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1 Introduction

In relation with Ramsey’s Theorem [8] arises the notion of Ramsey set. A set
S C [w]” is Ramsey if there is an M € [w]* such that either [M]¥ C S or else
[M]*NS = 0. In 1973, Fred Galvin and Karel Prikry proved a classical result
that states that every Borel set is Ramsey [2] and Jack Silver proved that
every analytic set is Ramsey [9]. Silver’s original proof was forcing theoretic
and the first combinatorial proof of Silver’s theorem was given by Ellentuck.

We are going to consider Hindman’s Theorem [4] and define Hindman
sets, in a similar way like in Ramsey’s case and we will proved that all
analytic sets are Hindman. This theorem is due to Milliken [7] and we are
going to give a new proof. We will give a forcing theoretic proof, like Silver’s
original proof mentioned before. Corollary 5.23 in [10] is a general version of
Milliken’s theorem.

We also prove that if I' is a point class closed under preimages of con-
tinuous functions then if all elements of I" are Hindman then all of them are
Ramsey.
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2 Partial orders

We denote by FIN the set of all finite non empty subsets of w. For s and ¢
in FIN, we write s < t if max(s) < min(t).

If X is a subset of FIN, then we write FU(X) for the set of all finite
unions of members of X, excluding the empty union.

Definition 2.1. Let I be a natural number or I = w. A block sequence is a
sequence D = (d;)s; of finite subsets of w such that d; < d;4; for all 5 € I.

The set (FIN)¥ is the collection all infinite block sequences of elements
of FIN.

Definition 2.2. Given D and £ in (FIN)¥, we say that D is a condensation
of &, written DC &, if D C FU(E).

Definition 2.3. The partial ordering P* is (FIN)¥ with the ordering C*
defined as follows: if D and £ are in (FIN)¥, then D C* £ iff there is an n
such that D \ n is a condensation of £.

Definition 2.4. The elements of Pg;y are all pairs of the form (A, D), where
A = (Z;)i<m is a finite block sequence, and D = (d;);c, is an infinite block
sequence such that A < D, which means z; < dy, for all ¢ < m.

The ordering is denoted by <g;y and defined as: given two elements
(A,D) and (B, B) in Prry, we let (B,B) <rin (A, D) if and only if A is an
initial subsequence of B, BC D and Vz € B\ A (z € FU(D)).

3 Pg;y and analytic sets

In [3] we have proved that Ppyy is not equivalent to Mathias forcing but it
may still have similar properties.

Definition 3.1. We say that A C (FIN)¥ is a maximal almost disjoint FFIN
family (M ADpgry) if for any different elements D and D’ in A, |FU(D) N
FU(D’')| < Xy and A is maximal with this property.



Note that A is MADpg;y is equivalent to A is a maximal antichain in
(P*, ).

We are going to prove that we can characterize the Pr;y-generic block
sequence using M ADg;y families but first we need some other definitions.

Definition 3.2. Let D € (FIN)¥, we define (D)¥ :={D' € (FIN)Y :D'C
D}.

Definition 3.3. Let A be a finite block sequence and let D be an infinite
block sequence. We define

[A,D]* := {D’ € (FIN)* : A an initial block sequence of D’
and D' — A C D}.

Remark 3.4. Given (A,D) and (B,D’) in Prry, (A, D) <pinv (B, D) if and
only if [A, D]¥ C [B,D']“. Note that for every D € (FIN)“, [(), D]* = (D).

Definition 3.5. A set S C (FIN)¥ is Hindman if there exists D € (FIN)*
such that (D)* C S or (D)*NS =10.

Definition 3.6. The Ellentuck-FIN topology on (FIN)“ has as basic open
sets the sets of the form [A, D]” where A is a finite block sequence and D is

an element of (FIN)“.

Note that the usual topology in (FIN)“ is homeomorphic to [w]¥ and
every element in the usual topology is open in the Ellentuck-FIN topology.

Definition 3.7. A set S C (FIN)¥ is completely Hindman if for every
(A, D) € Pr;y, there exists D’ T D such that [A, D']* C Sor [A,D']*NS = 0.

