Hindman's Theorem and Analytic Sets

Luz María García-Ávila *

Department of Actuarial Science, Physics and Mathematics, Universidad de las Américas Puebla (UDLAP)

1 Introduction

In relation with Ramsey's Theorem [8] arises the notion of Ramsey set. A set $S \subseteq [\omega]^{\omega}$ is Ramsey if there is an $M \in [\omega]^{\omega}$ such that either $[M]^{\omega} \subseteq S$ or else $[M]^{\omega} \cap S = \emptyset$. In 1973, Fred Galvin and Karel Prikry proved a classical result that states that every Borel set is Ramsey [2] and Jack Silver proved that every analytic set is Ramsey [9]. Silver's original proof was forcing theoretic and the first combinatorial proof of Silver's theorem was given by Ellentuck.

We are going to consider Hindman's Theorem [4] and define Hindman sets, in a similar way like in Ramsey's case and we will proved that all analytic sets are Hindman. This theorem is due to Milliken [7] and we are going to give a new proof. We will give a forcing theoretic proof, like Silver's original proof mentioned before. Corollary 5.23 in [10] is a general version of Milliken's theorem.

We also prove that if Γ is a point class closed under preimages of continuous functions then if all elements of Γ are Hindman then all of them are Ramsey.

^{*}This work has been partially funded by the following research grants: Joan Bagaria's grants MTM2011-25229 (Spanish Government) and 2009-SGR-187 (Catalan Government).

Acknowledgments

I would like to thank Toshimichi Usuba for giving me the opportunity to talk in the RIMS Set Theory Workshop "Infinitary Combinatorics in Set Theory and its Applications".

2 Partial orders

We denote by FIN the set of all finite non empty subsets of ω . For s and t in FIN, we write s < t if $\max(s) < \min(t)$.

If X is a subset of FIN, then we write FU(X) for the set of all finite unions of members of X, excluding the empty union.

Definition 2.1. Let I be a natural number or $I = \omega$. A block sequence is a sequence $\mathcal{D} = \langle d_i \rangle_{i \in I}$ of finite subsets of ω such that $d_i < d_{i+1}$ for all $i \in I$.

The set $(FIN)^{\omega}$ is the collection all infinite block sequences of elements of FIN.

Definition 2.2. Given \mathcal{D} and \mathcal{E} in $(FIN)^{\omega}$, we say that \mathcal{D} is a condensation of \mathcal{E} , written $\mathcal{D} \subseteq \mathcal{E}$, if $\mathcal{D} \subseteq FU(\mathcal{E})$.

Definition 2.3. The partial ordering \mathbb{P}^* is $(FIN)^{\omega}$ with the ordering \sqsubseteq^* defined as follows: if \mathcal{D} and \mathcal{E} are in $(FIN)^{\omega}$, then $\mathcal{D} \sqsubseteq^* \mathcal{E}$ iff there is an n such that $\mathcal{D} \setminus n$ is a condensation of \mathcal{E} .

Definition 2.4. The elements of \mathbb{P}_{FIN} are all pairs of the form (A, \mathcal{D}) , where $A = \langle x_i \rangle_{i < m}$ is a finite block sequence, and $\mathcal{D} = \langle d_i \rangle_{i \in \omega}$ is an infinite block sequence such that $A < \mathcal{D}$, which means $x_i < d_0$, for all i < m.

The ordering is denoted by \leq_{FIN} and defined as: given two elements (A, \mathcal{D}) and (B, \mathcal{B}) in \mathbb{P}_{FIN} , we let $(B, \mathcal{B}) \leq_{FIN} (A, \mathcal{D})$ if and only if A is an initial subsequence of B, $\mathcal{B} \sqsubseteq \mathcal{D}$ and $\forall x \in B \setminus A \ (x \in FU(\mathcal{D}))$.

3 \mathbb{P}_{FIN} and analytic sets

In [3] we have proved that \mathbb{P}_{FIN} is not equivalent to Mathias forcing but it may still have similar properties.

