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Transverse instability for nonlinear Schrodinger
equation
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1 Introduction

In this report, we consider the stability for standing waves of nonlinear Schrodinger

equation
i0u = —Au — [ufP 'y, u(t,z,y) : RxRxTp—C, (1)

where p > 1, Ty = R/27LZ and u is an unknown complex-valued function. Cauchy
problem of (1) is locally well-posed in H! (see [9, 14, 26, 27]). The equation (1) has
mass and energy conservation:

1 2 1 2 1 1
Q(u) = EHUHH(R)(TL), E(u) = '2_||vu“L2(]Rx'JI‘L) - m“u”i—:ﬂ(mx'ﬂ},)’

where u € H'(R x T1). By a standing wave, we mean a non trivial solution of (1) with
the form u(t, z,y) = e“*p(z,y), where w > 0 and ¢ € H*(R x Tr). Then, a function
ety is a standing wave if and only if ¢ is a solution of

—Ap+we— ol =0, ¢(z,y):RxTy—C. (2)
We define the stability of standing waves as follows.

Definition 1. We say that a standing wave e“*¢ is orbitally stable if for any € > 0
there exists 6 > 0 such that for all ug € H*(R x Ty) with |jug — ¢|| ;1 < 6, the solution
u(t) of (1) with the initial data u(0) = uo exists globally in time and satisfies

i - . — 1"6 . — . —
stlzl%))oem,(zgl)fekxm Hu(t, ) —evp(- -2, y)”Hl <ée

Otherwise, we say the standing wave ey is orbitally unstable in H.
One dimensional nonlinear Schrédinger equation:
iOu = —0%u — [uff~tu, wu(t,z): RxR—>C, (3)

has the standing wave solution e“*p, of (3) for w > 0, where ¢, is the symmetric
positive solution of

~2p+wp—lplfle =0, ¢(z):R—C. (4)



The orbital stability of the standing wave ey, is well known. Showing the con-
vergence of the minimizing sequence of the minimization problem which is solved the
minimizer ¢,,, Cazenave and Lions [4] proved that the standing wave ey, is sta-
ble for 1 < p < 5. Using the variational characterization of the standing wave e“*y,,,
Berestycki and Cazenave [2] showed that the standing wave e“*y,, is unstable for p > 5.
Constructing the sufficient condition for blow up solution by virial identity, Weinstein
[30] proved that the standing wave e“*¢,, is unstable for p = 5.

We define the line standing '@, as

‘ﬁw(xvy) = QOw(w), (ac,y) e R x Ty

Since the standing wave e“!y,, is unstable for p > 5 on R, the line standing wave
e™t®, is also unstable on R x T;. On the other hand, for 1 < p < 5 the standing
wave e, is stable. However, for 1 < p < 5 in some cases the line standing wave is
unstable by a perturbation which is dependent on the transverse direction Ty,. We say
that this instability for line standing waves is the transverse instability.

There exist many papers treating the transverse instability for various equations
(see [1, 3, 17, 18, 21, 22, 23, 24]). In [1], Alexander-Pego-Sachs showed the linear
stability for line solitons of KP-I or KP-II equation. Deconinck-Plinovsky-Carter (3]
studied the linear stability for line standing waves of a hyperbolic Schrédinger equation.
In [18], Mizumachi-Tzvetkov proved the asymptotic stability for line solitons of KP-II
equation on Rx Ty, for all L > 0. Mizumachi studied the stability for line solitons of KP-
II equation on R2. In R?, the line soliton is unstable in the sense of the orbital stability
with the modulation of the amplitude and the phase shift which is independent of the
transverse direction. Modulating the local amplitude and the local phase shift which
is dependent of the transverse direction, Mizumachi showed the asymptotic stability
of the line soliton. In [23], Rousset-Tzvetkov showed the sufficient condition for the
linear instability of line soliton. Rousset-Tzvetkov showed the transverse instability
for line soliton of KP-I equation on R? and R x Ty, in {21, 22, 23].

For the equation (1), Rousset-Tzvetkov [22] proved the following stability result for
the line standing wave e*“*@,, for p = 3 and Y. [28] showed the stability for p # 3.