Aset N C (FIN)¥ is Hindman null if for every (A, D) there exists D' C D
such that [A,D']*N N = 0.

Remark 3.8. Every Hindman null set is nowhere dense in the Ellentuck-
FIN topology: S is nowhere dense if and only if for every open set there
exists a basic open subset disjoint from S, i.e., for all (A, D) there exists
(B,B) <rin (A4,D), [B,B]*NS =10.

We are going to prove analytic sets are Hindman using the ideas of Erik
Ellentuck, who gave another proof of all analytic sets are Ramsey in [1].

Theorem 3.9. D* is Pryy-generic over V if and only if for all MADpN
families A in'V there is D € A such that D* C* D.
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Proof. =] Let
D :={(A,D— A) € Prin : A is a finite block sequence and D € A}.

Claim 3.10. D is predense.

Proof. Let (A, D) € Pgyn. Since Aisa M ADpy family, thereis D' € A such
that |FU(D)NFU(D')| = Ro. Note that for any element d € FU(D)NFU(D’)
there exists e € FU(D) N D’ such that max(d) < max(e).

Fix dj € FU(D)NFU(D'). Assume that we have d € FU(D) N FU(D')
such that df < ... < d,_; < d;. Since d, € FUMD)ND', d; = U, di =
User: @; for some I, I, € [w]<.

There exists e € FU(D)NFU(D’) such that such that max(d!) < max(e),
where e = U jd; = Useyrd;. Let jo = max [, and jj; = maxI}.

Proof. Let © € Uje\(jo+1)d: then z € d; for some i € J \ (jo + 1), then there

exists j € J' such that z € d;. Note that, in particular, maxd;, < z.
Assume that j < jp, then z < maxd; < maxdy < maxd;,, which is a

contradiction. Hence j € J \ (54 + 1). O

Let dniy = Uiengorn @ = Uimer) & then dp < dp,,. We obtain
D" = (d!)icw such that D’ C D and D" C D'. Note that (4,D") € Prn,
(A, D") < (A,D) and (A,D") < (A, D' — A) because A < D and D" C D.

Hence (A, D) and (A, D’ — A) € D are compatible, so D is predense.

OJ

Let G be a Pryy-generic filter, then GND = (), there is (A, D—A) € GND,
so D € A. Using Lemma 4.1 of [3], we have D* C* D.
For the proof of sufficiency, let D be an open dense set of Pr;y, in V.

Definition 3.12. Let A be a finite block sequence and D an infinite block
sequence such that A < D. We say that D captures (A, D) if and only if for all
D’ C D there exists B an initial sequence of D’ such that (A~B,D—B) € D.

Remark 3.13. If D captures (A, D) and £ C D, then & captures (A, D).

Proposition 3.14. For every D infinite block sequence and A finite block
sequence, there exists £ © D — A such that € captures (A, D).



Proof. Let Dy = D be an infinite block sequence and A a finite block se-
quence. If there is B T Dy such that (A,B) € D then D; = B, otherwise
D, = Dy. Let eg = minD; and D5 = D; — (ep).

Assume that we have Dy, where ex_; = min Dy, and Dy := Dy, — (ex_1).

List all finite block sequences B such that each element of B belong to
FU({eo,...,ex-1}), {Bi : ¢ < lx}. Recursively we construct Di. We define
D) = D}. Suppose we are at stage 1.

If there exists B C D}, such that (A" B;, B) € D, then D' = B, otherwise
Ditl = Di.

In the end Dy yq = DL".
Claim 3.15. Dy, is such that for all B finite block sequence as above, if
there exists B © Dyy1 such that (A°B,B) € D, then already (A” B, Diy1) €
D.

Proof. Let B be a finite block sequence with elements in FU ({ey, ..., ex-1}),
then B = B; for some i € {0,...,lx—1}, by hypothesis there exists B C
Dy+1 C D}, such that (A"B;,B) € D then Dit! = B. Since D is open and
(A" B;, Diy1) < (A" B;, D), therefore (A”B;, Dyy1)- O

Let £* = (€;)ic,- We define u = J{[B,D]* : (B,D) € D}.
Claim 3.16. u is dense.

