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(FE  H—KE DOHFEHRE)
THOMPSON ISOMETRIES ON POSITIVE INVERTIBLE ELEMENTS
IN C*-ALGEBRAS
(JOINT WORK WITH TOSHIKAZU ABE)

OSAMU HATORI

ABSTRACT. We introduce a notion of the generalized gyrovector spaces. We show a
Mazur-Ulam theorem for the generalized gyrovector spaces. As an application we give
an alternative proof for a result of Honma and Nogawa [8] on the Thompson’s like
isometries between the sets of positive invertible elements in unital C*-algebras. This is
an anouncement of the forthcoming paper [1] with Toshikazu Abe.

1. INTRUDUCTION

A Gyrogroup is a natural extension of a group to the nonassociative algebraic structure.
In Einstein’s theory of special relativity, the set of all admissible velocities is RS = {u€
R3 : ||lu|| < ¢} for the speed of light in vacuum c. Let {-,-) be the Euclidean inner product
and v, the Lorentz factor given by

_1
(1) T = (1= [luf?/P) 2.
The Einstein velocity addition @z in R? given by

1 1 I 7Y
2 u vV=-——r—"—u+—v+-———(u,v)u
@) Oe 1+('u,,'v)/c{ Ut ET >}

for u,v € R? is not commutative nor associative, hence (R3,®g) does not have a group
structure. However, (R3, ®z) have a gyrocommutative gyrogroup structure and is called
the Einstein gyrogroup. The (gyrocommutative) gyrogroup is the generalization of the
(commutative) group, which is not necessarily (commutative nor) associative.

Certain gyrocommutative gyrogroup admits scalar multiplication, giving rise to a gy-
rovector space. Ungar initiated the study on a gyrogroup and a gyrovector space (cf.
[20]). He describes that the hyperbolic geometry of Bolyai and Lobachevsky is now effec-
tively regulated by gyrovector spaces just as Euclidean geometry is regulated by vector
spaces. Any gyrovector space is equipped with the gyrometric, which is a measurement
of the distance while it needs not be the metric exactly. Any (positive definite) real inner
product space is a gyrovector space and the gyrometric is the metric induced by its norm.
On the other hand, a real normed space need not be a gyrovector space. In this paper,
we introduce a notion of a generalized gyrovector space which is a common generaliza-
tion of the notion of a real normed space and that of a gyrovector space. We exhibit
a Mazur-Ulam Theorem for the generalized gyrovector spaces; a bijection between the
generalized gyrovector spaces which preserves the gyrometric also preserves the algebraic
structure automatically. The celebrated Mazur-Ulam theorem states that a surjective
isometry from a normed vector space onto a possibly different normed vector space is a
real linear isomorphisms followed by a translation. A simple proof of the Mazur-Ulam
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Theorem was given by Viisild [21] by using the idea of Vogt [22]. Our proof of Theorem
GMU emploies the same idea.

As an application of the Mazur-Ulam theorem for the generalized gyrovecgtor spaces we
give an alternative proof of the representation theorem of Honma and Nogawa [8] on the
Thompson’s like isometries on the set of all positive invertibel elements in a C'*-algebras.

2. A7' 1S A GYROCOMMUTATIVE GYROGROUP

Definition 1 ((Gyrocommutative) Gyrogroup).
A groupoid (G, ®) is a gyrogroup if there exists a point e € G such that the following
hold.

(Gl) Va € G
eda=a,
(G2) Va e G o a s.t.
©ada=e.

(G3) Va,b,c € G lgyr[a,blce G s.t.
a® (b&c) = (a®b) e gyrfa,blc.
(G4) gyrla, b] is an gyroautomorphism for Va,b € G
(G5) Va,be G
gyrla @ b, b] = gyr|a, b).
Gyrocommutative if the following (G6) is also satisfied.
(G6) Va,be G
a® b= gyra,bj(b® a).
Note that
eDa=ade=a, a € G,
© is unique for every a € G and
Cada=ad®Sa=e, a€QG.
To analyze the gyrogroups the coaddition is useful.
Definition 2. Let (G, ®) is a gyrogroup. The gyrogroup coaddition H is defined by
a & gyra,Sblb
forall @,b € G.

