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Abstract

The purpose of this paper is systematically to survey several nonlinear mappings and
to classify the implications concerning to them. Also, we suggest several examples of
nonlinear mappings which are comparable each other and we finally raise some open
questions.
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1 Introduction

Let X be a real Banach space with norm || - || and let X* be the dual of X. Denote by (-, -)
the duality product. Also, we denote by N and R the set of natural numbers and the set of
real numbers, respectively. Let T : C — C be a mapping. We denote by F(T') the set of all

fixed points of T', namely,
F(IT)={zeC: Tz =z}

Recall that the mapping T is said to be Lipschitzian if
Tz - Tyl < Lz —yl, =yeC,

where L := Ly denotes the Lipschitz constant of T. Obviously, it is equivalent to the following
property: for each n € N, there exists a constant k, > 0 such that

1Tz = T"y|| < knllz —yl, =,y€C. (1.1)
For a Lipschitzian mapping T', we say:
o T is uniformly k-Lipschiztain if k,, = k for all n € N;
o T is nonexpansive if k, = 1 for all n € N;
o T is asymptotically nonezpansive [3] if lim, o0 kn = 1.

The first non-Lipschitzian mapping was introduce by Kirk [10]; we say that T is a mapping
of asymptotically nonexpansive type if

lim sup sup([|T"z — T"y|| — ||z — y|[) <0 (1.2)

n—oc yel
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for every z € C, and TV is continuous for some N > 1. In 1993, Bruck et al [2] introduced
the stronger definition than (1.2), namely, T is said to be asymptotically nonerpansive in the
intermediate sense [2] provided T is uniformly continuous and

limsup sup (|7"z — T"y|| - |}z - y|}) <0. (13)

n—oco z,y€C
Note that if we define

en = sup (|[T"z — T"y|| — [z - y|) VO, (1.4)
z,yeC

where a V b := max{a, b}, then (1.3) ensures that ¢, — 0 and
1Tz — T"y|| < Iz —yll + cn (1.5)

for all z,y € C and n > 1. Obviously, (1.5) implies (1.3) in case ¢, — 0. Therefore, we
summarize:

Proposition 1.1. (1.8) holds < (1.5) holds for some sequence {c,} with ¢, — 0.

Definition 1.2. We say that T is gradually nonexpansive whenever (1.5) holds for some
sequence {c,} with ¢, — 0.

For the purpose of unifying nonlinear mappings mentioned above, Alber et al [1] introduced
a new notion, namely, T is said to be total asymptotically nonexpansive 1] if there exist two
nonnegative real sequences {a,} and {6,} with an,n, — 0, 7 € I'[0, 00) such that

”Tnx - Tny” < ”17 - y“ + anT(”x - y”) + ,Bm T,y € C, n 2> ]-a (16)
where 7 € T'[0, 00) if and only if 7 : [0,00) — [0, 00) is strictly increasing, continuous on {0, o)
and 7(0) = 0.

Remark 1.3. In view of Definition 3.1 of [12], we also say that T is generalized asymptotically
nonexpansive in case that 7(¢) = ¢ for all ¢ > 0 in (1.6).

Now it is natural to consider more stronger one than (1.6).

Definition 1.4. T is said to be square total asymptotically nonexpansive if (1.6) can be

replaced by _
1Tz — T™y|1? < ||z — yl* + @n7(llz — y|1%) + Bn, (1.7)

for all z,y € C and n > mg, where mg € N, &'n,En — 0 and 7 € I'[0, 00).

Remark 1.5. Note that the property (1.6) with a,, = 0 for all n > 1 reduces to (1.5) with
Bn = cn; moreover, if we take 7(¢) =t for all t > 0 and 8, = 0 for all n > 1 in (1.6), it is
reduced to (1.1) with &, =1 + a,.

The purpose of this paper is systematically to survey several nonlinear mappings and to
classify the implications concerning to them. In section 2, we introduce classes of various non-
linear mappings and suggest their implications. In section 3, we give some counter examples
for their implications and some open questions are finally added.

2 Implications of classes

For summarizing the connections between the classes of nonlinear mappings considered above,
we use the following notations:
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(N) = the class of nonexpansive mappings
(L) = the class of Lipschiztian mappings
(UC) = the class of uniformly continuous mappings
(UL) = the class of uniformly Lipschiztian mappings
(AN) = the class of asymptotically nonexpansive mappings
(GN) = the class of gradually nonexpansive mappings
(GAN) = the class of generalized asymptotically nonexpansive mappings
(TAN) = the class of total asymptotically nonexpansive mappings
(STAN) = the class of square total asymptotically nonexpansive mappings
(ANIS) = the class of mappings which are asymptotically nonexpansive
in the intermediate sense
(ANT) = the class of mappings of asymptotically nonexpansive type

We say that T is AN, GN, GAN, TAN, STAN, ANIS and ANT, in abbreviated forms,
whenever T belongs to its corresponding classes (AN), (GN), (GAN), (TAN), (ANIS) and
(ANT). Then, there hold the following implications:

Proposition 2.1. (i) (N) c (AN) c (UL) c (L) C (UC).
(if) (GN) N (UC) = (ANIS) C (ANT).