Proof. Let D € (FIN)* and [B, B]“ open such that B < B and D € [B, B]“.
Since (B,B) € Pp;y and D is dense, there is (B’,B') < (B, B) such that
(B',B') € D. We have [B',B']* C [B,B]“, so [B',B]* C u and [B’,B] # 0.
Hence u is dense. O

We have that v is open and dense, (F'IN)“\w is nowhere dense (Hindman
null for any (a, B) € Ppry), there exists £ C £* such that [A4,E]*N(FIN) \
u = (. Hence [A,£]* C u.

Claim 3.17. & captures (A, D).

Proof. Let D' C &, A™D' € [A€]Y C u, then A~D’' € u. There exists
(B,D") € D such that A~D' € [B,D"|*.

We have that B is an initial segment of A°D' and A~D' — B C D". Let
B = A~C, where C is an initial segment of 7.

Let ex the maximum element of the last element of B, note that every
element of C belongs to FU(E). D' — B C Dy41, so (B, D' — B) € D, by our
construction (B, Dgy1) € D.
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Since (A~C, € — B) < (A"C, Dy41), we have (B, — B) € D. Hence £
captures (4, D). O

This finishes the proof of 3.14. O

Proposition 3.18. For every D € (FIN)Y there exists € T D such that for
all finite block sequences A, € — A captures (A, D).

Proof. Let D € (FIN) and consider (), by Proposition 3.14, there is &) C
D such that £, captures ((), D). Define & = £. Let eo = miné& and
gg =& — <€0>.

Assume that we have &, ex := min &, and & = & — (ex).

Consider all finite block sequences B with elements in FU({a € FIN :

< ex}) and list all of them {B; : i < lx}. Recursively construct &} for i <
and E=¢;.

Suppose we are at stage 7. By Proposition 3.14 there is 8"” Cé& —-B; =
&} such that &1 captures (B;, D). In the end &y = Sl

Claim 3.19. &1 T & is such that for all finite block sequences B as above
Exs1 captures (B, D).

Proof. Let B be a finite block sequence as above, then B = B; for some
i < li, so &' captures (B;, D), since Ep41 C EFY, Exyr captures (B, D). O

Define &€ = <ei>i6w-
Claim 3.20. £ — A captures (A, D) for every finite block sequence A.

Proof. Let A be a finite block sequence. Let k be a natural number such
that = < e, for all z € A, then & captures (A, D). Because & — A C & and
&, captures (A, D), € — A, also captures (A4, D). O

This finishes the proof of 3.18. O

This is part of the proof of Theorem 3.9.

=] Assume that D* is an infinite block sequence such that for every
MADp;y family A C (FIN)¥ in V, there exists D € A such that D* C* D.

First, we shall prove that there exists in V a M ADp;y family A such
that for all D € A and every finite block sequence A, D — A captures (4, D).

Note that the set %, defined as all {A C (FIN)“ almost disjoint family
such that for all D’ € A and for all A finite block sequences, D' — A captures
(A, D)}, is nonempty.



We can consider (H, C) as a partial order.

Let C be a C-chain of H. It is clear that A C |JC for all A € C and
UC € H. By Zorn’s lemma there exists A4 a maximal element of #. It
remains to prove that A is M ADpy family, but it follows from Proposition
3.18.

Consider the set W = {B : B finite block sequence with elements in
FU(D — A) such that (A"B,D — B) ¢ D} partially ordered by the relation
B < B’ if and only if B’ is an initial subsequence of B.

Claim 3.21. (W, X) is well-founded.

Proof. Let N C W a nonempty set and assume that for every B € N there
exists B' € N, B # B’ and B’ < B. Since N # 0, there is B’ € N. Let
By = B’, by assumption there is B; € N such that B, < By and B, # By.

