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Abstract. The notion of probability plays an important role in
almost all areas of science. In modern mathematics, however,
probability theory means nothing other than measure theory,
and the operational characterization of the notion of probability
is not established yet. In this paper, based on the toolkit of algo-
rithmic randomness we present an operational characterization
of the notion of probability. Algorithmic randomness, also known
as algorithmic information theory, is a field of mathematics which
enables us to consider the randomness of an individual infinite
sequence. We use the notion of Martin-L\"of randomness with
respect to Bernoulli measure to present the operational charac-
terization. As the first step of the research of this line, in this
paper we only consider the case of finite probability space, i.e.,
the case where the sample space of the underlying probability
space is finite, for simplicity. In the paper we make applications
of our formalism to information theory, cryptography, and quan-
tum mechanics.

1 Introduction

The notion of probability plays an important role in almost all areas of science. In modern
mathematics, however, probability theory means nothing other than measure theory, and
an operational characterization of the notion of probability is not established yet.

In the past century, however, there was a comprehensive attempt to provide such
a characterization. Namely, von Mises developed a mathematical theory of repetitive
events which is aimed at reformulating the theory of probability and statistics based
on an operational characterization of the notion of probability [23, 24]. In a series of
comprehensive works which began in 1919, von Mises developed this theory and, in
particular, introduced the notion of collective as a mathematical idealization of a long
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sequence of outcomes of experiments or observations repeated under a set of invariable
conditions, such as the repeated tossing of a coin or of a pair of dice.

The collective plays a role as an operational characterization of the notion of probabil-
ity, and is an infinite sequence of sample points in the sample space of a probability space.
As the randomness property of the collective, von Mises assumes that all

$\langle$

reasonable”
infinite subsequences of a collective satisfy the law of large numbers with the identical
limit value, where the subsequences are selected using “acceptable selection rules Wald
[25, 26] later showed that for any countable collection of selection rules, there are se-
quences that are collectives in the sense of von Mises, but at the time it was unclear
exactly what types of selection rules should be acceptable. There seemed to von Mises
to be no canonical choice.

Later, with the development of computability theory and the introduction of generally
accepted precise mathematical definitions of the notions of algorithm and computable
function, Church [7] made the first explicit connection between computability theory
and randomness by suggesting that a selection rule be considered acceptable if and only
if it is computable. In 1939, however, Ville [22] revealed the defect of the notion of
collective. Namely, he showed that for any countable collection of selection rules, there
is a sequence that is random in the sense of von Mises but has properties that make it
clearly nonrandom. (For the development of the theory of collectives from the point of
view of the definition of randomness, see Downey and Hirschfeldt [8].)

In 1966, Martin-L\"of [12] introduced the definition of random sequences, which is called
Martin-L\"of randomness nowadays, and plays a central role in the recent development
of algorithmic randomness. At the same time, he introduced the notion of Martin-
$L\dot{0}f$ randomness with respect to Bernoulli measure [12]. He then pointed out that this
notion overcomes the defect of the collective in the sense of von Mises, and this can be
regarded precisely as the collective which von Mises wanted to define. However, he did
not develop probability theory based on Martin-L\"of random sequence with respect to
Bernoulli measure.

Algorithmic randomness is a field of mathematics which studies the definitions of
random sequences and their property [14, 8]. However, the research on algorithmic ran-
domness would seem only interested in the notions of randomness and their property,
and not seem to have tried to develop probability theory based Martin-L\"of randomness
with respect to Bernoulli measure in an operational manner so far.

The subject of this paper is to make such an attempt. Namely, in this paper we
present an operational characterization of the notion of probability based on Martin-L\"of

randomness with respect to Bernoulli measure. As the first step of the research of this
line, we only consider the case of finite probability space, i.e., the case where the sample
space of the underlying probability space is finite, for simplicity. The investigation of
the case of general probability spaces is left to the future study. We emphasize that the
Bernoulli measure which we consider in this paper is not required to be computable at
all, while the measures considered in algorithmic randomness are usually computable.
Thus, the results in this paper hold for any finite probability space.

In this paper, we make applications of our theory to information theory, cryptography,
and quantum mechanics.
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2 Preliminaries

2.1 Basic notation and definitions

We start with some notation about numbers and strings which will be used in this paper.
$\# S$ is the cardinality of $S$ for any set S. $\mathbb{N}=\{0$ , 1, 2, 3, . . . $\}$ is the set of natural numbers,

and $\mathbb{N}^{+}$ is the set of positive integers. $\mathbb{Q}$ is the set of rationals, and $\mathbb{R}$ is the set of reals.