Definition 3.1. We say that $\mathcal{A} \subseteq (FIN)^{\omega}$ is a maximal almost disjoint FIN family (MAD_{FIN}) if for any different elements \mathcal{D} and \mathcal{D}' in \mathcal{A} , $|FU(\mathcal{D}) \cap FU(\mathcal{D}')| < \aleph_0$ and \mathcal{A} is maximal with this property.

Note that \mathcal{A} is MAD_{FIN} is equivalent to \mathcal{A} is a maximal antichain in $\langle \mathbb{P}^*, \sqsubseteq^* \rangle$.

We are going to prove that we can characterize the \mathbb{P}_{FIN} -generic block sequence using MAD_{FIN} families but first we need some other definitions.

Definition 3.2. Let $\mathcal{D} \in (FIN)^{\omega}$, we define $(\mathcal{D})^{\omega} := \{\mathcal{D}' \in (FIN)^{\omega} : \mathcal{D}' \subseteq \mathcal{D}\}$.

Definition 3.3. Let A be a finite block sequence and let \mathcal{D} be an infinite block sequence. We define

$$[A,\mathcal{D}]^\omega:=\{\mathcal{D}'\in (FIN)^\omega: A \text{ an initial block sequence of }\mathcal{D}'$$

and
$$\mathcal{D}' - A \sqsubseteq \mathcal{D}$$
.

Remark 3.4. Given (A, \mathcal{D}) and (B, \mathcal{D}') in \mathbb{P}_{FIN} , $(A, \mathcal{D}) \leq_{FIN} (B, \mathcal{D}')$ if and only if $[A, \mathcal{D}]^{\omega} \subseteq [B, \mathcal{D}']^{\omega}$. Note that for every $\mathcal{D} \in (FIN)^{\omega}$, $[\langle \rangle, \mathcal{D}]^{\omega} = (\mathcal{D})^{\omega}$.

Definition 3.5. A set $S \subseteq (FIN)^{\omega}$ is Hindman if there exists $\mathcal{D} \in (FIN)^{\omega}$ such that $(\mathcal{D})^{\omega} \subseteq S$ or $(\mathcal{D})^{\omega} \cap S = \emptyset$.

Definition 3.6. The Ellentuck-FIN topology on $(FIN)^{\omega}$ has as basic open sets the sets of the form $[A, \mathcal{D}]^{\omega}$ where A is a finite block sequence and \mathcal{D} is an element of $(FIN)^{\omega}$.

Note that the usual topology in $(FIN)^{\omega}$ is homeomorphic to $[\omega]^{\omega}$ and every element in the usual topology is open in the Ellentuck-FIN topology.

Definition 3.7. A set $S \subseteq (FIN)^{\omega}$ is completely Hindman if for every $(A, \mathcal{D}) \in \mathbb{P}_{FIN}$, there exists $\mathcal{D}' \sqsubseteq \mathcal{D}$ such that $[A, \mathcal{D}']^{\omega} \subseteq S$ or $[A, \mathcal{D}']^{\omega} \cap S = \emptyset$. A set $N \subseteq (FIN)^{\omega}$ is Hindman null if for every (A, \mathcal{D}) there exists $\mathcal{D}' \sqsubseteq \mathcal{D}$ such that $[A, \mathcal{D}']^{\omega} \cap N = \emptyset$.

Remark 3.8. Every Hindman null set is nowhere dense in the Ellentuck-FIN topology: S is nowhere dense if and only if for every open set there exists a basic open subset disjoint from S, i.e., for all (A, \mathcal{D}) there exists $(B, \mathcal{B}) \leq_{FIN} (A, \mathcal{D})$, $[B, \mathcal{B}]^{\omega} \cap S = \emptyset$.

We are going to prove analytic sets are Hindman using the ideas of Erik Ellentuck, who gave another proof of all analytic sets are Ramsey in [1].

Theorem 3.9. \mathcal{D}^* is \mathbb{P}_{FIN} -generic over V if and only if for all MAD_{FIN} families \mathcal{A} in V there is $\mathcal{D} \in \mathcal{A}$ such that $\mathcal{D}^* \sqsubseteq^* \mathcal{D}$.