Theorem 2. Let 1 < p< 5 and w > 0.

(i) If0 < L < L, then the line standing wave €“*@,, is stable.
(ii) If Lo, < L, then the line standing wave '@, is unstable.

Here,
2

Vi-1)(p+3)w

The statement (i) of Theorem 2 follows the linear instability result by Rousset-
Tzvetkov [23] and the method in [12]. Therefore, the main statement of Theorem 2
is (ii). In [21, 22], Rousset-Tzvetkov developed the argument by Grenier [11] for the
incompressible Euler equation and applied the argument to the transverse instability
of various equation. In Section 3, we show the outline of the proof in [22]. Since the

Lw,p =




nonlinear term |u|P~ u is not smooth in the sense of Fréchet differentiation for 1 <p <5
and p # 3, we can not apply the argument in [21, 22] to the stability of line standing
waves for p # 3. In [28], using an estimate for high frequency parts of the solution which
has unstable mode, the author showed the stability for line sanding wave for L # Ly, ,.
In Section 4, we show the outline of the proof in [28]. In the case L = L, the linearize
operator around the line standing wave has an extra eigenfunction corresponding to
eigenvalue 0 and no eigenvalues with non zero real part. In the case L > L, p, the
instability for line standing waves comes from the linear instability of the linearized
equation around the line standing wave. To prove the instability, Rousset-Tzvetkov
and the author used the linear instability of line standing wave in [22, 28]. Therefore,
we can not apply the spectral arguments in [7, 21, 22, 28]. By the degeneracy of the
kernel of the linearized operator, the stability of the line standing wave does not follow
the method in [12]. We control the orbit of solutions near the line standing wave by
combing the bifurcation result and the argument in Maeda [16]. The following theorem
is the stability result for the line standing wave in the case L = L, in [29].

Theorem 3. Let w > 0,1 <p <5 and L = L, ,. Then, there exist 2 <p, <p2 <3
satisfies the following properties.

(i) If2 < p < p1, then the line standing wave €'}, is stable.
(ii) If p» < p < 5, then the line standing wave '@, is unstable.

Since we can not obtain an explicit value related the high order term of the Fréchet
derivative of the energy, we do not show the stability for the line standing wave e**@,,
for py < p < ps in [29)].

The rest of paper is organized follows. In Section 2, we introduce the properties of
the linearized equation and define some notations. In Section 3, we show the outline
of the proof of (ii) of Theorem 2 for p = 3. In Section 4, we explain the outline of the
proof of (ii) of Theorem 2 for p # 3. In Section 5, we show the outline of the proof of
Theorem 3.

2 Preliminaries

In this section, we consider the linearized equation and define some notations.
Let u(t) be a solution of (1) and v(t) = e~ “*u(t) — @,. Then, v(t) is a solution of

J8,0 = A + F(9), (5)

where

_  (Rew (0 -1 (A4 w—plgut 0
v_<lmv>’ J_(l O)’ A_< 0 “A+w—|@g.Pt)’

Py = (180 0P @a+ Re 0) + 171 @, & plRF T Re v
~|@w + vPHm v + |@u [P Im v :



Let 94 g2 B!
_ (- +a+w—pl@ulP- 0
5(a) = ( 0 -2 +at+w— |Gt/
Then, by Fourier expansion, we have

=D _S(n/L),

nezZ

where v € L2(R x Ty) and

- _ (Reu(z,y iny Re ugn(z 2
u(w’y)-(lmuxy)> Z (Imu; x) Ze n(z

nez
- (Re u)
U= =u
Imu

The following lemma shows the spectrum properties of —JA.

In the following, we regard

Lemma 4. Let w > 0. If0 < a™! < L,,,, then —JS(a) has no eigenvalues with the
positive real part. If a=* > L, ,, then —JS(a) has an eigenvalue with the positive real
part and the dimension of the eigenspace of —JS(a) corresponding to eigenvalues with
the positive real part is finite dimension.

The proof of this lemma follows the argument in [23](see [28]). By Lemma 4, if
L > L, , then —J A has an eigenvalue with positive real part and there exist ky € Z and
X € H'(R x Ty) such that ||x|| 2@xr,) = 1, X is eigenfunction of —JA corresponding
to p, = max{\ > 0|\ € o(—JA)} and

x(z,y) = Xl(z)eﬁfg + xg(:z:)e_—ilkfw.

