paper, we only prove the case when $(\Gamma, \mathcal{A})$ is $a(3,2)$ -type GKM graph with the

symmetric group $S_{3}$-action. For the other cases, we can prove similarly (it will be shown in

somewhere of the future article).

4.1. The property of $S_{3}$-orbits. Let $W=S_{3}$ . Then, it is well-known that this is a Coxeter
group and there is the following representation:

$W = \langle\sigma_{1}, \sigma_{2}|\sigma_{1}^{2}=\sigma_{2}^{2}=(\sigma_{1}\sigma_{2})^{3}=1\rangle$

$= \{1, \sigma_{1}, \sigma_{2}, \sigma_{1}\sigma_{2_{\rangle}}\sigma_{2}\sigma_{1}, \sigma_{1}\sigma_{2}\sigma_{1}\}.$

In this case, there are four Weyl subgroups:

{1}, $\langle\sigma_{1}\rangle,$ $\langle\sigma_{2}\rangle,$ $\langle\sigma_{1}\sigma_{2}\sigma_{1}\rangle(\simeq \mathbb{Z}_{2})$ ,

and there is another subgroup
$\mathbb{Z}_{3}=\langle\sigma_{1}\sigma_{2}\rangle=\langle\sigma_{2}\sigma_{1}\rangle.$

Therefore, if there is a $W$ action on $\Gamma=(V(\Gamma), E(\Gamma))$ , then there are the following possible orbit

types for $p\in V(\Gamma)$ :

(4.1) $W(p)\simeq W/W,$ $W/\mathbb{Z}_{3},$ $W/\mathbb{Z}_{2}$ , or $W/\{e\}.$

By choosing generators of $H^{2}(BT)=\mathbb{Z}\alpha\oplus \mathbb{Z}\beta$ , for $p\in V(\Gamma)$ , we may assume that

$\mathcal{A}_{p}=\{\mathcal{A}(e)|e\in E_{p}(\Gamma)\}=\{\alpha, \beta, k_{1}\alpha+k_{2}\beta\}$

for some non-zero integers $k_{1},$ $k_{2}$ . From the next subsection, we consider the cases appeared in

(4.1) in case by case.
4.1.1. The case when $W(p)\simeq W/W$ . In this case, $W$ acts on $E_{p}(\Gamma)$ ; therefore it also acts on

$\mathcal{A}_{r}$ . Because $H^{2}(BT)^{W}=\{0\}$ , the symmetric group $W$ acts on $\mathcal{A}_{p}$ transitively; therefore, it also

acts on $E_{p}(\Gamma)$ transitively. Consequently, we may assume that $k_{1}=k_{2}=-1$ and

$\sigma_{1}:\alpha\mapsto\beta, -\alpha-\beta\mapsto-\alpha-\beta$ ;

$\sigma_{2}:\alpha\mapsto-\alpha-\beta, \beta\mapsto\beta.$

This implies that the neighborhood of this case is Figure 2.

FIGURE 2. This is the axial function around $p\in V(\Gamma)^{W}$ , where $\epsilon=\pm 1.$
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4.1.2. The case when $W(p)\simeq W/\mathbb{Z}_{3}$ . We claim that this case does not occur. Because
$|W(p)|=2$ and our assumption (4), there is an edge $e\in E(\Gamma)$ such that $V(e)=W(p)=\{p, q\}$

and $\sigma_{1}\in W$ such that $\sigma_{1}(e)=\overline{e}$ . Because $\mathcal{A}(e)=-\mathcal{A}(\overline{e})(=\alpha)$ , we may assume

(4.2) $\sigma_{1}:\alpha\mapsto-\alpha.$

On the other hand, the subgroup $\mathbb{Z}_{3}=\{1, \sigma_{1}\sigma_{2}, \sigma_{2}\sigma_{1}\}$ acts on $E_{p}(\Gamma)=\{e, e’, e"\}$ . Therefore,
because $\sigma_{1}(e)=\overline{e}\in E_{q}(\Gamma)$ and the assumption (4), $\sigma_{2}(\overline{e})=e$ . However, this implies that
$\sigma_{2}:-\alpha\mapsto\alpha$ . This gives a contradiction to (4.2). Consequently, there is no vertex $p\in V(\Gamma)$ such
that $W(p)\simeq W/\mathbb{Z}_{3}.$

4.1.3. The case when $W(p)\simeq W/\mathbb{Z}_{2}$ . Because $|W(p)|=3$ and the assumption (4), in this case
there is a triangle GKM subgraph $(\triangle, \mathcal{A}|_{\triangle}=\mathcal{A}’)\subset(\Gamma, \mathcal{A})$ such that $V(\triangle)=W(p)=\{p, q, r\}.$

Because the symmetric group $W$ acts on $(\triangle, \mathcal{A}’)$ transitively, we may assume that

$\sigma_{1}:p\mapsto p, q\mapsto r$ ;

$\sigma_{2}:p\mapsto q, r\mapsto r.$

Moreover, considering the axial functions around $\triangle$ , we can easily check that this case may
assume the axial functions appeared in Figure 3 (the case when $\mathcal{A}(pq)=\epsilon\alpha$ and $\mathcal{A}(pr)=\epsilon\beta$ ) or
Figure 4 $($otherwise, $i.e., the$ case when $\mathcal{A}(e)=\epsilon\alpha$ and $\mathcal{A}(e’)=\epsilon\beta$ for $e\in E_{p}(\Gamma)\backslash E_{p}(\triangle)$ and
$e’\in E_{q}(\Gamma)\backslash E_{q}(\triangle))$ .