An alphabet is a nonempty finite set. We suppose that any alphabet which we consider
in this paper has at least two elements. Let $\Omega$ be an alphabet. $A$ finite string over $\Omega$ is

a finite sequence of elements from the alphabet $\Omega$ . We denote by $\Omega^{*}$ the set of all finite

strings over $\Omega$ , which contains the empty string denoted by $\lambda$ . We denote by $\Omega^{+}$ the set
$\Omega-\{\lambda\}$ . For any $\sigma\in\Omega^{*},$ $|\sigma|$ is the length of $\sigma$ . Therefore $|\lambda|=$ O. A subset $S$ of $\Omega^{*}$

is called prefix-free if no string in $S$ is a prefix of another string in $S$ . We write $(r.e.$ ”

instead of “recursively enumerable
An infinite sequence over $\Omega$ is an infinite sequence of elements from the alphabet $\Omega,$

where the sequence is infinite to the right but finite to the left. We denote by $\Omega^{\infty}$ is the

set of all infinite sequences over $\Omega.$

Let $\alpha\in\Omega^{\infty}$ . For any $n\in \mathbb{N}$ , we denote by $\alpha r_{n}\in\Omega^{*}$ the first $n$ elements in the infinite

sequence $\alpha$ and by $\alpha(n)$ the nth element in $\alpha$ . Thus, for example, $\alpha\lceil_{4}=\alpha(1)\alpha(2)\alpha(3)\alpha(4)$ ,

and $\alpha[0=\lambda$ . For any $S\subset\Omega^{*}$ , the set

$\{\alpha\in\Omega^{\infty}|\exists n\in N\alpha r_{n}\in S\}$

is denoted by $[S]^{\prec}$ Note that (i) $[S]^{\prec}\subset[T]^{\prec}$ for every $S\subset T\subset\Omega^{*}$ , and (ii) for every

set $S\subset\Omega^{*}$ there exists a prefix-free set $P\subset\Omega^{*}$ such that $[S]^{\prec}=[P]^{\prec}$ For any $\sigma\in\Omega^{*},$

we denote by $[\sigma]^{\prec}$ the set $[\{\sigma\}]^{\prec}$ , i.e., the set of all infinite sequences over $\Omega$ extending
$\sigma$ . Therefore $[\lambda]^{\prec}=\Omega^{\infty}.$

We briefly review measure theory. For the detail, see Billingsley $[4I$ . A subset $R$

of $\Omega^{\infty}$ is open if $R=[S]^{\prec}$ for some $S\subset\Omega^{*}$ . In this paper we consider the $\sigma$ -field $\mathcal{F}$

generated by all open sets on $\Omega^{\infty}$ , which is defined as the intersection of all the a fields

containing all open sets on $\Omega^{\infty}.$ A probability measure representation over $\Omega$ is a function
$r:\Omega^{*}arrow[0$ , 1 $]$ such that (i) $r(\lambda)=1$ and (ii) $r( \sigma)=\sum_{a\in\Omega}r(\sigma a)$ for every $\sigma\in\Omega^{*}.$ $A$

probability measure representation $r$ induces the measure $\mu_{r}$ on the a-field $\mathcal{F}$ . In this
paper, we use the following properties of the measure $\mu_{r}.$

Proposition 1 (Properties of measure on $\Omega^{\infty}$ ).

(i) $\mu_{r}([P]^{\prec})=\sum_{\sigma\in P}r(\sigma)$ for every prefix-free set $P\subset\Omega^{*}$ . Therefore $\mu_{r}(\emptyset)=$

$\mu_{r}([\emptyset]^{\prec})=0$ and $\mu_{r}(\Omega^{\infty})=\mu_{r}([\{\lambda\}]^{\prec})=1.$

(ii) $\mu_{r}(C)\leq\mu_{r}(\mathcal{D})$ for every $C,$ $\mathcal{D}$ in the $\sigma$ -field $\mathcal{F}$ with $C\subset \mathcal{D}.$

(iii) $\mu_{r}(\bigcup_{i}C_{i})=\sum_{i}\mu_{r}(C_{i})$ for every sequence $\{C_{i}\}_{i\in N}$ in the $\sigma$ -field $\mathcal{F}.$ $\square$

A function $f:\mathbb{N}arrow\Omega^{*}$ or $f:\mathbb{N}arrow \mathbb{Q}$ is called computable if there exists a deterministic
Taring machine which on every input $n\in \mathbb{N}$ halts and outputs $f(n)$ . A computable

function is also called a total recursive function. A real $a$ is called computable if there

exists a computable function $g:\mathbb{N}arrow \mathbb{Q}$ such that $|a-g(k)|<2^{-k}$ for all $k\in \mathbb{N}$ . We say

that $\alpha\in\Omega^{\infty}$ is computable if the mapping $\mathbb{N}\ni n\mapsto\alpha r_{n}$ is a computable function, which

is equivalent to that the real $0.\alpha$ in $base-\#\Omega$ notation is computable.