Let us(t) be the solution of (1) with us(0) = dx + @,,. We define vs(t) as the solution
of (5) corresponding to us(t). We investigate the growth of L*-norm of vs(t).

3 Outline of the proof of (ii) of Theorem 2 for p =3

In this section, we explain the outline of the argument in [22]. Let p = 3, L > L,
and v°(t) = e***x. To control the growth of vs, we construct an approximate solution
with finite Fourier modes corresponding to the transverse direction. We consider the
following problem

0pf — S(k/L* =— Y (2p,0T + @'vt) - > Vo™,
jHI=k-1,720,1>0 jH+m=k-2,j>0,1>0,m>0
v*(0) = 0.
(6)



The right hand side of the first equation of (6) is a polynomial of v°,...,v*~!. There-

fore, solving the linear equation with the external force, we obtain the solution vk,

Moreover, v* consists of finite Fourier modes corresponding to the transverse direction
T.. Thus, we have the following estimate for v*.

Lemma 5. For k > 0, there exists Cx > 0 such that
”Uk(t)”HZ < Cke(lﬂ_l)#*t.

This lemma, follows Proposition 16 in [22]. For § > 0 we define the approximate

solution of vs as
M

ap __ n+1, n
UM,J_E LI Vi

n=0
Let war,s(t) = vs(t) — vyg5(t) = e us(t) — @ — Vags(t). Then, wis satisfies
iOyw — Aw + 2@,v3] 5T + 2@ Tyg W + 2PuU5p ;W + 2|37 |2
(UM5)2’II) + N(vM,l;, w) + |w|*w = -G,

where N (vyf 5, w) is higher order terms with respect to w and

G—ZatUMé—AUM6+2‘PwIU ’+(PW(UX/II)6) + |vpg |2UM5

Let
T, =sup{T > 0] ||w(t)| 42 <1forte[0,T]}

By Lemma 5, the definition of v* and the energy estimate for w, we have for t € [0, T}]

d
_C_E”w( )I|H2 < C 1+ “’U “H2 ||w(t)”§12 +CM52(M+2)62(M+2)#J.

Therefore, for
0 <t <min{T.s s},
we have p
Z w3 < (€ + KO + Caud™M A2,

where T, 5 = 1°g("/5 . If we choose & > 0 and M > 0 such that 2(M + 2)u, — (C +
k*C),) > 0, then we have for 0 <t < min{T s, T}

lw(®)llge < Cars™*.

For sufficiently small k > 0 we have for 0 < t < min{Ty s, 7.}

(@)l < 5



Thus, min{7 5, T.} = Tks. Let

(Pgu)(z,9) = Y un(z)eT,

n=-k
where -
wzy) = 3 un(e)e®.
n=-—00

Then, for # € R and (z,y) € R x T,

lluﬁ(Tn,tSa g ) - ewﬂaw(' - T, y)HLz 2 “(I - PSO)(UJ( K817 ) ew(lbw(' - I, y))HL2
= ||(I = P<o)(us(Ty5) — 6WT”<Pw)”L2
= ||(I = P<o)(v}1 5(Ties) + w(Tx))]| 2

> c||JeT""”"‘x IL2 — 0822 Teits) > ok — CK2.

For sufficiently small k > 0 we have

“uJ(TN,Ja ) ') - ew@w(' -z, = y)”L2 2 %‘Z

iwt >

This inequality shows the instability for the line standing wave e**@,,.

4 Outline of the proof of (ii) of Theorem 2 for p # 3

In this section, we explain the outline of the proof of (ii) of Theorem 2 for p # 3. Let
w>0,1<p<5and L > L,,. Forl<p<5with p# 3, the nonlinearity |u[P~'u
is not smooth in the sense Fréchet differentiation. Therefore, we can not apply the
argument in [22] to the case p # 3.

By Duhamel’s principle, we have

t
vs(t) = dex — J/ e~ AR (ys(s))ds.
0

Then we have the following estimate for the semi group e~*/4.