Proof. \Rightarrow Let

 $D := \{(A, \mathcal{D} - A) \in \mathbb{P}_{FIN} : A \text{ is a finite block sequence and } \mathcal{D} \in \mathcal{A}\}.$

Claim 3.10. D is predense.

Proof. Let $(A, \mathcal{D}) \in \mathbb{P}_{FIN}$. Since \mathcal{A} is a MAD_{FIN} family, there is $\mathcal{D}' \in \mathcal{A}$ such that $|FU(\mathcal{D}) \cap FU(\mathcal{D}')| = \aleph_0$. Note that for any element $d \in FU(\mathcal{D}) \cap FU(\mathcal{D}')$ there exists $e \in FU(\mathcal{D}) \cap \mathcal{D}'$ such that $\max(d) < \max(e)$.

Fix $d_0'' \in FU(\mathcal{D}) \cap FU(\mathcal{D}')$. Assume that we have $d_n'' \in FU(\mathcal{D}) \cap FU(\mathcal{D}')$ such that $d_0'' < \ldots < d_{n-1}'' < d_n''$. Since $d_n'' \in FU(\mathcal{D}) \cap \mathcal{D}'$, $d_n'' = \bigcup_{i \in I_n} d_i = \bigcup_{i \in I_n'} d_i'$ for some $I_n, I_n' \in [\omega]^{<\omega}$.

There exists $e \in FU(\mathcal{D}) \cap FU(\mathcal{D}')$ such that such that $\max(d''_n) < \max(e)$, where $e = \bigcup_{i \in J'} d_i = \bigcup_{i \in J'} d_i'$. Let $j_0 = \max I_n$ and $j_0' = \max I_n'$.

Subclaim 3.11. $\bigcup_{i \in J \setminus (j_0+1)} d_i = \bigcup_{J' \setminus (j'_0+1)} d'_i$.

Proof. Let $x \in \bigcup_{i \in J \setminus (j_0+1)} d_i$ then $x \in d_i$ for some $i \in J \setminus (j_0+1)$, then there exists $j \in J'$ such that $x \in d'_i$. Note that, in particular, $\max d_{j_0} < x$.

Assume that $j \leq j'_0$, then $x \leq \max d_j \leq \max d_{j'_0} \leq \max d_{j_0}$, which is a contradiction. Hence $j \in J \setminus (j'_0 + 1)$.

Let $d''_{n+1} = \bigcup_{i \in J \setminus (j_0+1)} d_i = \bigcup_{J' \setminus (j'_0+1)} d'_i$, then $d''_n < d''_{n+1}$. We obtain $\mathcal{D}'' = (d''_i)_{i \in \omega}$ such that $\mathcal{D}'' \sqsubseteq \mathcal{D}$ and $\mathcal{D}'' \sqsubseteq \mathcal{D}'$. Note that $(A, \mathcal{D}'') \in \mathbb{P}_{FIN}$, $(A, \mathcal{D}'') \leqslant (A, \mathcal{D})$ and $(A, \mathcal{D}'') \leqslant (A, \mathcal{D}' - A)$ because $A < \mathcal{D}$ and $\mathcal{D}'' \sqsubseteq \mathcal{D}$. Hence (A, \mathcal{D}) and $(A, \mathcal{D}' - A) \in D$ are compatible, so D is predense.

Let G be a \mathbb{P}_{FIN} -generic filter, then $G \cap D \neq \emptyset$, there is $(A, \mathcal{D} - A) \in G \cap D$, so $\mathcal{D} \in \mathcal{A}$. Using Lemma 4.1 of [3], we have $\mathcal{D}^* \sqsubseteq^* \mathcal{D}$.

For the proof of sufficiency, let D be an open dense set of \mathbb{P}_{FIN} , in V.