54



2.2 Algorithmic randomness

In the following we concisely review some definitions and results of algorithmic random-
ness [5, 6, 14, 8].

We use $\mathcal{L}$ to denote Lebesgue measure on $\{0, 1\}^{\infty}$ . Namely, $\mathcal{L}=\mu_{r}$ where the prob-
ability measure representation $r$ is defined by the condition that $r(\sigma)=2^{-|\sigma|}$ for every
$\sigma\in\{0, 1\}^{*}$ . The idea in algorithmic randomness is to think of an infinite binary sequence
as random if it is in no effective null set. An effective null set is a subset $S$ of $\{0, 1\}^{\infty}$

such that $\mathcal{L}(S)=0$ and $S$ has some type of effective property. To specify an algorithmic
randomness notion, one has to specify a type of effective null set, which is usually done
by introducing a test concept. Failing the test is the same as being in the null set. In this
manner, various randomness notions, such as 2-randomness, weak 2-randomness, Demuth
randomness, Martin-L\"of randomness, Schnorr randomness, Kurtz randomness, have been
introduced so far, and a hierarchy of algorithmic randomness notions has been developed
(see [14, 8] for the detail).

Among all randomness notions, Martin-Lof randomness is a central one. This is
because in many respects, Martin-L\"of randomness is well-behaved, in that the many
properties of Martin-L\"of random infinite sequences do match our intuition of what random
infinite sequence should look like. Moreover, the concept of Martin-L\"of randomness is
robust in the sense that it admits various equivalent definitions that are all natural and
intuitively meaningful, as we will see in Theorem 3. Martin-L\"of randomness is defined as
follows based on the notion of Martin-L\"of test.

Definition 2 (Martin-L\"of randomness, Martin-L\"of [12]). A subset $C$ of $\mathbb{N}^{+}\cross\{0, 1\}^{*}$ is
called $a$ Martin-L\"of test if $C$ is an $r.e$ . set and for every $n\in \mathbb{N}^{+},$ $\mathcal{L}([C_{n}]^{\prec})\leq 2^{-n}$ , where
$C_{n}=\{\sigma|(n, \sigma)\in C\}.$

For any $\alpha\in\{0, 1\}^{\infty}$ , we say that $\alpha$ is Martin-L\"of random if for every Martin-Lof test
$C$ there exists $n\in \mathbb{N}^{+}$ such that $\alpha\not\in[C_{n}]^{\prec}$ $\square$

Let $C$ be a Martin-L\"of test. Then, for each $k\in \mathbb{N}^{+}$ , using (ii) of Proposition 1 we see
that $\mathcal{L}(\bigcap_{n=1}^{\infty}[C_{n}]^{\prec})\leq \mathcal{L}([C_{k}]^{\prec})\leq 2^{-k}$ . On letting $karrow\infty$ , we have

$\mathcal{L}(\bigcap_{n=1}^{\infty}[C_{n}]^{\prec})=0.$

Thus, the set $\bigcap_{n=1}^{\infty}[C_{n}]^{\prec}$ forms an effective null set in th\‘e notion of Martin-L\"of random-
ness. Definition 2 says that an infinite binary sequence $\alpha$ is Martin-L\"of random if $\alpha$ is
not in the effective null set $\bigcap_{n=1}^{\infty}[C_{n}]^{\prec}$ for any Martin-L\"of test $C.$

The robustness of Martin-L\"of randomness is mainly due to the fact that it admits
characterizations based on the notion of program-size complexity, as shown in Theorem 3.
The program-size complexity (or Kolmogorov complexity) $K(\sigma)$ of a finite binary string a
is defined as the length of the shortest binary input for a universal decoding algorithm $U,$

called an optimal prefix-free machine, to output $\sigma$ (see Chaitin [5] for the detail). By the
definition, $K(\sigma)$ can be thought of as the randomness contained in the individual finite
binary string $\sigma.$

Theorem 3 (Schnorr [16] and Chaitin [5]). For every $\alpha\in\{0, 1\}^{\infty}$ , the following condi-
tions are equivalent:
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(i) $\alpha$ is $Manin-L\dot{0}f$ random.

(ii) There exists $c\in \mathbb{N}$ such that, for all $n\in \mathbb{N}^{+},$ $n-c\leq K(\alpha r_{n})$ . $\square$

The condition (ii) means that the infinite binary sequence $\alpha$ is incompressible.

3 Martin-L\"of randomness with respect to Bernoulli
measure

In order to provide an operational characterization of the notion of probability we use a
generalization of Martin-L\"of randomness over Bernoulli measure.