(iii) (AN)U (GN) C (GAN) C (TAN).

Proposition 2.2. Let C' be bounded. Then:
(i) (GN) = (GAN) = (TAN) = (STAN).
(if) (AN) c (ANIS).

Proof. (i) Since (TAN) = (STAN) is obvious, we claim: (TAN) C (GN). Assume § :=
diam(C) < co. If T is TAN, then

1Tz —T | < e -yl +anr(llz - yll) + Ba
< lz =yl + ant(8) + Bn
lz—yl+cn, zyelynzl,

where ¢, := an7(8) + Bnd — 0. Hence T is GN. It follows from (iii) of Proposition 2.1 that
(GN) = (GAN) = (TAN). Moreover, since (AN) U (GN) = (GN), we have (AN) C (GN).
Then it follows from (i) and (ii) of Proposition 2.1 that (AN) C (ANIS). Therefore (ii) is
obtained. 0

Definition 2.3. Let f,, f : C(C X) — C be mappings. We say that {f,} converges
uniformly to f on C if
fn = fll := sup | fule) - f@)ll =0

as n — oo. Further, we say that T™x converges uniformly to a point p € C on C whenever
{fn := T™} converges uniformly to the function f on C, where f(z) = p for all z € C, that
is,

sup |[T"z —p|| -0 asn — oo.

zeC



22

T. H. Kim

Lemma 2.4. If T"z converges uniformly to some point p € C on C, then T is GN.

Proof. Let ¢, :=sup, ¢ [|T™z — T™y||. Then ¢, — 0 since

0<c,= sup ||[T"z ~T"y|| < sup||[T"z —p|| +sup|p—T"y| -0
z,yeC z€eC yeC

as n — o0o. From the construction of ¢, it easily follows that
Tz — T yl| < ¢,, x,y€C, n>1,
which immediately implies (1.5). Hence T is GN. a

Remark 2.5. However, the converse of Lemma 2.4 does not hold in general; see Example 3.9.

3 Counter examples

As counter examples of (i) in Proposition 2.1, it is not hard to see that if Tz = 2z for
z € C =R, then T € (L)\ (UL). Furthermore, if Tz = /= for z € C = [0,00), then T €
(UC)\ (L). For an example of T € (UL)\ (AN), see Example 3.7. Also, the following example
of T € (AN) \ (N) is originally due to [3] in 2 spaces.

Example 3.1. ([7]; see Example 3.13). Let B denote the unit ball in the space X = P, where
1 < p < oo. Obviously, X is uniformly conver and uniformly smooth. Let T : B — B be

defined by
Tz = (0, CL‘%, Ala?z, )\2.’133, . )

for all x = (z1,32,23,...) € B, where 0 < A\, <1 for alln>1 and [[o, \n = . Then:
(i) T is Lipschitzian, i.e., |Tx — Ty|| < 2|z —y|, z,ye€C;
(ii) T is AN, ie., |[T"Hz ~ Ty <2[]7 Nllz —yl, z,yeC, neN;
(iii) T is not nonexrpansive.

Proof. Noticing that, for z = (z;,z2,...) € B,
,—_Jn\_\ n-1 n n+1
Tnm = (0,-..707 H )\1$%7HA’1.$2, H )\7;1173,...).
=1 i=1 i=2

Thus we have ||T"z — T™y|| < 2 H?z_ll Aillz —y|| for all n > 2. Obviously, since 2 H::ll Aid 1,
T is AN. On the other hand, since [Tz - Ty|| = 2 > L = ||z — y| for z = (1,0,0,...) and
y =(1/2,0,0,...), T is not nonexpansive. 0O
Remark 3.2. Consider either A, := 1 — ﬁf’ or A\, := exp (ﬁ - 2n_1—T) to get a sequence

satisfying that 0 < A, < 1 and Hf;l An = % Indeed, for the second case, since 0 <
exp(—z) < 1 for all z > 0, we must find a sequence {a,} such that

00 oo oo 1
IT % = I] exp(-an) = exp(= 3" o) = .
n=1 n=1 n=1

This is equivalent to
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because
n
1 1 1 1 1
Sn = ;(m_ﬂ)_n+l+n+2+'“+n+n
1o 1 |
= —Z ——>/ dr =1n 2.
nk=11+k/n o 1+z

Furthermore, since 1 — z < exp(—z) for all z € (0, 1), we observe

ian:oo = ﬁ(l—an)zo
n=1 n=1

for all o, € (0,1) since
o0 o0 00
0 T10 ) < [T explcon) ~ exp(- 520 =0
n=1 n=1 n=1

As a direct consequence of Lemma, 2.4, we introduce three non-Lipschitzian mappings T' €
(ANIS) \ (AN).