Note that the gyrogroup coaddition B is commutative if and only if the gyrogroup
(G, ®) is gyrocommutative (cf. [20, Theorem 3.4]).

Theorem 3 (A;! is a gyrocommutative gyrogroup, [1]). Suppose that A3! is the set of
all positive invertible elemets in a unital C*-algebra A. For 0 <t € R, put

a® b= (a?bla?)t, a,be A7
Then (A7, ®;) is a gyrocommutative gyrogroup. The gyrogroup identity = the identity

element e of A as the C*-algebra. The inverse element Sa is a™*
For a,b e A7 put

Then X is a unitary element in A and
gyrla,blc = XcX*, a,b,c€ A7"
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Proof.

Hence (G1) holds.
For every a € A7}

@ o = ()i (a7) )t = (a7hala7H)

Hence (G2); ©a = a1
Let a,b,c € A7'. Put

Then X is unitary since

1

Xx* = ((atbad)2abbt) (bhal (attiat) H)
= ((atb'a?)77)(a3t'a?)((a?b'a?)7) = ¢,
X*X = (b%a%(a%bta%)‘%) ((a%b‘a%)‘%a%b%) = biai(azbla?) la2b? =e.
Put
gyr(a,blc = XcX™.
Then
(3) (a®:b)®; gyra,blc = ((a &, b)% (gyr|a, blc)!(a & b)%)i
1
— ((@h¥ah)H @ittt hatbictlal @httad) dalah )
t. .t t t 1 t t t.1 t
= (aibictbfai)' = (af((bfc‘bf)?)‘af)‘ =a @ (b®: c)

Hence (G3) holds.
Let a,b,c,d € A7'. As X is unitary, gyr[a,b] : A7' — A7! is bijection.

4) gyrla,b)(c®: d) = X(c @ d)X* = X(cidic?)t X* = (Xcidicr X)*
- ((Xc%X*)(Xd‘X*)(Xc%X*))%
= ((XcX*)%(XdX*)t(XcX*)%)%

= (gyrla, bjc @: (gyrla, b]d).

Thus gyr[a, b] is a gyroautomorphism for any a,b € A7'; (G4) holds.
To prove (G5) we first show that

(5) ((afttat)ipt(atitat)t) * = (abbtad) dad(atttal) h.

To prove it we compute

t t. 1 t t t 2
(6) ((aib‘a?)ia‘§ (afbtaf)%

=(a

N|e+

P S NS D S TS G’
blaz)za"%(a2b'az)?(azb'a?)2a"(a
¢
2

)2a"%(a%blat)a"% (atbla

(S0

= (atbla



By (6) we get (5). The gyroautomorphism gyr[a@®;b, b] is a unitary transformation defined
by the unitary element

((a @ b)%b' (a @, b)2) "2 (a @, b)2b3.
We compute
(7) ((a @ b)ib(a @, b)%)"% (a @, b)2b%
)%%)"% (abtat)tid
_ ((aébtaé)ébt(aébta%)é)‘% (a$biab)bd

= (a%bta%)_%a% (a%bta%)_%(a%bf’a%)%b% = (a%bta%)_%a%b%

Nl
Des
Dl

= ((afttah) Hbi(attla

The last term is the unitary element which corresponds to gyr|a, b] Hence gyr[a & b,b] =
gyrla,b] ; (G5) holds.
We compute

since it is the unitary transform we have
1
= ((a%bta%)“%a%b% (b%atb%)b%a%(a%bta%)"%) ¢

1
= ((a%bta%)_%a%btatbta% (a%bta%)“%) ‘

1=

t

= ((a%bfa%)-%(a%bta%)(a%bta%)(a%bta%)-%) = (abbtat)t = a @, b.

Thus (G6) holds.
We conclued that (47!, ®;) is a gyrocommutative gyrogroup. a

3. A7t 1s A GGV

We define the generalized gyrovector space (GGV) on the given gyrocommutative gy-
rogroup. The gyrovector space are dfined by Ungar. The GGV is a generalization of the
gyrovector space.

Definition 4 (Generalized gyrovector space; GGV ). A gyrocommutative gyrogroup
(G,®) is acalled a GGV (G, ®,®,¢) if ® : RxG — G, and an injection ¢ : G — (V, ||-]))
for a real normed space (V, || - ||) are defined and the following conditions are satisfied.

