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STRONG CONVERGENCE TO COMMON ATTRACTIVE POINTS OF
ASYMPTOTICALLY REGULAR NONEXPANSIVE SEMIGROUPS

山梨大学 厚芝幸子 (SACHIKO ATSUSHIBA)

1. INTRODUCTION

Let $H$ be a real Hilbert space with inner product $\rangle$ and norm $\Vert\cdot\Vert$ and let $C$ be a
nonempty subset of $H$ . For a mapping $T:Carrow C$ , we denote by $F(T)$ the set of fixed points
of $T$ and by $A(T)$ the set of attractive points [22] of $T$ , i.e.,

(i) $F(T)=\{z\in C:Tz=z\}$ ;
(ii) $A(T)=\{z\in H : \Vert Tx-z\Vert\leq\Vert x-z \forall x\in C\}.$

A mapping $T$ : $Carrow C$ is called nonexpansive if $\Vert Tx-Ty\Vert\leq\Vert x-y\Vert$ for all $x,$ $y\in C.$

Kocourek, Takahashi and Yao [15] introduced a broad class of nonlinear mappings called
generalized hybrid which containing nonexpansive mappings, nonspreading mappings, and
hybrid mappings in a Hilbert space. They proved a mean convergence theorem for general-
ized hybrid mappings which generalizes Baillon’s nonlinear ergodic theorem [10]. Motivated
by Baillon [10], and Kocourek, Takahashi and Yao [15], Takahashi and Takeuchi [22] intro-
duced the concept of attractive points of a nonlinear mapping in a Hilbert space and they
proved a mean convergence theorem of Baillon’s type without convexity for generalized hybrid
mappings. Motivated by Takahashi and Takeuchi [22], author and Takahashi [9] introduced
the concept of common attractive points of a nonexpansive semigroup in a Hilbert space
and proved a nonlinear mean convergence theorem of Baillon’s type without convexity for
nonexpansive semigroups.

In 1992, Wittmann [23] proved the following strong convergence theorems of Halpern’s
type [14] in a Hilbert space;

Theorem 1.1. Let $C$ be a nonempty closed convex subset of a Hilbert space H. Let $T$ be a
nonexpansive mapping of $C$ into itself with $F(T)\neq\emptyset$ . For any $x_{1}=x\in C$ , define a sequence
$\{x_{n}\}$ in $C$ by

$x_{n+1}=\alpha_{n}x+(1-\alpha_{n})Tx_{n}, \forall n\geq 1$

where $\{\alpha_{n}\}\subset[0$ , 1$]$ satisfies

$\lim_{narrow\infty}\alpha_{n}=0, \sum_{n=1}^{\infty}\alpha_{n}=\infty, \sum_{n=1}^{\infty}|\alpha_{n}-\alpha_{n+1}|<\infty.$

Then, $\{x_{n}\}$ converges strongly to $P_{F(T)}x$ , where $P_{F(T)}$ is the metric projection from $H$ onto
$F(T)$ .

Motivated by Takahashi and Takeuchi [22], Akashi and Takahashi [2] proved a strong con-
vergence theorem of Halpern’s type [14] for nonexpansive mappings in a star-shapes subset
of a Hilbert space. On the other hand, Domingues Benavides, Acedo and Xu [13] proved
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Halpern’s type [14] strong convergence theorems for uniformly asymptotically regular one-
parameter nonexpansive semigroups. They [13] also proved Browder’s type [12] strong conver-
gence theorems for the semigroups. Acedo and Suzuki [1] generalized Domingues Benavides,

Acedo and Xu’s results which is Browder’s type [12] concerning the condition of the sequences
in real numbers. Atsushiba [4] studied Browder’s type iterations for nonexpansive semigroups
and proved strong convergence theorems for uniformly asymptotically regular nonexpansive
semigroups in Hilbert spaces (see also [5,20,21

In this paper, we study Halpern’s type iterations [14] for nonexpansive semigroups and
give strong convergence to common attractive points of uniformly asymptotically left reg-
ular nonexpansive semigroups in Hilbert spaces. Using this result, we obtain some strong
convergence theorems in Hilbert spaces.

