
Hypercontractions on Banach space

Caixing $Gu^{*}$

California Polytechnic State University, USA

Zhengli Chen
$\dagger$

Shaanxi Normal University, P.R. China

1 Introduction

The operator $T$ on a Hilbert space $H$ is an $n$-hypercontraction for some
positive integer $n$ as in Agler [2], if for all $1\leq m\leq n,$

$\beta_{m}(T):=\sum_{k=0}^{m}(-1)^{k}(\begin{array}{l}mk\end{array})T^{*k}T^{k}\geq 0$

or equivalently, for all $1\leq m\leq n,$

$\langle\beta_{m}(T)h,$ $h \rangle=\sum_{k=0}^{m}(-1)^{k}(\begin{array}{l}mk\end{array})\Vert T^{k}h\Vert^{2}\geq 0$ for all $h\in H.$

Inspired by the above definition of $n$-hypercontractions and the work of
$m$-isometries on Hilbert spaces [3] [4] and recent work on $(m,p)$ -isometries
on a Banach space $X[8][6][14][13]$ , we introduce $(m,p)$-hypercontractions

on $X$ . Let $p\in[1, \infty$ ) and let $B(X)$ be the algebra of all bounded linear
operators on $X$ . An operator $T\in B(X)$ is called an $(m,p)$-contraction if

$\beta_{(m,p)}(T, x):=\sum_{k=0}^{m}(-1)^{k}(\begin{array}{l}mk\end{array})\Vert T^{k}x\Vert^{p}\geq 0$ for all $x\in X$ . (1)

We say $T$ is an $(n,p)$ -hypercontraction if $T$ is an $(m,p)$-contraction for all $1\leq$

$m\leq n$ . An operator $T$ is an $(m,p)$-isometry if $\beta_{(m,p)}(T, x)=0$ for all $x\in X.$

We note that an $(m,p)$-isometry is automatically an $(m+1,p)$-isometry, see
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formula (4) below. But an $(m,p)$-hypercontraction is in general not an $(m+$

$1,p)$-hypercontraction. When $n=1$ , the power $p$ is irrelevant and $a(1,p)-$

contraction is just a contraction. When $n>1$ , the power $p$ is highly relevant.
For $example_{\}}$ it was proved in [8] that there is no $(2, 2)$ -isometric weighted
shifts on $l_{p}$ for $p\neq 2$ . A characterization of $(m, q)$-isometric weighted shifts
on $l_{p}$ spaces is given by one of the authors in [13]. One of the results in [13]
states that if a weighted shift on $l_{p}$ is an $(m, q)$ -isometry, then $q=pk$ for
some integer $k.$

The following result is well-known [10] [16] [9].
THEOREM A. Let $S$ denote the unilateral (unweighted) shift of multi-

plicity one and let $S^{*(\infty)}$ be the backward shift of infinite multiplicity. Let
$T\in B(H)$ . Then $T$ is unitarily equivalent to a part of $S^{*(\infty)}$ if and only if
$\Vert T\Vert\leq 1$ and $T^{k}arrow 0$ strongly.

Agler in [1] developed a $C^{*}$-algbera method for operator models and
proved an analog of Theorem A with $S$ replaced by Bergman shift $B.$

THEOREM B. Let $T\in B(H)$ . Then $T$ is unitarily equivalent to a part

of $B^{*(\infty)}$ if and only if $I-2T^{*}T+T^{*2}T\geq 0$ and $T^{k}arrow 0$ strongly.
To state the more general result in Agler [2], we need to introduce some

notations. Let $n$ be a fixed positive integer.