Definition 3.12. Let A be a finite block sequence and \mathcal{D} an infinite block sequence such that $A < \mathcal{D}$. We say that \mathcal{D} captures (A, D) if and only if for all $\mathcal{D}' \sqsubseteq \mathcal{D}$ there exists B an initial sequence of \mathcal{D}' such that $(A^{\smallfrown}B, \mathcal{D} - B) \in D$.

Remark 3.13. If \mathcal{D} captures (A, D) and $\mathcal{E} \subseteq \mathcal{D}$, then \mathcal{E} captures (A, D).

Proposition 3.14. For every \mathcal{D} infinite block sequence and A finite block sequence, there exists $\mathcal{E} \sqsubseteq \mathcal{D} - A$ such that \mathcal{E} captures (A, D).

Proof. Let $\mathcal{D}_0 = \mathcal{D}$ be an infinite block sequence and A a finite block sequence. If there is $\mathcal{B} \sqsubseteq \mathcal{D}_0$ such that $(A, \mathcal{B}) \in D$ then $\mathcal{D}_1 = \mathcal{B}$, otherwise $\mathcal{D}_1 = \mathcal{D}_0$. Let $e_0 = \min \mathcal{D}_1$ and $\mathcal{D}_1^* = \mathcal{D}_1 - \langle e_0 \rangle$.

Assume that we have \mathcal{D}_k , where $e_{k-1} = \min \mathcal{D}_k$ and $\mathcal{D}_k^* := \mathcal{D}_k - \langle e_{k-1} \rangle$.

List all finite block sequences B such that each element of B belong to $FU(\{e_0,\ldots,e_{k-1}\}), \{B_i:i< l_k\}$. Recursively we construct \mathcal{D}_k^i . We define $\mathcal{D}_k^0 = \mathcal{D}_k^*$. Suppose we are at stage i.

If there exists $\mathcal{B} \sqsubseteq \mathcal{D}_k^i$ such that $(A^{\hat{}}B_i, \mathcal{B}) \in D$, then $\mathcal{D}_k^{i+1} = \mathcal{B}$, otherwise $\mathcal{D}_k^{i+1} = \mathcal{D}_k^i$.

In the end $\mathcal{D}_{k+1} = \mathcal{D}_k^{l_k}$.

Claim 3.15. \mathcal{D}_{k+1} is such that for all B finite block sequence as above, if there exists $\mathcal{B} \sqsubseteq \mathcal{D}_{k+1}$ such that $(A^{\smallfrown}B, \mathcal{B}) \in D$, then already $(A^{\smallfrown}B, \mathcal{D}_{k+1}) \in D$.

Proof. Let B be a finite block sequence with elements in $FU(\{e_0, \ldots, e_{k-1}\})$, then $B = B_i$ for some $i \in \{0, \ldots, l_{k-1}\}$, by hypothesis there exists $\mathcal{B} \sqsubseteq \mathcal{D}_{k+1} \sqsubseteq \mathcal{D}_k^i$ such that $(A^{\smallfrown}B_i, \mathcal{B}) \in D$ then $\mathcal{D}_k^{i+1} = \mathcal{B}$. Since D is open and $(A^{\smallfrown}B_i, \mathcal{D}_{k+1}) \leq (A^{\smallfrown}B_i, \mathcal{D}_{k+1}^{i+1})$, therefore $(A^{\smallfrown}B_i, \mathcal{D}_{k+1})$.

Let $\mathcal{E}^* = \langle e_i \rangle_{i \in \omega}$. We define $u = \bigcup \{ [B, \mathcal{D}]^{\omega} : (B, \mathcal{D}) \in D \}$.

Claim 3.16. *u* is dense.

Proof. Let $\mathcal{D} \in (FIN)^{\omega}$ and $[B, \mathcal{B}]^{\omega}$ open such that $B < \mathcal{B}$ and $\mathcal{D} \in [B, \mathcal{B}]^{\omega}$. Since $(B, \mathcal{B}) \in \mathbb{P}_{FIN}$ and D is dense, there is $(B', \mathcal{B}') \leq (B, \mathcal{B})$ such that $(B', \mathcal{B}') \in D$. We have $[B', \mathcal{B}']^{\omega} \subseteq [B, \mathcal{B}]^{\omega}$, so $[B', \mathcal{B}']^{\omega} \subseteq u$ and $[B', \mathcal{B}'] \neq \emptyset$. Hence u is dense.