FIGURE 3. The axial function around $\triangle$ such that $V(\triangle)=W(p)$ , where $k$ is a
non-zero integer and $\epsilon=\pm 1$ . In this case, $\sigma_{1}$ : $\alpha\mapsto\beta$ and $\sigma_{2}:\beta\mapsto-\alpha+\beta.$

$\epsilon\alpha$

$\epsilon$

’

$-\epsilon(\alpha+\beta)$

FIGURE 4. The axial function around $\triangle$ such that $V(\triangle)=W(p)$ , where $\epsilon,$

$\epsilon’=$

$\pm 1$ . In this case, $\sigma_{1}$ : $\beta\mapsto-\alpha-\beta$ and $\sigma_{2}$ : $\alpha\mapsto\beta.$

4.1.4. The case when $W(p)\simeq W/\{e\}$ . In this case, $|W(p)|=6$ . By using the assumption (4),
it is easy to check that $W$ acts on $\Gamma$ transitively and the axial functions are the labelles appeared
in Figure 5 or Figure 6.
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FIGURE 5. The 1st case: $\sigma_{1}:\alpha\mapsto-\alpha,$ $\beta\mapsto\alpha+\beta;\sigma_{2}:\beta\mapsto-\beta,$ $\alpha\mapsto\alpha+\beta,$

where $k$ is a non-zero integer.

FIGURE 6. The 2nd case: $\sigma_{1}$ : $\alpha\mapsto-\alpha,$ $\beta\mapsto-\alpha+\beta;\sigma_{2}$ : $\beta\mapsto-\beta,$ $\alpha\mapsto\alpha+\beta,$

where $k$ is a non-zero integer.

4.2. The proof of Theorem 1.6 for the case when there is an $S_{3}$-action. Finally, in

this section, we prove Theorem 1.6 by combining the facts described in Section 4.1. If $W=S_{3}$

acts on $(\Gamma, \mathcal{A})$ transitively, then this case is one of the cases of Figure 5 and Figure 6. These are
the cases (5), (6) in Theorem 1.6.

Assume that $W$ acts on $(\Gamma, \mathcal{A})$ non-transitively. Then, there are three possible orbits, i.e.,

Figure 2, Figure 3 and Figure 4, say type 1, type 2 and type 3 respectively.
If there is a type 1 orbit, then this orbit must be connecting with one of the following orbits:

(1) the type 1 orbit with distinct $\epsilon$ ’s (this is the case (1) in Theorem 1.6);

(2) the type 3 orbit with distinct $\epsilon$ ’s (this is the case (2) in Theorem 1.6).

Assume that there is no type 1 orbit but there is a type 2 orbit. Then, because there is a $W$-action
on whole $\Gamma$ , this case is only the connecting two copies of type 2 (with different signs of $k’ s$). This
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is the case (3) in Theorem 1.6. Assume that there is no type 1 orbit but there is a type 3 orbit.

Then, similarly, this case is only the connecting two copies of type 3 (with distinct $\epsilon’ s$). This is

the case (4) in Theorem 1.6.
This establishes Theorem 1.6.

REMARK 4.1. In the end of this article, we show some geometric models for GKM graphs
appearing in Theorem 1.6:

$\bullet$ The GKM graph (1) is induced from $(S^{6}, T^{2})$ , where $S^{6}\simeq G_{2}/SU(3)$ (there is a $SU(3)(\subset$

$G_{2})$ -extended action);
$\bullet$ The GKM graph (2) is from $(\mathbb{C}P^{3}, T^{2})$ , where $\mathbb{C}P^{3}\simeq P(V(-\alpha)\oplus V(-\beta)\oplus V(\alpha+\beta)\oplus\underline{\mathbb{C}})$

(there is a $SU(3)$-extended action on the first three coordinates);
$\bullet$ The GKM graph (3) is from $S^{5}\cross T^{1}P(\gamma^{\otimes k}\oplus\epsilon)$ (there is a transitive $SU(3)$ -action on

the $S^{5}$-factor);
$\bullet$ The GKM graph (4) is from the connected sum of two copies of $(\mathbb{C}P^{3}, T^{2})$ ’s which induce

the GKM graph (2) (there is an $SU(3)$ -extended action because this connected sum is
an $SU(3)$-equivariant);

$\bullet$ The GKM graphs (5), (6). These cases are still not known, that is, which GKM manifolds

induce these GKM graphs? Some of them must be obtained from the projectivizations
of equivariant complex 2-dimensional vector bundles over $\mathbb{C}P^{2}$ , which are not split into

line bundles (see [Kan]), because the projectivization of Whitney sum of line bundles
is isomorphic to $S^{5}\cross T^{1}P(\gamma^{k}\oplus\epsilon)$ . In particular, if $k=1$ for the GKM graph (5),

this is obtained from the flag manifold $SU(3)/T^{2}\simeq SU(3)\cross U(2)\mathbb{C}P^{2}$ , which can be

regarded as the projectivization of some complex 2-dimensional vector bundle over $\mathbb{C}P^{2}$

$($see $[KuSu])$ .
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