2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by $\mathbb{N}$ and $\mathbb{R}$ the set of all positive integers and the set
of all real numbers, respectively. We also denote by $\mathbb{Z}^{+}$ and $\mathbb{R}^{+}$ the set of all nonnegative
integers and the set of all nonnegative real numbers, respectively. Let $H$ be a real Hilbert
space with inner product $\rangle$ and norm $\Vert$ . We know the following basic equality from [21].
For $x,$ $y\in H$ and $\lambda\in \mathbb{R}$ , we have

$\Vert\lambda x+(1-\lambda)y\Vert^{2}=\lambda\Vert x\Vert^{2}+(1-\lambda)\Vert y\Vert^{2}-\lambda(1-\lambda)\Vert x-y\Vert^{2}$ . (1)

Furthermore, we obtain that for all $x,$ $y,$ $w\in H,$

$\langle(x-y)+(x-w) , y-w\rangle=\Vert x-w\Vert^{2}-\Vert x-y\Vert^{2}$ . (2)

In fact, we have that

$\langle(x-y)+(x-w) , y-w\rangle$

$=\langle(x-y)+(x-w) , (y-x)+(x-w)\rangle$

$=\Vert x-w\Vert^{2}-\Vert x-y\Vert^{2}+\langle x-y, x-w\rangle+\langle x-w, y-x\rangle$

$=\Vert x-w\Vert^{2}-\Vert x-y\Vert^{2}.$

Let $C$ be a closed and convex subset of $H$ . For every point $x\in H$ , there exists a unique
nearest point in $C$ , denoted by $P_{C}x$ , such that

$\Vert x-P_{C}x\Vert\leq\Vert x-y\Vert$

for all $y\in C$ . The mapping $P_{C}$ is called the metric projection of $H$ onto $C$ . It is characterized
by

$\langle P_{C}x-y, x-P_{C}x\rangle\geq 0$

for all $y\in C$ . See [21] for more details. The following result is well-known; see [21].

Lemma 2.1. Let $C$ be a nonempty, bounded, closed and convex subset of a Hilbert space $H$

and let $T$ be a nonexpansive mapping of $C$ into itself. Then, $F(T)\neq\emptyset.$

We write $x_{n}arrow x$ $( or \lim_{narrow\infty}x_{n}=x)$ to indicate that the sequence $\{x_{n}\}$ of vectors in $H$

converges strongly to $x$ . We also write $x_{n}arrow x$ $( or w-\lim_{narrow\infty}x_{n}=x)$ to indicate that the

sequence $\{x_{n}\}$ of vectors in $H$ converges weakly to $x$ . In a Hilbert space, it is well known
that $x_{n}arrow x$ and $\Vert x_{n}\Vertarrow\Vert x\Vert$ imply $x_{n}arrow x$ . We say that a Banach space $E$ satisfies Opial’s
condition [18] if for each sequence $\{x_{n}\}$ in $E$ which converges weakly to $x,$

$\varliminf_{narrow\infty}\Vert x_{n}-x\Vert<\varliminf_{narrow\infty}\Vert x_{n}-y\Vert$
(3)

119



for each $y\in E$ with $y\neq x$ . In a reflexive Banach space, this condition is equivalent to the
analogous condition for a bounded net which has been introduced in [16]. It is also known
that this condition is equivalent to the analogous condition of $\varlimsup$ (see [7]). It is known that
Hilbert spaces satisfy Opial’s condition (see [18,21

Let $S$ be a semitopological semigroup, i.e., $S$ is a semigroup with a Hausdorff topology
such that for each $a\in S$ the mappings $s\mapsto a\cdot s$ and $s\mapsto s\cdot$ $a$ from $S$ to $S$ are continuous.
$S$ is called right reversible if any two closed left ideals of $S$ has non-void intersection. If $S$ is
right reversible, $(S, \leq)$ is a directed system when the binary relation $\leq$ on $S$ is defined by
$s\leq t$ if and only if $\{s\}\cup\overline{Ss}\supset\{t\}\cup\overline{St},$ $s,$ $t\in S$ , where $\overline{A}$ is the closure of $A$ . Right reversible
semitopological semigroups include all commutative semigroups and all semitopological semi-
groups which are right amenable as discrete semigroups (see [17, p.335]). Left reversibility of
$S$ is defined similarly. $S$ is called reversible if it is both left and right reversible.