We have that u is open and dense, $(FIN)^{\omega} \setminus u$ is nowhere dense (Hindman null for any $(a, \mathcal{B}) \in \mathbb{P}_{FIN}$), there exists $\mathcal{E} \sqsubseteq \mathcal{E}^*$ such that $[A, \mathcal{E}]^{\omega} \cap (FIN)^{\omega} \setminus u = \emptyset$. Hence $[A, \mathcal{E}]^{\omega} \subseteq u$.

Claim 3.17. \mathcal{E} captures (A, D).

Proof. Let $\mathcal{D}' \sqsubseteq \mathcal{E}$, $A \cap \mathcal{D}' \in [A, \mathcal{E}]^{\omega} \subseteq u$, then $A \cap \mathcal{D}' \in u$. There exists $(B, \mathcal{D}'') \in D$ such that $A \cap \mathcal{D}' \in [B, \mathcal{D}'']^{\omega}$.

We have that B is an initial segment of $A^{\hat{}}\mathcal{D}'$ and $A^{\hat{}}\mathcal{D}' - B \sqsubseteq \mathcal{D}''$. Let $B = A^{\hat{}}C$, where C is an initial segment of \mathcal{D}' .

Let e_k the maximum element of the last element of B, note that every element of C belongs to $FU(\mathcal{E})$. $\mathcal{D}' - B \sqsubseteq \mathcal{D}_{k+1}$, so $(B, \mathcal{D}' - B) \in D$, by our construction $(B, \mathcal{D}_{k+1}) \in D$.

Since $(A \cap C, \mathcal{E} - B) \leq (A \cap C, \mathcal{D}_{k+1})$, we have $(B, \mathcal{E} - B) \in D$. Hence \mathcal{E} captures (A, D) .
This finishes the proof of 3.14 .
Proposition 3.18. For every $\mathcal{D} \in (FIN)^{\omega}$ there exists $\mathcal{E} \sqsubseteq \mathcal{D}$ such that for all finite block sequences A , $\mathcal{E} - A$ captures (A, D) .
<i>Proof.</i> Let $\mathcal{D} \in (FIN)^{\omega}$ and consider $\langle \rangle$, by Proposition 3.14, there is $\mathcal{E}_{\langle \rangle} \sqsubseteq \mathcal{D}$ such that $\mathcal{E}_{\langle \rangle}$ captures $(\langle \rangle, D)$. Define $\mathcal{E}_0 = \mathcal{E}_{\langle \rangle}$. Let $e_0 = \min \mathcal{E}_0$ and $\mathcal{E}_0^* = \mathcal{E} - \langle e_0 \rangle$.
Assume that we have \mathcal{E}_k , $e_k := \min \mathcal{E}_k$ and $\mathcal{E}_k^* = \mathcal{E}_k - \langle e_k \rangle$. Consider all finite block sequences B with elements in $FU(\{a \in FIN : a \leq e_k\})$ and list all of them $\{B_i : i < l_k\}$. Recursively construct \mathcal{E}_k^i for $i < l_k$ and $\mathcal{E}_k^0 = \mathcal{E}_k^*$.
Suppose we are at stage i . By Proposition 3.14 there is $\mathcal{E}_k^{i+1} \sqsubseteq \mathcal{E}_k^i - B_i = \mathcal{E}_k^i$ such that \mathcal{E}_k^{i+1} captures (B_i, D) . In the end $\mathcal{E}_{k+1} = \mathcal{E}_k^{l_k}$.
Claim 3.19. $\mathcal{E}_{k+1} \sqsubseteq \mathcal{E}_k$ is such that for all finite block sequences B as above \mathcal{E}_{k+1} captures (B, D) .
<i>Proof.</i> Let B be a finite block sequence as above, then $B = B_i$ for some $i < l_k$, so \mathcal{E}_k^{i+1} captures (B_i, D) , since $\mathcal{E}_{k+1} \sqsubseteq \mathcal{E}_k^{i+1}$, \mathcal{E}_{k+1} captures (B, D) . \square
Define $\mathcal{E} := \langle e_i \rangle_{i \in \omega}$.
Claim 3.20. $\mathcal{E} - A$ captures (A, D) for every finite block sequence A .
<i>Proof.</i> Let A be a finite block sequence. Let k be a natural number such that $x < e_k$ for all $x \in A$, then \mathcal{E}_k captures (A, D) . Because $\mathcal{E} - A \sqsubseteq \mathcal{E}_k$ and \mathcal{E}_k captures (A, D) , $\mathcal{E} - A$, also captures (A, D) .