Example 8.3. ([5]). LetC:=[-1 1] and0< |k|<1. Foreachz € C,letT:C — C be
defined by

L kmsini—, ifx #0;
T‘”'_{ 0, ifz=0.

Then F(T) = {0} and T™z converges uniformly to 0 on C (hence T is GN by Lemma 2.4).
Since T is clearly uniformly continuous, it follows from (ii) of Proposition 2.1 that T is
ANIS. However, T is not Lipschitzian; see Example .3 of [5] for the proof. Therefore T €
(ANIS) \ (AN).

Example 3.4. ([9]). Let X =R and C = [0,1]. For eachx € C, let T : C — C be defined
by
ree ] ® z € (0, al;
= \/1"‘_—0\/1—27, z € [a, 1],

where o € (0,1). Then F(T) = {a} andT"x = o for allx € C, n > 2; hence T is ANIS as in
Ezample 3.3. However, T 1is not Lipschitzian; see Example 3.9 of [9] for the proof. Therefore
T € (ANIS) \ (AN).

Example 3.5. ([4]). Let X =R and C =[0,1]. For each x € C, let T : C — C be defined

by
Teed WV2-1D)/i-z+d, ifo<z<i/2
vz, if1/2<z<1.

Then F(T) = {1} and T™x converges uniformly to 1 on C; hence T is ANIS as in Example 3.3.
However, T is not Lipschitzian; see Example 1.2 of [4] for more details. Therefore T €
(ANIS) \ (AN).

A mapping satisfying the property (1.3) do not always guarantee its non-Lipschitz. The
following two examples are uniformly Lipschitzian ANIS mappings.
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Example 3.6. ([8]). Let X =R and C =[0,1]). For eachz € C, let T : C — C be defined
by

kz, f0<z<1/2
Tr={ 525(k-2), if1/2<z<k;
0, fk<z <1,

where 1/2 < k < 1. Then F(T) = {0} and T"z converges uniformly to 0 on C. Obviously,
T is uniformly continuous. It follows from Lemma 2.4 and (i) of Proposition 2.1 that T is
ANIS. Furthermore, T is umformly Lipschitzian. Indeed, if 0 < z < 1/2 and 1/2 < y <k,
then T"z = k™z and TMy = 2k 7 (k —y). Therefore, we see that

Tz — TMy| = k"x—%+%t—%(k~—y)’
= k"(””'l)J’zkkil[(k‘%)_(k"y)”
s K w—_‘+2k—1‘y ‘
n
< gpople Yl S gp—gle -l

The remaining cases are obvious. Hence T is uniformly %—Lipschitzian.

The following example of T' € (UL) N (ANIS) \ (AN) is originally due to Example 1.3 (with
k =4) of [4].
Example 3.7. ([4]) For any k > 0, let {an} be a sequence of positive numbers such that
an 10 and [I72 (14 ap) = k. Set

1
P R > 1.
bn 2n+1(1 + a,,)’ nzl

Let T : C — C be defined by
Te = { (1+a)z+1/2, ifze€0,b);

1/2+ 1/4, ifz € [by,1/2]
and
n—1 1 n 1 ) n—1 1 n—1 1
(1+an)(z—z-2—;)+. 37s zfze[z 5;,2-2-;+bn];
Tx = =1 =1 i=1 i=1

n+1 n—-1 n

3 0 foe[ X k+bn Y &], n>2
i=1 i=1 i=1

andT1 = 1. Then F(T') = {1} and T™z converges uniformly to 1 on C. Since T is continuous
on C, T is also uniformly continuous on C. It follows from Lemma 2.4 and (ii) of Proposition
2.1 that T' is ANIS. Furthermore, T is uniformly k-Lipschitzian. Note that if k > 1, we
conclude : T € (UL) N (ANIS) \ (AN).