Let $C$ be a nonempty subset of a Hilbert space $H$ and let $S$ be a semigroup. A family
$S=\{T(t) : t\in S\}$ of mappings of $C$ into itself is said to be a nonexpansive semigroup on $C$

if it satisfies the following conditions:

(i) For each $t\in S,$ $T(t)$ is nonexpansive;
(ii) $T(ts)=T(t)T(s)$ for each $t,$ $s\in S$ ;
(iii) for each $x\in C,$ $t\mapsto T(t)x$ is continuous.

We denote by $F(S)$ the set of all common fixed points of a nonexpansive semigroup $S$ , i.e.,

$F(S)= \bigcap_{t\in S}F(T(t))$
.

Motivated by Takahashi and Takeuchi [22], the author and Takahashi [9] introduced the set
$A(S)$ of all common attractive points of the family $S=\{T(t) : t\in S\}$ of mappings on $C$ , i.e.,

$A(S)=\{x\in H : \Vert T(t)y-x\Vert\leq\Vert y-x \forall y\in C, t\in S\}.$

3. LEMMAS

In this section, we give some lemmas which are used in the proof of our main theorem.
They are basic properties of common attractive points of nonexpansive semigroups in a
Hilbert space. Let $S$ be a semigroup. We get the following lemmas as in the proof of lemmas
in the case of commutative semigroups ([9, 6

Lemma 3.1 ([6]). Let $H$ be a Hilbert space, let $C$ be a nonempty, closed and convex subset

of $H$ , and let $S$ be a semigroup. Let $S=\{T(t) : t\in S\}$ be a family of mappings on C. If
$A(\mathcal{S})\neq\emptyset$ , then $F(S)\neq\emptyset.$

Lemma 3.2 ([6]). Let $H$ be a Hilbert space, let $C$ be a nonempty subset of $H$ , and let $S$ be
a semigroup. Let $S=\{T(t) : t\in S\}$ be a family of mappings on C. Then, $A(S)$ is a closed
and convex subset of $H.$

We also have the following lemma (see also [9, 22

Lemma 3.3 ([6]). Let $H$ be a Hilbert space, let $C$ be a nonempty subset of $H$ , and let $S$ be
a semigroup. Let $S=\{T(t) : t\in S\}$ be a family of mappings on C. Let $\{u_{n}\}$ be a sequence
in $H$ such that

$narrow\infty\overline{hm}\langle(u_{n}-y)+(u_{n}-T(t)y) , y-T(t)y\rangle\leqq 0$

for all $t\in S$ and $y\in C.$ If a subsequence $\{u_{n_{i}}\}$ of $\{u_{n}\}$ converges weakly to $u\in H$ , then
$u\in A(S)$ .

120



We get the following lemma by [9] (see also [22]).

Lemma 3.4. Let $H$ be a Hilbert space, let $C$ be a nonempty subset of $H$ , and let $S$ be a
semigroup. Let $S=\{T(t) : t\in S\}$ be a nonexpansive semigroup on C. Suppose that there
exists an $x\in C$ such that $\{T(t)x:t\in S\}$ is bounded. Then, $A(S)\neq\emptyset.$

To prove our main result, we need the following lemma.

Lemma 3.5. [3]; see also [24]. Let $\{s_{n}\}$ be a sequence of nonnegative real numbers, let $\{\alpha_{n}\}$

be a sequence of $[0$ , 1$]$ with $\sum_{n=1}^{\infty}\alpha_{n}=\infty$ . Let $\{\beta_{n}\}$ be a sequence of nonnegative real numbers
with $\sum_{n=1}^{\infty}\beta_{n}<\infty$ and let $\{\gamma_{n}\}$ be a sequence of real numbers with $\varlimsup_{narrow\infty}\gamma_{n}\leq 0$ . Suppose
that

$s_{n+1}\leq(1-\alpha_{n})s_{n}+\alpha_{n}\gamma_{n}+\beta_{n}$

for all $n\in \mathbb{N}$ . Then, $\lim_{narrow\infty}s_{n}=0.$

4. STRONG CONVERGENCE THEOREMS

In this section, we study Halpern’s type iterations [14] for nonexpansive semigroups and
prove strong convergence to common attractive points of uniformly asymptotically left regular
nonexpansive semigroups in Hilbert spaces (see also [2, 4, 9, 13,20,21,22

Let $C$ be a nonempty subset of $H$ . Then, $C$ is called star-shaped if there exists $z\in C$ such
that for any $x\in C$ and any $\lambda\in(0,1)$ ,