(GGV0) Vu,v,a € G

| lé(gyr[u, v]a)|| = [|4(a)l;
(GGV1) Va € G

1®a=a;

(GGV2) Va € G, r,m €R
(n+r)®a=(rea)d(rea)

(GGV3) Ya € G, r,73 €R
(rir)) ®a=r ® (r ® a);
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(GGV4) Ya € G\ {e}, r e R\ {0}

¢(Ir| ® a)/llo(r ® a)l| = ¢(a)/l|l$(a)l;
(GGVS5) Yu,v,a € G, reR
gyr[u, v](r ® a) = r ® gyr(u, v]a;
(GGV6) Vv € G, m,m2 €R
gyr(r; ® v,r2 @ v] = idg;
(GGVV) {£|l¢(a)|l € R: a € G} is areal one-dimensional vector space with vector addition

@' and scalar multiplication ®';

(GGV7) Vae G, r€ R
lo(r ® a)ll = Ir| & lig(a)ll;
(GGVS8) Va,be G
¢(a @ b)|| < [|#(a)ll & [|4(B)]l

A gyrovector space (G, ®, ®) is defined by Ungar; a gyrocommutative gyrogroup (G, @)
with G C W for a real inner product space W such that the exotic scalar multiplication
® : R x G = G is defined and that the conditions through (GGV1) to (GGV8) with ¢
being the identy map, and the condition

(VO) (gyr[u,v]a,gyr[u,v]b) = (a,b) for all u,v,a,be G

instead of the condition (GGVO0) are satisfied, where (-,-) is the inner product on W.
In short a gyrovector space is a subset of an inner product space while a GGV is an
inverse image of ¢ of a normed vector space. Any gyrovector space is a GGV since the
condition (VO0) implies the condition (GGVO0) with phi being the identity map (cf. (20,
Definition6.2]). In addition, any real normed space is a GGV. Let V be a real normed
space with the addition + and the scalar multiplication -, then (V,+,-) is a GGV with
the map ¢ being the identity map on V).

We now define the gyromidpoint and the gyrometric for a GGV. They are the general-
ization for the corresponding concepts for a gyrovector space.

Definition 5. Let (G, ®,®, ) is a GGV. The gyromidpoint p(a,b) of a,b € (G, d,®)
is defined as p(a, b) = 1 ® (a Bb), where B is the gyrogroup coaddition of the gyrogroup
(G ®).

Note that p(a,b) = p(b, a) as B is commutative. In addition we have
1
(8) pla,b)=a® ;@ (0a®b)

(cf. {20, Definition 6.32 and Theorem 6.34]). In particular, p(a, b) = 3(a+b) if the GGV
(G, ®,®) is indeed a real normed space (V,+, -).

Definition 6. Let (G, ®,®, ¢) is a GGV. Put
o(a,b) = [¢(ao b)l,a,be G,
where a © b is the abbreviation of a @ (6b). We call ¢ the gyrometric on G.
The gyrometric p satisfies the equation

(9) o(a,b) = o(ca,ob) = o(b,a)



o(a,b) = |¢(aob)|
= [¢(e(ae b))
= |¢(ca @ b)| = o(Sa, Sb)
= ¢(gyr[Ga,bl(b© a))ll
= ll¢(boa)| = o(b,a).
In particular, if (G, ®, ®) is a real normed space, then gyrometric is a metric induced by
its norm.

We show a gyrocommutative gyrogroup of the positive invertible elements in a C*-
algebra is indeed a GGV.

Theorem 7 (A7' is a GGV, [1}). Suppose that A7l is the gyrocommutative gyrogroup of
the set of all positive invertibel elements in a unital C*-algebra A with

a® b= (arbla?)t, a,be A7L
Put
ra=a", ¢(a)=Iloga, a€ A7', r eR,
(Ele(A, &, ®) = (R, +,%).
Then (A", @4, ®,1og) is a GGV with || - |.

t

Dl

Proof. As gyr[u,v] is the unitary transformation by the unitary element X = (usvtu?) 7uiv

we have
|| log(gyr[u, v]a)|| = || log XaX*|| = || X logaX*|| = || loga]|.

Thus (GGVO0) holds.

For every a € A7' we have

1®a=al=1;

(GGV1) holds.