Let $\Omega$ be an alphabet through out the rest of this paper. It plays a role of the set
of all possible outcomes of experiments or observations. The probability simplex on $\Omega,$

denoted by $\mathbb{P}(\Omega)$ , is the set of all functions $P:\Omegaarrow \mathbb{R}$ such that $P(a)\geq 0$ for every $a\in\Omega$

and $\sum_{a\in\Omega}P(a)=1$ . Bernoulli measure is given as follows.
Let $P\in \mathbb{P}(\Omega)$ . Consider a function $r:\Omega^{*}arrow[0$ , 1 $]$ such that $r(a_{1} \ldots a_{n})=\prod_{i=1}^{n}P(a_{i})$

for every $n\in \mathbb{N}$ and $a_{1}$ , . . . , $a_{n}\in\Omega$ . The function $r$ is a probability measure represen-
tation. The measure $\mu_{r}$ induced by $r$ is Bernoulli measure on $\Omega^{\infty}$ , denoted $\lambda_{P}$ . Then
Bernoulli measure $\lambda_{P}$ on $\Omega^{\infty}$ has the following property: For every $\sigma\in\Omega^{*},$

$\lambda_{P}([\sigma]^{\prec})=\prod_{a\in\Omega}P(a)^{N_{a}(\sigma)}$
, (1)

where $N_{a}(\sigma)$ is the number of the occurrences of the element $a$ in the finite string $\sigma^{1}$

Martin-L\"of randomness with respect to Bernoulli measure is defined as follows. This
notion was, in essence, introduced by Martin-L\"of [12], as well as the notion of Martin-L\"of

randomness, which we describe in Definition 2.

Definition 4 (Martin-L\"of randomness with respect to Bernoulli measure, Martin-L\"of

[12]). Let $P\in \mathbb{P}(\Omega)$ . $\mathcal{A}$ subset $C$ of $\mathbb{N}^{+}\cross\Omega^{*}$ is called $a$ Martin-L\"of $P$-test if $C$ is an
$r.e$ . set such that, for every $n\in \mathbb{N}^{+},$ $\lambda_{P}([C_{n}]^{\prec})\leq 2^{-n}$ , where $C_{n}=\{\sigma|(n, \sigma)\in C\}.$

For any $\alpha\in\Omega^{\infty}$ , we say that $\alpha$ is Martin-F\"of $P$-random if for every Martin-Lof
$P$ -test $C$ there exists $n\in \mathbb{N}^{+}$ such that $\alpha\not\in[C_{n}]^{\prec}$ $\square$

Note that in Definition 4 we do not require that $P(a)>0$ for all $a\in\Omega$ . Therefore,
$P(a_{0})$ may be $0$ for some $a_{0}\in\Omega$ . In the case where $\Omega=\{0$ , 1 $\}$ and $P\in \mathbb{P}(\Omega)$ satisfies that
$P(O)=P(1)=1/2$ , the Martin-L\"of $P$-randomness results in the Martin-L\"of randomness.

Since there are only countably infinitely many algorithms and every Martin-L\"of $P$-test
induces an effective null set, it is easy to show the following theorem.

Theorem 5. $\lambda_{P}(ML_{P})=1$ for every $P\in \mathbb{P}(\Omega)$ , where $ML_{P}$ is the set of all $Martin-L\dot{o}f$

$P$ -random sequences. $\square$

$10^{0}$ is defined as 1 in the equation (1).

56



4 Ensemble

In this section, according to our former work [18] we give an operational characterization
of the notion of probability for a finite probability space. We will identify the substance
of the notion of probability for a finite probability space. For that purpose, we first review
the notion of finite probability space, based on the notion of probability simplex. Let
$P\in \mathbb{P}(\Omega)$ . For each $A\subset\Omega$ , we define $P(A)$ by

$P(A):= \sum_{a\in A}P(a)$
.

Then, $P$ can be regarded as a finite probability space $(\Omega, \mathcal{F}, P)$ , where $\mathcal{F}$ is the set of all
subset of $\Omega$ . The set $\Omega$ is the sample space, and elements in $\Omega$ are called sample points

or elementary events. A subset of $\Omega$ is called an event, and $P(A)$ is called the probability

of $A$ for every event $A$ . In what follows, we regard each element in $\mathbb{P}(\Omega)$ as a finite
probability space in this manner.

We propose to regard a Martin-L\"of $P$-random sequence of sample points as an oper-
ational characterization of the notion of probability for a finite probability space. Thus,
since the Martin-L\"of $P$-randomness plays a central role in our formalism, in particular we
call it ensemble for a finite probability space, as in Definition 6. The name “ensemble
comes from physics.