This finishes the proof of 3.18.

This is part of the proof of Theorem 3.9.

 \Rightarrow] Assume that \mathcal{D}^* is an infinite block sequence such that for every MAD_{FIN} family $\mathcal{A} \subseteq (FIN)^{\omega}$ in V, there exists $\mathcal{D} \in \mathcal{A}$ such that $\mathcal{D}^* \sqsubseteq^* \mathcal{D}$.

First, we shall prove that there exists in V a MAD_{FIN} family \mathcal{A} such that for all $\mathcal{D} \in \mathcal{A}$ and every finite block sequence A, $\mathcal{D} - A$ captures (A, D).

Note that the set \mathcal{H} , defined as all $\{\mathcal{A} \subseteq (FIN)^{\omega} \text{ almost disjoint family such that for all } \mathcal{D}' \in \mathcal{A} \text{ and for all } A \text{ finite block sequences, } \mathcal{D}' - A \text{ captures } (A, D)\}$, is nonempty.

We can consider (\mathcal{H}, \subseteq) as a partial order.

Let \mathcal{C} be a \subseteq -chain of \mathcal{H} . It is clear that $\mathcal{A} \subseteq \bigcup \mathcal{C}$ for all $\mathcal{A} \in \mathcal{C}$ and $\bigcup \mathcal{C} \in \mathcal{H}$. By Zorn's lemma there exists \mathcal{A} a maximal element of \mathcal{H} . It remains to prove that \mathcal{A} is MAD_{FIN} family, but it follows from Proposition 3.18.

Consider the set $W = \{B : B \text{ finite block sequence with elements in } FU(\mathcal{D} - A) \text{ such that } (A^{\hat{}}B, \mathcal{D} - B) \notin D\} \text{ partially ordered by the relation } B \preceq B' \text{ if and only if } B' \text{ is an initial subsequence of } B.$

Claim 3.21. (W, \preceq) is well-founded.

Proof. Let $N \subseteq W$ a nonempty set and assume that for every $B \in N$ there exists $B' \in N$, $B \neq B'$ and $B' \leq B$. Since $N \neq \emptyset$, there is $B' \in N$. Let $B_0 = B'$, by assumption there is $B_1 \in N$ such that $B_1 \leq B_0$ and $B_1 \neq B_0$.

Assume that we have $B_i \in N$, then by assumption there exists $B_{i+1} \in N$ such that $B_{i+1} \neq B_i$ and $B_{i+1} \leq B_i$.

Consider $\mathcal{E} := \langle d_n \rangle_{n \in \omega}$, where d_n is an element of some finite block sequence B_i . Since every element in N is a finite block sequence whose elements belong to $FU(\mathcal{D} - A)$, we have that $\mathcal{E} \sqsubseteq \mathcal{D} - A$. Hence there exists B an initial finite block sequence of \mathcal{E} such that $(A \cap B, \mathcal{D} - B) \in D$.