$M_{n}= \{f(z)=\sum_{i=0}^{\infty}\hat{f}(i)z^{i}:\Vert f(z)\Vert_{n}^{2}=\sum_{i=0}^{\infty}(w_{n,i})^{-1}|\hat{f}(i)|^{2}<\infty\},$

where $w_{n,i}$ is defined by

$w_{n,i}=(\begin{array}{ll}n -1+i -1n\end{array})$ so that $(1-z)^{-n}= \sum_{i=0}^{\infty}w_{n,i}z^{i},$ $|z|<1$ . (2)

$M_{n}$ is the Hilbert space of analytic functions on the open unit disc $D$ with
the reproducing kernel $k_{w}(z)=(1-\overline{w}z)^{-n}$ . Let $S_{n}$ be the operator on $M_{n}$

defined by
$S_{n}(f)(z)=zf(z) , f\in M_{n}.$

Thus $S_{1}$ is the unilateral shift on the Hardy space, $S_{2}$ is the Bergman shift
on the Bergman space and $S_{n}$ is a weighted shift.

THEOREM C. Let $T\in B(H)$ . Then $T$ is unitarily equivalent to a part

of $S_{n}^{*(\infty)}$ if and only if $\beta_{n}(T)\geq 0$ and $T^{k}arrow 0\mathcal{S}$lrongly.
In this paper, we extend Theorem $C$ to Banach spaces. Recall $l_{p}(X)$

denote the Banach space defined by

$l_{p}(X)=\{f=\{x_{i}\}_{i=0}^{\infty}$ : $\Vert f\Vert^{p}=\sum_{i=0}^{\infty}\Vert x_{i}\Vert^{p}<\infty,$ $x_{i}\in X$ for $i\geq 0\}.$
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More generally, we define weighted Banach space $l_{(n,p)}(X)$ by using weight
sequences $\{w_{n,i}\}_{i=0}^{\infty}$ as in (2),

$l_{(n,p)}(X)= \{f=\{x_{i}\}_{i=0}^{\infty}:\Vert f\Vert_{n}^{p}=\sum_{i=0}^{\infty}w_{n,i}\Vert x_{i}\Vert^{p}<\infty,$ $x_{i}\in X$ for $i\geq 0\}.$

Note $l_{p}(X)=l_{(1,p)}(X)$ . Let $B_{n}$ be the (unweighted) backward shift on
$l_{(n,p)}(X)$ defined by

$B_{n}(x_{0}, x_{1}, x_{2}, \cdots)=(x_{1}, x_{2}, \cdots) , \{x_{i}\}_{i=0}^{\infty}\in l_{(n,p)}(X)$ .

It is clear that $B_{1}$ can be extended to be an invertible bilateral shift defined
on two sided $l_{p}(X)$ space. It is not clear how to extend $B_{n}$ for $n>1$ . Let
$T\in B(X)$ . We say $T$ is unitarily equivalent to a part of $B_{n}$ if there is an
isometry $W_{n}$ from $X$ into $l_{(n,p)}(X)$ such that

$W_{n}T=B_{n}W_{n}$ . (3)

Note that $B_{n}$ is invariant on the range $W_{n}(X)$ and hence one may write

$T=W_{n}^{-1}B_{n}W_{n}.$

Now we state the main theorem of this paper.

Theorem 1 Let $T\in B(X)$ . Then $T$ is unitarily equivalent to a part of $B_{n}$

if and only if $T$ is an $(n,p)$ -contraction and $T^{k}arrow 0$ strongly.

Instead of working with weighted Banach space $l_{(n,p)}(X)$ , we could just
work on $l_{p}(X)$ . The trade-off would be that we use weighted backward shift
$D_{n}$ on $l_{p}(X)$ instead of unweighted backward shift $B_{n}$ on $l_{(n,p)}(X)$ . The
operator $D_{n}$ on $l_{p}(X)$ is defined by

$D_{n}(x_{0}, x_{1}, x_{2}, \cdots, x_{i}, \cdots)=(c_{1}x_{1}, c_{2}x_{2}, \cdots, c_{i}x_{i}, \cdots)$

where $c_{i}=(w_{n,i-1}/w_{n,i})^{1/p},$ $i\geq 1$ . The operator $D_{n}$ is a contraction since
$c_{i}\leq 1$ for all $i\geq 1$ . Then Theorem 1 can be reformulated as the following:
There is an isometry $W_{n}$ from $X$ into $l_{p}(X)$ such that $W_{n}T=D_{n}W_{n}$ if and
only if $T$ is an $(n,p)$-contraction and $T^{k}arrow 0$ strongly.
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2 Proof of Theorem 1

The proof of Theorem 1 needs several lemmas which we stated below. Here
we will only give the proof of ”i$f’$ part of Theorem 1 which is short.