Assume that we have B; € N, then by assumption there exists B;; € N
such that Bi+1 74 Bz and Bi+1 < Bi'

Consider &£ := (d,)new, Where d, is an element of some finite block se-
quence B;. Since every element in N is a finite block sequence whose elements
belong to FU(D — A), we have that £ T D — A. Hence there exists B an
initial finite block sequence of £ such that (A"B,D — B) € D.

There exists n € w such that B, extends B, ie., B, x B. We have
(A~B,,D—B,) < (A"B,D - B) and (A"B,D — B) € D. Since D is open,
we obtain (A"B,,D — B,,) € D, which is a contradiction.

Hence (W, x) is well-founded. O

Since (W, x) is well-founded, we have that it is well-founded in any larger
model, because well-foundedness is absolute. Let £ = D* — A, there is an
initial finite block sequence B of £ such that (A"B,D — B) € D. Also
(A™B,D — B) € Gp«. Since D is arbitrary open dense in M, we have Gp- is
generic and therefore D* is Pryy-generic over V. |

Corollary 3.22. If D* is Prin-generic over V and D' T D*, then D’ is
Prin-generic over V.

Proof. Let Abe a MADpg;y family in V. By hypothesis there is D € A such
that D* C* D. Since D’ C D*, we obtain D’ C* D. Hence D' is Pr;y-generic
over V. O

Theorem 3.23. All analytic sets are Hindman.
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Proof. Let A be a ¥} set, where A = {z : #(z)} and
¢(z) : 3z € [wW]¥Y(z, 2, a0, . . ., am).

Let M be a countable transitive model of enough ZFC such that A,
ag,...,0m € M.

Let £ be a Pr;y name for the generic block sequence. By Theorem 4.21
in [3], there is D € (FIN)“ such that ((),D) IF ¢(z) or ({),D) IF ~¢(z).
There exists a Ppyy generic filter G such that ((), D) € G. Let D* = 2¢. We
have that D* C D.

Assume that ({), D) I ¢(), then M[G] = #(D*) and by %] absoluteness
V k= ¢(D").

In V, let D' C D*. By Corollary 3.22 D’ is generic over M, so M[D']
M[Gp] = ¢(D’'), and by X} absoluteness V | ¢(D’). Hence V = VD’
D*¢(D'), i.e., V = (D*)¥ C A

g n

Theorem 3.24. All analytic sets are completely Hindman.

Proof. Let S = {z : ¢(x)} be a 3] set such that ay, . .., a, are its parameters.
Let (A, D) be any element of Pryy.

Let M be a countable transitive model of enough Z F'C' such that ay, ..., a,
and (A, D) belong to M. Let ¢ be a Pr;y name for the generic block se-
quence. By Theorem 4.21 in [3], there exists D’ C D such that (A4, D’) I+ ¢(z)
or (A, D) IF ().

Let G be a Pgrn-generic filter such that (A,D’) € G. Let D* = ig.
Note that D* — A C D’ and A is an initial sequence of D*. Assume that
(A, D) I+ ¢(&), so M[D*] = M[G] & ¢(D*). By X} absoluteness V |= ¢(D*).

In V, choose any D" € [A,D*]“, then A is an initial segment of D" and
D"~ A C D*, in particular D” C D*. By the Corollary 3.22, M[D"] k= ¢(D").
We have V |= ¢(D") by X} absoluteness. Hence V |= [A,D*]* C S,

Similarly if (A, D) IF —¢(z). O

Theorem 3.25. Let I' be a pointclass closed under preimages of continuous
functions. If all elements of I' are Hindman, then all elements of I' are
Ramsey.

Proof. Let A be an element in I'. We define C4 := {D € (FIN)* : {min D :
D € D} € A}. Since the function min : (FIN)* — [w]¥ is continuous and
C4 = min~![A], we have C4 € I". Thus there is D* such that (D*)¥ C C4 or
(D*)*NCq = 0.



Let H := {min D : D € D*} C w. We have that [H]* C Aor [H]*NA = 0.
Hence A is Ramsey:. O

Corollary 3.26. All analytic sets are (completely) Ramsey.
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