There exists $n \in \omega$ such that B_n extends B, i.e., $B_n \leq B$. We have $(A^{\smallfrown}B_n, \mathcal{D} - B_n) \leq (A^{\smallfrown}B, \mathcal{D} - B)$ and $(A^{\smallfrown}B, \mathcal{D} - B) \in D$. Since D is open, we obtain $(A^{\smallfrown}B_n, \mathcal{D} - B_n) \in D$, which is a contradiction.

Hence (W, \preceq) is well-founded.

Since (W, \preceq) is well-founded, we have that it is well-founded in any larger model, because well-foundedness is absolute. Let $\mathcal{E} = \mathcal{D}^* - A$, there is an initial finite block sequence B of \mathcal{E} such that $(A^{\smallfrown}B, \mathcal{D} - B) \in D$. Also $(A^{\smallfrown}B, \mathcal{D} - B) \in G_{\mathcal{D}^*}$. Since D is arbitrary open dense in M, we have $G_{\mathcal{D}^*}$ is generic and therefore \mathcal{D}^* is \mathbb{P}_{FIN} -generic over V.

Corollary 3.22. If \mathcal{D}^* is \mathcal{P}_{FIN} -generic over V and $\mathcal{D}' \sqsubseteq \mathcal{D}^*$, then \mathcal{D}' is \mathbb{P}_{FIN} -generic over V.

Proof. Let \mathcal{A} be a MAD_{FIN} family in V. By hypothesis there is $\mathcal{D} \in \mathcal{A}$ such that $\mathcal{D}^* \sqsubseteq^* \mathcal{D}$. Since $\mathcal{D}' \sqsubseteq \mathcal{D}^*$, we obtain $\mathcal{D}' \sqsubseteq^* \mathcal{D}$. Hence \mathcal{D}' is \mathbb{P}_{FIN} -generic over V.

Theorem 3.23. All analytic sets are Hindman.

Proof. Let A be a Σ_1^1 set, where $A = \{x : \phi(x)\}$ and

$$\phi(x): \exists z \in [\omega]^{\omega} \psi(x, z, a_0, \dots, a_m).$$

Let M be a countable transitive model of enough ZFC such that A, $a_0, \ldots, a_m \in M$.

Let \dot{x} be a \mathbb{P}_{FIN} name for the generic block sequence. By Theorem 4.21 in [3], there is $\mathcal{D} \in (FIN)^{\omega}$ such that $(\langle \rangle, \mathcal{D}) \Vdash \phi(\dot{x})$ or $(\langle \rangle, \mathcal{D}) \Vdash \neg \phi(\dot{x})$. There exists a \mathbb{P}_{FIN} generic filter G such that $(\langle \rangle, \mathcal{D}) \in G$. Let $\mathcal{D}^* = \dot{x}_G$. We have that $\mathcal{D}^* \sqsubseteq \mathcal{D}$.

Assume that $(\langle \rangle, \mathcal{D}) \Vdash \phi(\dot{x})$, then $M[G] \models \phi(\mathcal{D}^*)$ and by Σ_1^1 absoluteness $V \models \phi(\mathcal{D}^*)$.

In V, let $\mathcal{D}' \sqsubseteq \mathcal{D}^*$. By Corollary 3.22 \mathcal{D}' is generic over M, so $M[\mathcal{D}'] = M[G_{\mathcal{D}'}] \models \phi(\mathcal{D}')$, and by Σ_1^1 absoluteness $V \models \phi(\mathcal{D}')$. Hence $V \models \forall \mathcal{D}' \sqsubseteq \mathcal{D}^*\phi(\mathcal{D}')$, i.e., $V \models (\mathcal{D}^*)^\omega \subseteq A$.

Theorem 3.24. All analytic sets are completely Hindman.

Proof. Let $S = \{x : \phi(x)\}$ be a Σ_1^1 set such that a_0, \ldots, a_n are its parameters. Let (A, \mathcal{D}) be any element of \mathbb{P}_{FIN} .