For r1,r, € R and a € A" we have

(7'1 + 7,,2) Ra= ar1+r2
and
(7'1 ®a) B, (T2 ® a) = g P, a™? = ((an)g(arz)(an)%); — ar1+rz_

Hence (r1 + 1) ® a = (r1 ® a) &; (r2 ® a) ; (GGV2) holds.

(GGV3) is easy by

(7"17'2) Ra= a’™l"? = (arz)n = ® (7-2 R a)‘
(GGV4) is also easy by

log(|r|®a)  logal loga

log(r®a)]l ~ ||logar|| ~ [|logal

Letting X = (u%v'u2)~2usv? we have
gyr[u,v)(r ® a) = Xa" X* = (XaX*)" =1 ® gyr[u, v]a

for every a € A7'; (GGV5) holds.
For ri,r e Rand v € A;l we have

gyri{r ® v, 7 ® v] = gyr[v™, v"]
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is a unitary transformation defined by

((vn)%(v?‘z)t(vrl)%)_% (W) (w)S = e.

Hence (GGV6) holds.
It is easy to see

{%|llogal : a € A7'} =R.
Let @} be the usual addition in R and ®’ is the scalar multiplication. Then
({£||logal : a € A{'}, &, ®')
is the usual real linear space of dimension 1; (GGVV) holds.
It is also easy to have
|| log(r ® a)|| = ||loga™|| = |r|[|logall = |r| &' || log all;

(GGVT) holds.
To prove (GGV8) we need some calculation. Let a,b € A7'. We denote the spectrum

by o(:). Let

A, =max{A: X €o(a)}, A, =min{A: )€ o(a)}
and

Ay =max{): A €ca(b)}, M =min{A: )€ a(b)}.
Then

Ae<a<<Ae, Me<b<Ape

Since b and e commute we have

Me < b < Ale, M <a <AL

Then

0 < a?(Ale — b')a? = Ala — afblat < AfAle — aibla3,
hence

azbla? < (AA,)te.

So we have
(10) max{) : A € o(a?ba?)} < (AN
In a similar way we have
(11) min{\: A € a(azb'az)} > (M)

On the other hand
|| log a?bta || = max{|A| : A € o(loga?blat)}
= max{|)| : A € logo(atbta?)}
= max{|log max{) € o(a%b'a?)}|,|logmin{) : A € o(ab'a?)}|}
We have by (10), (11)
log max{\ € o(a?ba?)} < log(A.As)t = t(log Ag + log Ay),
logmin{\ € o(a2bla?)} > t(log \q + log Ay).
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It follows that
llog aztta|
= max{| log max{) € o(aZb'a?)}|,|logmin{) : A € o(azb'a?)}|}
< tmax{|log A, + log Ay|, | log Ag + log Ap|}
< t max{|log As| +|log Ay, | log Aq| + | log |}
< t(max{|log Aq|, | log A\s|} + max{|log Ay, | log Xs|}
= t(||log al| + || log b]|)
Hence we have (GGV8);
llog(azbta?)t|| < ||logal & ||logb], a,be AT".
O
Remark 8. For the GGV (A7, @, ®, log) of the set of all positive invertible elements in a
unital C*-algebra A with ¢ > 0 the gyromidpoint p(a,b) for a,b € AT' is easily calculated
by the definition as
p(a,b) = (a(a"2bla"%)2a8)t,
For t = 1 it is the geometric mean of a and b.

4. A MAZUR-ULAM THEOREM FOR GGV’s

In this section we exhibit a Mazur-Ulam theorem for GGV’s.

Definition 9. Suppose that (G1,®;,®;) and (Gz, @2, ®2) be GGV’s. Let g; and p; be
gyrometrics of Gy and G, respectively. We say that a map T : G;—G, is gyrometric
preserving if the equality

02(Ta,Tb) = g;(a, b)
holds for every pair a,b € G;.
Theorem 10 ([1]). Let (G, ®;,®;,$;) be a GGV and p; the gyrometric of (G;, ®;, ®;, $;)
for j = 1,2. Suppose that T : G; — G, is a gyrometric preserving surjection. Then T
preserves the gyromidpoints;

p(Ta,Tbh) = Tp(a,b)
for any pair a,b € G;.