$\lambda z+(1-\lambda)x\in C.$

Throughout the rest of this section, we assume that $C$ is a nonempty subset of $H$ , and $S$

is a right reversible semitopological semigroup. Let $S=\{T(t) : t\in S\}$ be a nonexpansive
semigroup on $C$ . We say that a nonexpansive semigroup $S=\{T(t) : t\in S\}$ is asymptotically
left regular if

$\lim_{s\in S}\Vert T(h)T(s)x-T(s)x\Vert=0$

for all $h\in S$ and $x\in C$ (see also [20, 21 We also say that a nonexpansive semigroup
$S=\{T(t) : t\in S\}$ is uniformly asymptotically left regular if for every $h\in S$ and for every
bounded subset $K$ of $C,$

$\lim_{s\in S_{x}}\sup_{\in K}\Vert T(h)T(s)x-T(s)x\Vert=0.$

holds.
Author and Takahashi [9] proved the following nonlinear mean convergence theorem of

Baillon’s type without convexity for nonexpansive semigroups.

Theorem 4.1 (Atsushiba-Takahashi). Let $H$ be a Hilbert space, let $C$ be a nonempty subset

of H. Let $S$ be a commutative semigroup and let $S=\{T(t) : t\in S\}$ be a nonexpansive
semigroup on $C$ such that $\{T(t)x:t\in S\}$ is bounded for some $x\in C$ . Let $X$ be a subspace

of $B(S)$ such that $1\in X$ , it is $\ell_{S}$ -invariant for each $s\in S$ , and the function $t\mapsto\langle T(t)z,$ $y\rangle$ is
an element of $X$ for each $z\in C$ and $y\in H$ . Let $\{\mu_{\alpha}u\}$ be a net of means on $X$ such that

$\lim_{\alpha}\Vert\mu_{\alpha}-\ell_{s}^{*}\mu_{\alpha}\Vert=0.$

Let $u\in C$ and $\{T_{\mu_{\alpha}}u\}$ be a net of elements of $H$ such that

$\langle T_{\mu_{\alpha}}u, y\rangle=(\mu_{\alpha})_{t}\langle T(t)u, y\rangle$

for all $y\in H.$ Let $P_{A(S)}$ is a metric projection of $H$ onto $A(\mathcal{S})$ . Let $x\in C.$ Then, the
following hold:

(1) $A(S)$ is non-empty, closed and convex;
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(2) for any $u\in C,$ $\{T_{\mu_{\alpha}}u\}$ converges weakly to $u_{0}\in A(S)$ , where $u_{0}= \lim_{t\in S}P_{A(S)}T(t)u.$

We study convergence to common attractive points of nonexpansive semigroups without
the idea of mean.

We prove a Halpern’s [14] strong convergence theorem for a uniformly asymptotically
regular nonexpansive semigroup. We also generalize Domingues Benavides, Acedo and Xu’s
result of Halpern’s type [14] concerning the conditions of the sequence $\{\alpha_{n}\}$ in real numbers.

Theorem 4.2. Let $H$ be a Hilbert space, let $C$ be a star-shaped subset of $H$ with center
$z\in C.$ Let $S$ be a right reversible semitopological semigroup. Let $\mathcal{S}=\{T(t) : t\in S\}$ be a
uniformly asymptotically left regular nonexpansive semigroup on $C$ such that $A(S)\neq\emptyset$ . Let
$\{m_{n}\}$ be a sequence in $\mathbb{Z}^{+}$ such that $m_{n}arrow\infty$ . Let $t\in S.$ Let $\{x_{n}\}$ be a sequence in $C$

defined by $x_{1}\in C$ and
$x_{n+1}=\alpha_{n}z+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ , where $\{\alpha_{n}\}\subset[0$ , 1$]$ satisfies

$\lim_{narrow\infty}\alpha_{n}=0, \sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then, $\{x_{n}\}$ converges strongly to $P_{A(S)}z$ , where $P_{A(S)}$ is the metric projection from $H$ onto
$A(\mathcal{S})$ .