Lemma 6. For k > 0 and € > 0, there ezists Cy. > 0 such that
”e"”APS,cv”L2 < Ck,ee("'+5)t||P5kv||L2, t>0,ve L*R x Ty).
The proof of this lemma is similar to the proof of Lemma 3.3 in [28].
Remark 7. The estimate

e, < Coe |yl 2, t>0,v€ L*(R x Ty). (7)



does not follow the proof of Lemma 3.3 in [28]. The estimate of (7) corresponding to the
linearized operator of the one dimensional nonlinear Schrodinger equation (3) around
the standing wave e®*g,, follows the spectrum mapping theorem in [8]. In [8], to prove
the spectrum mapping theorem, we use the decay of the resolvent (=92 + oy + iop) !
as |o| = oo on a weighted space. However, (—02 — 02 4+ oy + icy)~! does not decay
as |a;| — co. Therefore, we can not show the estimate (7) in the argument in [28].

To control high frequency parts of vs(t), we apply the following lemma.
Lemma 8. There exist Ky > 0 and C > 0 such that for 6 >0 andt >0
lvs ()| g2 < Cll Perove()ll 2 + 0(8) + o(l[vs(E)]] 1)

Using the conservation law, we estimate high frequency parts and prove Lemma 8
in [28]. By Lemma 6 and Lemma 8, we have

los (@)l g < Cde™ +C /0 [|e™ ¢ A Peie, F (v3(5)) || 2 ds + 0(8) + o[[ve(t)| 1)

t
< Cée'* +/ e R |lug(s) [ + l[va(5) 12 )ds + 0(8) + ol[ve(E) 2)-
0

Thus, there exists Cy > 0 such that for sufficiently small 6 > 0 and k > 0
”'Ué(t)“Hl < Coe“‘t, fort € [O,TK’J],
where

_ log(x/é)
P

Tn,é

Then,

Trc,vS
|(x, v6(Ts)) 12| = |GeHTe? +/ (x, —JeTes = AR (v5(s))) 12ds
0

vs(8) s + llvs(s)l13n ) ds

TN,J
<k_C / gmin{2PH T g=i
0
< k- Cnmin{Z,p}.

Since
I(I = P<o)vll gz = [{x, v)22;
we have for (z,y) e Rx Ty and 6 € R
l[us(Tss ) — €2Gu(- = 2, = )| 2 = || (I = Peo)(w(Tres) — €4 30) || 1
> |(I = Peo)vs(Tes)l 12
> k — Cx™n{2p},

This shows the instability for the line standing wave e“*@,.



5 Outline of the proof of Theorem 3

In this section, we explain the outline of the proof of Theorem 3. Let wy > 0. We
consider the case L = L, ,. By Lemma 4, the linearized operator —JA of (1) around
the line standing wave e*°!3,, does not have eigenvalues with the positive real part.
Therefore, we can not apply the argument for the stability in {22, 28|.

To prove the stability for the line standing wave !, , we consider the Lyapunov
functional method. We define the action

Su(u) = E(u) + wQ(u).

Then, @, is a critical point of S, and S, (P.,) = A.
For 0 < w < wy, we have

Ker (S (¢w)) = Span{i@., 0:@w},

where Span{vy,...,vx} means the R-linear space spanned by vi,...,v,. Moreover,
S"(#.) has exactly one negative eigenvalue and the negative eigenvalue of S!(Z,) is
simple. We introduce the distance and neighborhoods

du(u) = o,ixrgg, ”u(, ) = €@, (- -z, ')”HI’

N., = {u € H'd,(uv) <€},

Npy = {u € New|Q(u) = Q(@,)}-
Using the gauge transform €%, the phase shift and the mass conservation, we control

the kernel and the negative eigenvalue of S’ (@,,) and obtain the following coerciveness
lemma.