Definition 6 (Ensemble). Let $P\in \mathbb{P}(\Omega).$ A Martin-L\"of $P$-random sequence in $\Omega^{\infty}$ is
called an ensemble for the finite probability space P. $\square$

Let $P\in \mathbb{P}(\Omega)$ . Consider an infinite sequence $\alpha\in\Omega^{\infty}$ of outcomes which is obtained by

an infinite reputation of trials described by the finite probability space $P$ . The operational
characterization of the notion of probability for the finite probability space $P$ is thought
to be completed if the property which the infinite sequence a has to satisfy is determined.
We thus propose the following thesis.

Thesis 1. Let $P\in \mathbb{P}(\Omega)$ . An ensemble for $P$ is an operational characterization of the
finite probability space P. $\square$

Let us consider the validity of Thesis 1. In what follows we check that the notion of
ensemble satisfies the necessary conditions which the notion of probability is considered
to have to satisfy from our intuitive understanding of the notion of probability. Let
$P_{0}\in \mathbb{P}(\Omega)$ , and consider an infinite sequence $\alpha_{0}\in\Omega^{\infty}$ of outcomes which is obtained by
an infinite reputation of trials described by the finite probability space $P_{0}.$

The first necessary condition which the notion of probability is considered to have to
satisfy is that the law of large numbers holds for $\alpha_{0}$ . Theorem 7 below confirms that this
certainly holds. Note that we have to check whether the law of large numbers holds for
any Martin-L\"of $P$-random sequence since $P$ is not computable reals, in general. However,

we can certainly prove it using the Chernoff bound as follows.

Theorem 7 (The law of large numbers). Let $P\in \mathbb{P}(\Omega)$ . For every $\alpha\in\Omega^{\infty}$ , if $\alpha$ is an
ensemble for $P$ then, for every $a\in\Omega,$

$\lim_{narrow\infty}\frac{N_{a}(\alpha r_{n})}{n}=P(a)$ .

$\square$
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In order to prove Theorem 7, we need the following theorem, Chernoff bound, which
is a modification of the form given in Section 1.2.2 of Goldreich [10].

Theorem 8 (Chernoff bound). Let $P$ in $\mathbb{P}(\{0,1$ Then for each $\epsilon$ with $0<\epsilon\leq$

$P(O)P(1)$ and each $n\in \mathbb{N}^{+}$ , we have

$\lambda_{P}([S_{n}]^{\prec})<2e^{-\frac{\epsilon^{2}}{2P(0)P(1)}n},$

where $S_{n}$ is the set of all $\sigma\in\{0, 1\}^{n}$ such that $|N_{1}(\sigma)/n-P(1)|>\epsilon.$ $\square$

of Theorem 7. Let $a\in\Omega$ . We define $Q\in \mathbb{P}(\{0,1\})$ such that $Q(1)=P(a)$ and $Q(O)=$

$1-P(a)$ . Let $\beta$ be the infinite binary sequence obtained from $\alpha$ by replacing all $a$ by
1 and all symbols other than $a$ by $0$ in $\alpha$ . It follows from Theorem 15 below that $\beta$ is
Martin-L\"of $Q$-random and $N_{1}(\beta r_{n})=N_{a}(\alpha r_{n})$ for every $n.$

Assume contrarily that $\lim_{narrow\infty}N_{a}(\alpha r_{n})/n\neq P(a)$ . Then $\lim_{narrow\infty}N_{1}(\beta r_{n})/n\neq P(a)$

and therefore there exists $\epsilon>0$ such that $|N_{1}(\beta r_{n})/n-P(a)|>2\epsilon$ for infinitely many
$n$ . It follows from Theorem 8 that

$Pr[|\frac{N_{1}(\beta r_{n})}{n}-P(a)|>\epsilon]<2e^{-\frac{\epsilon^{2}}{2P(a)(1-P(a))}n}$

Since $p_{i}$ is not necessarily computable, we choose $r_{L},$ $r_{R}\in \mathbb{Q}$ with $p_{i}-2\epsilon<r_{L}<p_{i}-\epsilon$ and
$p_{i}+\epsilon<r_{R}<p_{i}+2\epsilon$ . For each $n\in \mathbb{N}^{+}$ , let $S_{n}$ be the set $\{x\in\{0, 1\}^{n}|r_{L}<N_{1}(x)/n<r_{R}\}$

and let $T_{n}= \bigcup_{m=n}^{\infty}S_{m}$ . Then $\beta\in[T_{n}]^{\prec}$ and

$\lambda_{Q}([T_{n}]^{\prec})\leq\sum_{m=n}^{\infty}2e^{-cm}=\frac{2e^{-cn}}{1-e^{-c}},$

where $c\in \mathbb{Q}$ with $0<c<\epsilon^{2}/(2P(a)(1-P(a)))$ . Then it is easy to show that there exists
a total recursive function $f:\mathbb{N}^{+}arrow \mathbb{N}^{+}$ such that $2e^{-cj(n)}/(1-e^{-c})\leq 2^{-n}$ . Thus, $\beta$ is
Martin-L\"of $Q$-random since the set $\{(n, \sigma)|n\in \mathbb{N}^{+} \ \sigma\in T_{f(n)}\}$ is Martin-L\"of $Q$-test
and $\beta\in[T_{n}]^{\prec}$ for every $n$ . Hence we have a contradiction, and the result follows. $\square$

The following is immediate from Theorem 7.