5. DEDUCED THEOREMS

Since we use an abstract semigroup in our main result, we can deduce some theorems from
them. We say that a mapping $T$ on $C$ is asymptotically regular if

$\lim_{narrow\infty}\Vert T^{n+1}x-T^{n}x\Vert=0$

for all $x\in C$ (see also [21]), We also say that a mapping $T$ on $C$ is uniformly asymptotically
regular if for every bounded subset $K$ of $C,$

$\lim_{narrow\infty}\sup_{x\in K}\Vert T^{n+1}x-T^{n}x\Vert=0$

holds. By Theorems 4.2, we get the following strong convergence theorem. We also generalize
Wittmann’s conditions (Theorem 1.1) of the sequence $\{\alpha_{n}\}$ in real numbers.

Theorem 5.1. Let $H$ be a Hilbert space, let $C$ be a star-shaped subset of $H$ with center
$z\in C.$ Let $T$ be a uniformly asymptotically regular nonexpansive mapping on $C$ such that
$A(T)\neq\emptyset$ . Let $\{m_{n}\}$ be a sequence in $\mathbb{Z}^{+}$ such that $m_{n}arrow\infty$ . Let $\{x_{n}\}$ be a sequence in $C$

defined by $x_{1}\in C$ and
$x_{n+1}=\alpha_{n}z+(1-\alpha_{n})T^{m_{\mathfrak{n}}}x_{n}$

for each $n\in \mathbb{N}$ , where $\{\alpha_{n}\}\subset[0$ , 1$]$ satisfies

$n arrow\infty hm\alpha_{n}=0, \sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then, $\{x_{n}\}$ converges strongly to $P_{A(T)}z$ , where $P_{A(T)}$ is the metric projection from $H$ onto
$A(T)$ .

A family $S=\{T(t) : t\in \mathbb{R}^{+}\}$ of mappings of $C$ into itself satisfying the following conditions
is said to be a one-parameter nonexpansive semigroup on $C$ :

(i) For each $t\in \mathbb{R}^{+},$ $T(t)$ is nonexpansive;
(ii) $T(0)=I$;
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(iii) $T(t+s)=T(t)T(s)$ for every $t,$ $s\in \mathbb{R}^{+}$ ;
(iv) for each $x\in C,$ $t\mapsto T(t)x$ is continuous.

We say that a one-parameter nonexpansive semigroup $S=\{T(t) : t\in \mathbb{R}^{+}\}$ is asymptotically
regular if

$\lim_{sarrow\infty}\Vert T(h+s)x-T(s)x\Vert=0$

for all $h\in \mathbb{R}^{+}$ and $x\in C$ (see also [20,21 We also say that a one-parameter nonexpansive

semigroup $S=\{T(t) : t\in \mathbb{R}^{+}\}$ is uniformly asymptotically regular if for every $h\in \mathbb{R}^{+}$ and
for every bounded subset $K$ of $C,$

$\lim_{sarrow\infty}\sup_{x\in K}\Vert T(h+s)x-T(s)x\Vert=0.$

holds.
By Theorems 4.2, we get the following strong convergence theorem for a uniformly asymp-

totically regular one-parameter nonexpansive semigroup. We also generalize Domingues Be-
navides, Acedo and Xu’s result of Halpern’s type [14] concerning the conditions of the se-
quence $\{\alpha_{n}\}$ in real numbers.

Theorem 5.2. Let $H$ be a Hilbert space, let $C$ be a star-shaped subset of $H$ with center
$z\in C.$ Let $S=\{T(t) : t\in \mathbb{R}^{+}\}$ be a uniformly asymptotically left regular one-parameter
nonexpansive semigroup on $C$ such that $A(S)\neq\emptyset$ . Let $\{m_{n}\}$ be a sequence in $\mathbb{Z}^{+}$ such that
$m_{n}arrow\infty$ . Let $t\in \mathbb{R}^{+}$ . Let $\{x_{n}\}$ be a sequence in $C$ defined by $x_{1}\in C$ and

$x_{n+1}=\alpha_{n}z+(1-\alpha_{n})(T(t))^{m_{n}}x_{n}$

for each $n\in \mathbb{N}$ , where $\{\alpha_{n}\}\subset[0$ , 1$]$ satisfies

$\lim_{narrow\infty}\alpha_{n}=0, \sum_{n=1}^{\infty}\alpha_{n}=\infty.$

Then, $\{x_{n}\}$ converges strongly to $P_{A(S)}z$ , where $P_{A(S)}$ is the metric projection from $H$ onto
$A(S)$ .
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