The following corollary asserts that a surjective gyrometric preserving map preserves

the algebraic structure followed by the left gyrotranslations. It follows that two GGV’s
which have a same gyrometric structure have the same GGV structure essentially.

Corollary 11 ([1]). Let (G, ®1,®1) and (Ga, D2, ®2) be GGV’s. Let o1 and g, be gyro-
metrics of G and G, respectively. Suppose that a surjection T : G1—G5 satisfies

02(T'a,Th) = gi(a, b)

for any pair a,b € Gy. Then T is of the form T = T(e) ®; Ty, where Ty is an isometrical
isomorphism in the sense that the equalities

(12) To(a @ b) = To(a) &2 Ty(b);
(13) To(a®:1 a) = a ®; To(a);
(14) QQ(T()G,, Tob) = gl(a, b)

for every a,b € G, and oo € R hold.
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We can prove Theorem 10 by applying the similar argument given by Vaisala [21] of a
simple proof of the celebrated Mazur-Ulam theorem. Precise proofs of Theorem 10 and
Corollary 11 are given in [1] and they are omited in this paper.

5. APPLICATIONS

Theorem 12 was proved by Honma and Nogawa [8, Theorem 8] and the case of t = 1

is exhibited as Theorem 9 in [7]. The original proofs employ a non-commutative Mazur-
Ulam theorem (cf. [6]). In this section we give a a little bit simpler proof by applying
Corollary 11. Recall that a Jordan *-isomorphis from a C*-algebra onto another one is a
complex linear bijection which preserves * and the square of the elements.
Theorem 12 ([8]). Let A and B be unital C*-algebras and t a positive real number. Put
da(a,b)(resp. dp(a,b)) = ||log(a=5bta=%)t||, a,b € A7 (resp. B;'). Suppose that T :
A7 - B! is a surjective isometry; ||log(a~3b'a=5)1|| = ||log(T(a)~2T(b)'T(a)"%)%||,
a,b € A7'. Then there exists a Jordan *-isomorphism from A onto B and a central
projection p € B such that T has the form

T(a) = (T(e)? (pJ(a) + (e - p)J(@7))'T(e)?)?, ae AT
Conversely if T has the form as the above, then
| log(a~2bta™%)¢ || = || log(T(a) 2 T(b)!T(a)"%)¢||, a,be A7

Proof. By Corollary 11 we have that T(a) = T(e) ®; To(a), a € A3' for an isometrical
isomorphism Tp:

(15) To((a?bla?)?) = (To(a)3To(b)'To(a)?)?, a,be€ ATY

and

(16) || log(a~2b'a™%)7 || = || log(To(a) ¥ To(b)'To(a) %) ||, a,be€ A7
By (13) in Corollary 11 we have

(17) To(a=) = To(a)»

for every positive integer n. The rest of the proof is similar to that of [7, Theorem 9]. O

Corollary 13 ([1]). Let A and B be unital C*-algebras and t a positive real number.
Suppose that T : A7' — BI! is an isomorphism between the gyrocommutative gyrogroup
(A7',®:,®,log) and (Bi',®:,®,log). Suppose that T preserves the spectrum; o(a) =
o(T(a)) for every a € A3', where o(-) denotes the spectrum. Then T is extended to a
Jordan *-isomorphism from A onto B.

Proof. Since T is an automorphism and preserves the spectrum we have
o(aibta3) = o(T(abta?)) = o(T(a)*T(b)"*T(a)?), a,b€ A7
By the spectrum mapping theorem we have
o(log(azb~ta?)) = o(log(T(a):T(b) ‘T (a)?)), a,b€ A7l

Hence
Il log(atb™"a®)|| = || log(T(a)sT()) *T(a)?)|l, a,be A7



As a positive element T'(e) satisfies 0(T(e)) = o(e) = {1}, we infer that T'(e) = e.
By Theorem 12 there exists a Jordan *-isomorphism J from A7' onto % and a central
projection p € & with

T(a) =pJ(a) + (e —p)J(a”!), ae€ A"

Letting a = e/2 we have T(e/2) = pJ(e/2) + (e — p)J(2e) = pe/2 + 2(e — p)e. As
o(T(e/2)) = o(e/2) = {1/2} we infer that p = e. Therefore T(a) = J(a) for every
a€ A7 O
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