Corollary 9. Let $P,$ $Q\in \mathbb{P}(\Omega)$ . If there exists $\alpha\in\Omega^{\infty}$ which is both an ensemble for $P$

and an ensemble for $Q$ , then $P=Q.$ $\square$

The second necessary condition which the notion of probability is considered to have
to satisfy is that an elementary event with probability zero never occurs in the infinite
sequence $\alpha_{0}$ . Note that the notion of probability is more than the law of large numbers.
To see this, consider the finite probability space $P\in \mathbb{P}(\{a, b\})$ such that $P(a)=0$ and
$P(b)=1$ , and consider the infinite sequence $\alpha=b,$ $a,$ $b,$ $b,$ $b,$ $b,$ $b,$ $b,$ $b,$ $b,$ $b,$ $b$ , . . . . . . . Since
$\lim_{narrow\infty}N_{a}(\alpha r_{n})/n=0=P(a)$ , the law of large numbers certainly holds for $\alpha$ . However,
the elementary event $a$ with probability zero has occurred in $\alpha$ once. This contradicts our
intuition that an elementary event with probability zero never occurs. The example shows
that the law of large numbers is insufficient to characterizes the notion of probability.
Thus, the notion of probability is more than the law of large numbers.

Theorem 10 below states that an elementary event with probability zero never occurs
in an ensemble, and thus shows that the notion of ensemble coincides with our intuition
about the notion of $probabili\acute{t}y$ in this respect. The result was, in essence, pointed out
by Martin-L\"of [12].
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Theorem 10. Let $P\in \mathbb{P}(\Omega)$ , and let $a\in\Omega$ . Suppose that $\alpha$ is an ensemble for the finite
probability space $P$ and $P(a)=0$ . Then $\alpha$ does not contain $a.$

Proof. Assume contrarily that $\alpha$ contains $a$ . Then there exists a prefix $\sigma\in\Omega^{+}$ of $\alpha$

which contains $a$ . For each $n$ , we define $T_{n}$ as $\{\sigma\}$ . Then, since $P(a)=0$ , we have
$\lambda_{P}([T_{n}]^{\prec})=0$ for all $n\in \mathbb{N}^{+}$ , and $T$ is r.e., obviously. Thus, $\{T_{n}\}$ is Martin-L\"of $P$-test.

On the other hand, $\alpha\in[T_{n}]^{\prec}$ for all $n$ , and therefore $\alpha$ is not Martin-L\"of $P$-random.
Hence, we have a contradiction, and the proof is completed. $\square$

The following corollary is immediate from Theorem 10. It states that an elemen-

tary event with probability one always happens in an ensemble, and thus the notion of
ensemble coincides with our intuition about the notion of probability in this respect.

Corollary 11. Let $P\in \mathbb{P}(\Omega)$ , and let $a\in\Omega$ . Suppose that $\alpha$ is an ensemble for the finite
probability space $P$ and $P(a)=1$ . Then $\alpha$ consists only of $a.$

$\square$

In what follows we consider the third necessary condition which the notion of probabil-
ity is considered to have to satisfy. Assume that an observer $A$ performs an infinite reputa-
tion of trials described by a finite probability space $P\in \mathbb{P}(\Omega)$ , and thus is generating an in-

finite sequence $\alpha\in\Omega^{\infty}$ of outcomes of observations: $\alpha=a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $a_{5_{9}}a_{6},$ $a_{7},$ $a_{8}$ , . . . . . . .

According to our thesis, Thesis 1, $\alpha$ is an ensemble for $P$ . Consider another observer $B$

who wants to adopt the following subsequence $\beta$ of $\alpha$ as the outcomes of the observations:
$\beta=a_{2},$ $a_{3},$ $a_{5},$ $a_{7},$ $a_{11},$ $a_{13},$ $a_{17}$ , . . . . . . , where the observer $B$ only takes into account the

nth elements in the original sequence a such that $n$ is a prime number. According to

Thesis 1, $\beta$ has to be an ensemble for $P$ , as well. However, is this true?
Consider this problem in a general setting. Assume as before that an observer $A$

performs an infinite reputation of trials described by a finite probability space $P\in$