We first state a lemma proved on page 2143 in [6].

Lemma 2 Let $T\in B(X)$ , $N\geq n\geq 1$ and $x\in X.$ Then

$\beta_{(n,p)}(T, x)=\beta_{(n-1,p)}(T, x)-\beta_{(n-1,p)}(T, Tx)$ . (4)

We also need the following lemma.

Lemma 3 Let $T\in B(X)$ . If $T$ is an $(n,p)$ -contraction and $T^{k}arrow 0$ strongly,
then $T$ is an $(n,p)$ -hypercontraction. Furthermore, for each $x\in X$ and all
$0\leq m\leq n,$

$k^{m}\beta_{(m,p)}(T, T^{k}x)arrow 0$ as $karrow\infty$ . (5)

Lemma 4 Let $T\in B(X)$ , $N\geq n\geq 1$ and $x\in X.$ Then

$\sum_{k=0}^{N}w_{n,k}\beta_{(n,p)}(T, T^{k}x)+\sum_{l=0}^{n-1}w_{l+1,N}\beta_{(l,p)}(T, T^{N+1}x)=\Vert x\Vert^{p}$ (6)

The proof of $tif”$ part of Theorem 1. Let $T\in B(X)$ be such that
$\beta_{(n,p)}(T, x)\geq 0$ for all $x\in X$ and $T^{k}arrow 0$ strongly. We define $W_{n}$ from $X$

into $l_{(n,p)}(X)$ as

$W_{n}x= \{\beta_{(n,p)}^{1/p}(T, T^{i}x)\frac{T^{i_{X}}}{\Vert T^{i}x\Vert}\}_{i=0}^{\infty}$

with the understanding that if $T^{i}x=0$ for a specific $i$ , then $\beta_{(n,p)}^{1/p}(T, T^{i}x)\frac{T^{i}x}{||T^{l}x||}$

O. We now show $W_{n}$ is well-defined and is an isometry. We need to show

$\Vert W_{n}x\Vert_{n}^{p}=\sum_{i=0}^{\infty}w_{n,i}\beta_{(n,p)}(T, T^{i}x)$ converges to $\Vert x\Vert^{p}$ . By Lemma 4, for $N>n,$

$\sum_{i=0}^{N}w_{n,i}\beta_{(n,p)}(T, T^{i}x)=\Vert x\Vert^{p}-\sum_{l=0}^{n-1}w_{l+1,N}\beta_{(l,p)}(T, T^{N+1}x)\leq\Vert x\Vert^{p}$

Furthermore for each $0\leq l\leq n-1$ , by Lemma 3 and $\frac{w_{l+1N}}{(N+1)^{l}}arrow 1$ , we have

$w_{l+1,N} \beta_{(l,p)}(T, T^{N+1}x)=\frac{w_{l+1,N}}{(N+1)^{l}}(N+1)^{l}\beta_{(l,p)}(T, T^{N+1}x)arrow 0$

as $Narrow\infty$ . The proof is complete.
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3A similarity model on Banach space

Theorem 1 gives a characterization of an operator unitarily equivalent to
a part of the $(n,p)$-hypercontraction $B_{n}$ . What is a characterization of an
operator similar to a part of $B_{n}$? This question has not even been discussed
on Hilbert spaces for $n>1$ . For $n=1$ , the following model theorem of Rota
[17] predates Theorem A and is the first example of a universal operator.
Let $r(T)$ denote the spectral radius of a bounded operator $T.$

THEOREM D. Let $T\in B(H)$ . If $r(T)<1$ , then $T$ is similar to a part
of $s*(\infty)$ .