Let M be a countable transitive model of enough ZFC such that a_0, \ldots, a_n and (A, \mathcal{D}) belong to M. Let \dot{x} be a \mathbb{P}_{FIN} name for the generic block sequence. By Theorem 4.21 in [3], there exists $\mathcal{D}' \sqsubseteq \mathcal{D}$ such that $(A, \mathcal{D}') \Vdash \phi(\dot{x})$ or $(A, \mathcal{D}') \Vdash \neg \phi(\dot{x})$.

Let G be a \mathbb{P}_{FIN} -generic filter such that $(A, \mathcal{D}') \in G$. Let $\mathcal{D}^* = \dot{x}_G$. Note that $\mathcal{D}^* - A \sqsubseteq \mathcal{D}'$ and A is an initial sequence of \mathcal{D}^* . Assume that $(A, \mathcal{D}') \Vdash \phi(\dot{x})$, so $M[\mathcal{D}^*] = M[G] \models \phi(\mathcal{D}^*)$. By Σ_1^1 absoluteness $V \models \phi(\mathcal{D}^*)$.

In V, choose any $\mathcal{D}'' \in [A, \mathcal{D}^*]^{\omega}$, then A is an initial segment of \mathcal{D}'' and $\mathcal{D}'' - A \sqsubseteq \mathcal{D}^*$, in particular $\mathcal{D}'' \sqsubseteq \mathcal{D}^*$. By the Corollary 3.22, $M[\mathcal{D}''] \models \phi(\mathcal{D}'')$. We have $V \models \phi(\mathcal{D}'')$ by Σ_1^1 absoluteness. Hence $V \models [A, \mathcal{D}^*]^{\omega} \subseteq S$.

Similarly if $(A, \mathcal{D}') \Vdash \neg \phi(\dot{x})$.

Theorem 3.25. Let Γ be a pointclass closed under preimages of continuous functions. If all elements of Γ are Hindman, then all elements of Γ are Ramsey.

Proof. Let A be an element in Γ . We define $\mathcal{C}_A := \{\mathcal{D} \in (FIN)^\omega : \{\min D : D \in \mathcal{D}\} \in A\}$. Since the function $\min : (FIN)^\omega \to [\omega]^\omega$ is continuous and $\mathcal{C}_A = \min^{-1}[A]$, we have $\mathcal{C}_A \in \Gamma$. Thus there is \mathcal{D}^* such that $(\mathcal{D}^*)^\omega \subseteq \mathcal{C}_A$ or $(\mathcal{D}^*)^\omega \cap \mathcal{C}_A = \emptyset$.

Let $H := \{ \min D : D \in \mathcal{D}^* \} \subseteq \omega$. We have that $[H]^{\omega} \subseteq A$ or $[H]^{\omega} \cap A = \emptyset$. Hence A is Ramsey.

Corollary 3.26. All analytic sets are (completely) Ramsey.

References

- [1] E. Ellentuck. A new proof that Analytic sets are Ramsey, The Journal of Symbolic Logic, 39: 163-165, (1974).
- [2] F. Galvin and K. Prikry. *Borel sets and Ramsey's Theorem*, The Journal of Symbolic Logic, 38: 193-198, (1973).
- [3] L. Garc 箪'ia. A forcing notion related to Hindman's theorem, Archive for Mathematical Logic, 54: 133-159, (2015).
- [4] N. Hindman. Finite sums from sequences within cells of partitions of N, Journal of Combinatorial Theory (A), 17: 1-11, (1974).
- [5] T. Jech. Set Theory. The third millennium edition, revised and expanded., Springer, (2002).
- [6] A.R.D. Mathias. *Happy families*, Annals of Mathematical Logic, 12: 59-111, (1977).
- [7] K.R. Milliken. Ramsey's Theorem with Sums or Unions, Journal of Combinatorial Theory, 18: 276-290, (1975).
- [8] F. P. Ramsey. On a problem of formal logic, Proceedings of the London Mathematical Society, 30: 264-286, (1930).
- [9] J. Silver. Every analytic set is Ramsey, The Journal of Symbolic Logic, 35: 60-64, (1970).
- [10] S. Todorčević. *Introduction to Ramsey spaces*, Princeton University Press, (2010).