$\mathbb{P}(\Omega)$ , and thus is generating an infinite sequence $\alpha\in\Omega^{\infty}$ of outcomes of observa-
tions: $\alpha=a_{1},$ $a_{2},$ $a_{3},$ $a_{4},$ $a_{5},$ $a_{6},$ $a_{7}$ , . . . . . . . According to Thesis 1, $\alpha$ is an ensemble
for $P$ . Now, let $f:\mathbb{N}^{+}arrow \mathbb{N}^{+}$ be an injection. Consider anothdr observer $B$ who
wants to adopt the following sequence $\beta$ of $\alpha$ as the outcomes of the observations:
$\beta=a_{f(1)},$ $a_{f(2)},$ $a_{f(3)},$ $a_{f(4)},$ $a_{f(5)}$ , . . . . . . . According to our thesis, $\beta$ has to be an ensemble
for $P$ , as well. However, is this true?

We can confirm this by restricting the ability of $B$ , that is, by assuming that every
observer can select elements from the original sequence a only in an effective manner.
This means that the function $f:\mathbb{N}^{+}arrow \mathbb{N}^{+}$ has to be a computable function. Theorem 12
below shows this result.

Theorem 12 (Closure property under a computable shuffling, Tadaki [18]). Let $P\in$

$\mathbb{P}(\Omega)$ , and let $\alpha$ be an ensemble for P. Then, for every inlective function $f:\mathbb{N}^{+}arrow \mathbb{N}^{+},$

if $f$ is computable, then the infinite sequence

$\alpha_{f}:=\alpha(f(1))\alpha(f(2))\alpha(f(3))\alpha(f(4))\ldots\ldots\ldots$

is an ensemble for $P.$

Proof. We show the contraposition. Suppose that $\alpha_{f}$ is not Martin-L\"of $P$-random. Then
there exists a Martin-L\"of $P$-test $S\subset \mathbb{N}^{+}\cross\Omega^{*}$ such that $\alpha_{f}\in[S_{n}]^{\prec}$ for every $n$ . For
each $\sigma\in\Omega^{+}$ , let $F(a)$ be the set of all $\tau\in\Omega^{+}$ such that $| \tau|=\max f(\{1,2, \ldots, |\sigma|\})$ and
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$\sigma=\tau(f(1))\tau(f(2))\ldots\tau(f(|\sigma|))$ . We then define $T$ to be $\{(n, F(\sigma))|n\in \mathbb{N}^{+} \ \sigma\in S_{n}\}.$

Since $f$ is an injection and $\sum_{a\in\Omega}P(a)=1$ , it is easy to see that $\lambda_{P}([F(\sigma)]^{\prec})=\lambda_{P}([\sigma]^{\prec})$ .
Therefore $\lambda_{P}([T_{n}]^{\prec})=\lambda_{P}([S_{n}]^{\prec})\leq 2^{-n}$ . Thus, since $T$ is r.e., we see that $T$ is Martin-
L\"of $P$-test. On the other hand, $\alpha\in[T_{n}]^{\prec}$ for every $n$ , and therefore $\alpha$ is not Martin-L\"of
$P$-random. This completes the proof. $\square$

In other words, Theorem 12 states that ensembles for $P$ are closed under a computable
shuffling.

As the forth necessary condition which the notion of probability is considered to have
to satisfy, we can consider the condition that the infinite sequence $\alpha_{0}\in\Omega^{\infty}$ of outcomes
which is obtained by an infinite reputation of trials described by the finite probability
space $P_{0}\in \mathbb{P}(\Omega)$ is closed under the selection by a computable selection function, as
considered in the theory of collectives [23, 24, 25, 26, 7]. Theorem 13 below confirms
that this condition certainly holds for every ensemble. Thus, ensembles for $P$ are closed
under the selection by a computable selection function. For the notion of the selection by
a computable selection function and its meaning, see e.g., Downey and Hirschfeldt [8].

Theorem 13 (Closure property under the selection by a computable selection function,
Tadaki [18]). Let $P\in \mathbb{P}(\Omega)$ , and let $\alpha$ be an ensemble for P. Let $g$ be a computable
selection function, that is, let 9: $\Omega^{*}arrow\{YES, NO\}$ be a computable function. Suppose
that $g(\alpha r_{k})$ is defined for every $k\in \mathbb{N}$ and $\{k\in \mathbb{N}|g(\alpha r_{k})=$ YES $\}$ is an infinite set.
Then the infinite sequence

$\alpha_{f}:=\alpha(f(1))\alpha(f(2))\alpha(f(3))\alpha(f(4))\ldots\ldots\ldots$

is an ensemble for $P$ , where the computable function $f:\mathbb{N}^{+}arrow \mathbb{N}^{+}$ is defined by