The proof of Theorem $D$ and some of its late generalizations (see the
book [15]) can be adapted to Banach spaces. Thus some of the results below
might be known to experts. Let $T\in B(X)$ , we say $T$ is similar to a part
of $B_{n}$ , the backward shift on $l_{(n,p)}(X)$ , if there is an bounded operator $W_{n}$

from $X$ into $l_{(n,p)}(X)$ such that $W_{n}$ is bounded below and $W_{n}T=B_{n}W_{n}.$

The following result is inspired by Proposition 6.6 from [15] and the proof
is also similar. However, Proposition 6.6 from [15] only deals with the case
$n=1.$

Theorem 5 Let $T\in B(X)$ . The following statements are equivalent.
(a) There emst constants $\beta\geq\alpha>0$ and $Q\in B(X)$ , such that for all $x\in X,$

$\alpha\Vert x\Vert^{p}\leq\sum_{k=0}^{\infty}w_{n,k}\Vert QT^{k}x\Vert^{p}\leq\beta\Vert x\Vert^{p}$ (7)

(b) $T$ is similar to a part of $B_{n}$ on $l_{(n,p)}(X)$ .

Proof. The proof is adapted from the proof of Proposition 6.6 in [15].
Assume (a) holds. We define $W_{n}$ from $X$ into $l_{(n,p)}(X)$ by

$W_{n}x=\{QT^{k}x\}_{k=0}^{\infty}$

Then assumption (7) is the same as $\alpha\Vert x\Vert^{p}\leq\Vert Wx\Vert_{n}^{p}\leq\beta\Vert x\Vert^{p}$ Therefore
the range of $W_{n}$ , denoted by $R(W_{n})$ , is a closed subspace of $l_{(n,p)}(X)$ and
$W_{n}$ from $X$ onto $R(W_{n})$ is invertible. It is also clear that $W_{n}T=B_{n}W_{n}$ , so
$R(W_{n})$ is invariant for $B_{n}$ and

$T=W_{n}^{-1}(B_{n}|R(W_{n}))W_{n}.$

That is, $T$ is similar to the restriction of $B_{n}$ to $R(W_{n})$ .
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Now assume (b) holds. Let $W_{n}$ from $X$ into $l_{(n,p)}(X)$ be such that $W_{n}$ is

bounded below and $W_{n}T=B_{n}W_{n}$ . Let $P_{k}$ be the projection from $l_{(n,p)}(X)$

onto its k-th component, $P_{k}\{x_{i}\}_{i=0}^{\infty}=x_{k}e_{k}$ . Let $Q_{k}=P_{k}W_{n},$ $k\geq$ O. Then
for $x\in X,$

$W_{n}x=\{Q_{k}x\}_{k=0}^{\infty}.$

The relation $W_{n}T=B_{n}W_{n}$ means $Q_{k}Tx=Q_{k+1}x$ . Thus $Q_{k+1}=Q_{k}T$. Set
$Q=Q_{0}$ , we have

$Wx=\{Q_{k}x\}_{k=0}^{\infty}=\{QT^{k}x\}_{k=0}^{\infty}$

Now $W_{n}$ from $X$ into $l_{(n,p)}(X)$ is bounded and bounded below is the same
as (7). The proof is complete. $\blacksquare$

The following is the analogue of Theorem $D$ on Banach spaces.

Corollary 6 Let $T\in B(X)$ . If $r(T)<1$ , then $T$ is similar to a part of $B_{1}.$

Furthermore $T$ is $\mathcal{S}$imilar to a strict contraction.

Proof. If $r(T)<1$ , the condition (7) (with $w_{1k}=1$ ) holds for by taking $Q$

to be the identity operator. Thus $T$ is similar to a part of $B_{1}$ . To prove $T$

is similar to a strict contraction, we use the scaling as in [17]. Let $\epsilon$ be such
that $r(T)<\epsilon<1$ . By what we just proved, $T/\epsilon$ is similar to a part of $B_{1}.$

Therefore $T$ is similar to a part of $\epsilon B_{1}$ . We will show below that $B_{1}|R(W_{1})$

is in fact a strict contraction. $\blacksquare$
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