Proof. Tt suffices to show that T is uniformly k-Lipschitzian. Indeed, (i) if we take

. O e
11 S 240 L +a) 77 5N+ @)

for each n > 1, then, since

n+1

n n
Tn;;(,':H(l +ai)$+Z§];i’ Ty = Z 5
i=1 i=1
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and [[p_, (1 + ax)y = by (1 + an) = 3m471, we obtain that

n n 1 n+1 1
[Tz - T"y| = H(1+ai)w+25 - Zg
=1 =1

i=1

" 1

i=1
n

= ([0 +a)z—ba(1+ an)l =[] +a)lz -yl

i=1 =1

(ii) if we replace y with a point p € [b1,1/2] in the case (i), then T"p = Z::ll 2. Now use

1/22 = (1 +a1)b; and [ (L +ai)z = 1/([[;, 2°*) to derive

[Tz —T"p| = |T"xz—T"b|
n n 1 n+1 1
= )H(1+ai)m+2§ —Z'Z—;
=1 i=1 i=1
n
1 1 1
= (1+a))z - l= — — =
| 1,1.;[1 gn+1 on+1 Hz_=1 2i+1
< [ +a) 1
—_— n a1
22 Hizl 2i+1
n n n
= JJa+a)b - [[Q+a)z =] +a)lz—bi
i=1 i=1 i=1

n
< [0 +a)lz-pl.
i=1
The remaining cases are obvious. We conclude that
n
[T"z — Try| < H(l +a)|lz-yl, zyeCl, n>1,
i=1

which ensures that 7T is uniformly k-Lipschiztian since [] - (1 + an) = k. O

Remark 3.8. (i) Since 1 + z < €% for all z € R, we easily find a sequence {a,} of positive
numbers such that a, | 0 and [[°,(1 + an) = k(> 1). Indeed, since the sequence {s,},
Sn := [Ip—; (1 + ag), of its nth partial sums is strictly increasing and

oo o
[T +an) < [ e =eXr=ron =k =,
n=1 n=1

it suffices to find a (convergent) geometric series replaced with a, := ™, 0 <r < 1 such that

o0 x r

— n __ —
Zan—Zr —1_T—lnk
n=1 n=1
. Ink
7.—1+lnk'

(ii) Note that if we take a,, = 0 in Example 3.7, then T is clearly nonexpansive.
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As a slight modification of Example3.7, we shall give an example of a uniformly Lip-
schitzian ANIS mapping defined a (unbounded) closed convex subset C' on which is not
converges uniformly.

Example 3.9. Consider C := [0,00) C R. Let T be defined on [0,1] as in Ezample 8.7
and define Tz = z on [1,00). Since T"x converges uniformly to 1 on [0,1], setting c, =
sup{|T"z — T"y| : z,y € [0,1]} — 0, then it is not hard to see that

Tz —T'y|<|z—y|l+cn, z,9y€C,n>1.

Therefore T is GN. In view of Example3.7, T is uniformly k-Lipschitzian. Therefore, T :
C — C is ANIS. However, note that T"x does not converge uniformly to a point p € C on
C.

Proof. We claim : [T"z — T"y| < |z — y| + ¢, for all z,y € C and n > 1. Consider the case
of z € [0,1] and y € [1,00). Then

|[T"z - T"y| < |T"z—T"1|+|T"1 - T y|
< atll-y<lz—yl+en
for all n > 1. The remaining cases are obvious. a

The following example of T € (UL) \ (ANT) is also interesting.

Example 3.10. ([6]). Let X =R, C := [—%,1], where 1 < k < 2. Define a mapping
T:C—C by
_f —kz, if -} <z<0;
Tz *{ ~iz, f0<z<Ll
Then:

(i) T?z =z for allz € C (hence, T>*"! =T for alln > 1);
(i) T is uniformly k-lipschitzian;
(iii) T does not satisfy (1.2); hence it is not ANT.
Indeed, it suffice to show: T is not ANT. To this end, for each z € C,

limsup sup{|T"z — T"y| — |z — y|}
n—o0 yeC

> sup{|Ty| ~ |y : y € [-1/k,1]}

sup{(k — 1)[y| : —1/k < y < 0}
1 1
= (k=1p=1-7>0.

Now we introduce a discontinuous mapping T" € (GN); see Example 1.6 of [11].

Example 3.11. ([11]). Let X :=R, C:=[0,1] and 0 < k < 1. Define a mapping T : C — C

by
| kx, f0<z< %;
T””"{o, fl<z<l

Then T is not continuous at % but T"x converges uniformly to 0 on C. By Lemma 2.4 we
readily see that T is GN.

Finally we raise the following questions.
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Question 3.12. Find ezamples of the following mapping T
(i) T € (ANT) \ (ANIS).

(i) T € (ANT) \ (ANIS).

(ili) T € (GAN) \ (GN).

Question 3.13. Find the corresponding analogue examples in infinite dimensional spaces.
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