Lemma 9. Let 0 < w < wy. Then there exist c,ep > 0, O(u) : N2 , = R and
b(u) : N2 , = R such that for u € N

£0,w

E(u) — E(.) = cf|u(, ) = €203, (- — b(w), )| 1

The proof of Lemma 9 follows the analysis of the linearized operator S/ (@,) in
the proof of Theorem 3.4 of [12]. The stability of the line standing wave e**@, with
0 < w < wy follows proof by contradiction. We assume there exist €, > 0, a sequence
{tn}~ and a sequence {u,}, of solutions such that ¢, > 0 and u,(0) = @, in H! and

(i;g]fk ||un(tn) - ewcﬁwum > £5. (8)
Let
_ Q&)
o Q(un) tn{tn)

Since @ is the mass conservation law, we have Q(v,) = Q(@,,). By the definition of v,,
lvn — Un(tn)||zn — 0 and E(v,)—E(u,) — 0 as n — oo. Therefore, E(v,)—E(@,) — 0



asn — oo. By Lemma 9, we have d,,(u,(t,)) < C(E(vs)— E(@w) +lvn — tn(tn)|l 1) —
0 as n — oo. This contradicts the assumption (8) and we obtain the stability of the

line standing wave e*“'@,,.

In the case w = wy, we have

Ker(‘A) = Span{i¢w07 8.’2(15(4)0 ? "/)wo COS(y/L), wwo Sin(y/L)}7

where 1, is the eigenfunction of —92 + w — p|w, [P~ ¢, corresponding to the negative
eigenvalue and satisfying

Y, = (‘Pw)zg_l'

Then, the kernel of A has extra functions 1, cos(y/L), ., sin(y/L). Therefore, the
analysis for the second derivative of the action S, or the energy E are not sufficient
to prove the coerciveness lemma. In the following proposition, we show the bifurcation
of standing waves.

Proposition 10. Letp > 2. Then there exist an open interval I and (a) € C*(I, H*(Rx
T.)) such that 0 € I, p(a) >0,

—Ap(a) + w(a)p(a) - [p(a) P~ p(a) = 0,

cp(a) = Puy + 0 COS(y/L) + T(a)7

where ||r(a)|| g2 = O(a?),

w”(O) a2 + 0(0,2).

w(a) = wo + 5

The proof of Proposition 10 follows the proof of Theorem 4 in [15] (see [29]).
Proposition 10 shows that extra functions t,, cos(y/L), ., sin(y/L)} of the kernel
of A come from the bifurcation of standing waves. Combining the argument in Maeda
[16] and Proposition 10, we prove the following lemma.

Lemma 11. Let p > 2. There exist €,C > 0, 0(w) : Negwo = R, b(u) 1 Negwo = R,
a(u) : Noywo = R, a(u) : Nop o — R and p(a) : R — R such that for u € N,

S (1) = Suo(Pun) = 5 (Aw(u), w(w)) g1, +n(aw)) + ol Jw(w) ) + o(n(a(w)))

(Aw(w), w(w) g + Oﬂ”j%zflmola(wl“

N = DN =

+ o(|lw(w)l|z) + o(la(w)[*),
where p(a) = O(a?), a(u) = o(d,,(uv)),
(@) = Su(@)((a)) = Suo(Puo) + (wWo — w(a))Q(Pur),

w(u)(z,y) = ’Mu(z — b(u),y) — (1 + a(w))e(a(w))(z,y) — p(a)0uPulu=un (2, Y).
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The proof of Lemma 11 is in Section 3 in [29]. Lemma 11 shows that the sign

2
of ———2—“““2(:)" % |a=0 changes the structure of the action on Neoo,wo. Applying the stability

argument in [16], we obtain the following proposition (see [16, 29]).

Proposition 12. Let p > 2. We have the following two.

2 2 .
(i) If %@ﬂﬂﬂa:o > 0, then the line standing wave e“°'@,, is stable.
2 .
(ii) If d—z—"‘%ﬂiﬁla:o < 0, then the line standing wave €*°*@,, is unstable.

2 2
Estimating %ﬂﬁla:o, we obtain Theorem 3.

Remark 13. We can not obtain the exact value of d—zl%?-”-hj,po in [29]. Therefore, we
do not show the stability of the line standing wave e*°*@,,, for p; < p < ps. Moreover,
in Proposition 10 to obtain the C? regularity of ((a) with respect to a we use p > 2.
Thus, we do not show the stability of the line standing wave e“°*@,, for 1 < p < 2.
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