$f(n)= \min\{m\in \mathbb{N}^{+}|\#\{k\leq m|g(\alpha r_{k})=YES\}=n\}+1.$

Proof. We show the contraposition. Suppose that $\alpha_{f}$ is not Martin-L\"of $P$-random. Then
there exists a Martin-L\"of $P$-test $S\subset \mathbb{N}^{+}\cross\Omega^{*}$ such that $\alpha_{f}\in[S_{n}]^{\prec}$ for every $n$ . For each
$\sigma,$

$\tau\in\Omega^{+}$ , we say $\sigma$ is selected by $g$ from $\tau$ if $\tau r_{k}\in$ dom $g$ for all $k=0$ , 1, . . . , $|\tau|-1$

and there exists a strictly increasing function $h:\{0, 1, . . . , |\sigma|-1\}arrow \mathbb{N}$ such that (i)
$\{k\in\{0, 1, . . . , |\tau|-1\}|g(\tau r_{k})=YES\}=h(\{0,1, \ldots, |\sigma|-1 (ii)$ $h(|\sigma|-1)+1=|\tau|,$

and (iii) $\tau(h(k)+1)=\sigma(k+1)$ for all $k=0$ , 1, . . . , $|\sigma|-1$ . For each $\sigma\in\Omega^{+}$ , let $F(\sigma)$

be the set of all $\tau\in\Omega^{*}$ such that $\sigma$ is selected by $g$ from $\tau$ . We also set $F(\lambda)=\{\lambda\}.$

We show that
$\lambda_{P}([F(\sigma)]^{\prec})\leq\lambda_{P}([\sigma]^{\prec})$ (2)

for all $\sigma\in\Omega^{*}$ by the induction on $|\sigma|$ . First, the inequality (2) holds for the case of
$|\sigma|=0$ , obviously. For an arbitrary $n\in \mathbb{N}$ , assume that (2) holds for all $\sigma\in\Omega^{n}.$

Let $\sigma\in\Omega^{n+1}$ and let $\rho$ be the prefix of $\sigma$ of length $n$ . Let $a=\sigma(|\sigma|)$ . Note that
$G(\tau)=\{v|\tau va\in F(\sigma)\}$ is a prefix-free set for each $\tau\in F(\rho)$ . Therefore, we have

$\lambda_{P}([F(\sigma)]^{\prec})=\sum_{\tau\in F(\sigma)}\lambda_{P}([\tau]^{\prec})=\sum_{\tau\in F(\rho)}\sum_{v\in G(\tau)}\lambda_{P}([\tau va]^{\prec})$

$= \sum_{\tau\in F(\rho)}\sum_{v\in G(\tau)}\lambda_{P}([\tau v]^{\prec})P(a)\leq\sum_{\tau\in F(\rho)}\lambda_{P}([\tau]^{\prec})P(a)$

$\leq\lambda_{P}([\rho]^{\prec})P(a)=\lambda_{P}([\sigma]^{\prec})$ ,
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where the second inequality follows from the assumption.

We then define $T\subset \mathbb{N}^{+}\cross\Omega^{*}$ by the condition that $T_{n}= \bigcup_{\sigma\in S_{n}}F(\sigma)$ for each $n\in \mathbb{N}^{+}.$

Then, by (2), we have

$\lambda_{P}([T_{n}]^{\prec})\leq\sum_{\sigma\in S_{n}}\lambda_{P}([F(\sigma)]^{\prec})\leq\sum_{\sigma\in S_{n}}\lambda_{P}([\sigma]^{\prec})=\lambda_{P}([S_{n}]^{\prec})\leq 2^{-n}.$

Thus, since $T$ is r.e., we see that $T$ is Martin-L\"of $P$-test. On the other hand, $\alpha\in[T_{n}]^{\prec}$

for every $n$ , and therefore $\alpha$ is not Martin-L\"of $P$-random. This completes the proof. $\square$

5 Conditional probability and the independence be-

tween events

In this section, we operationally characterize the notions of conditional probability and

the independence between events in a finite probability space in terms of ensembles.

Let $P\in \mathbb{P}(\Omega)$ , and let $A\subset\Omega$ be an event in the finite probability space $P$ . For

each ensemble $\alpha$ for $P,$ $C_{A}(\alpha)$ is defined as the infinite binary sequence such that, for

every $i$ , its ith element $C_{A}(\alpha)(i)$ is 1 if $\alpha(i)\in A$ and $0$ otherwise. The pair $(P, A)$

induces a finite probability space $C(P, A)\in \mathbb{P}(\{O, 1\})$ such that $C(P, A)(1)=P(A)$ and

$C(P, A)(0)=1-P(A)$ . Note that the notions of $C_{A}(\alpha)$ and $C(P, A)$ in our theory

together correspond to the notion of mixing in the theory of collectives by von Mises [24].

We can then show the following theorem.

Theorem 14. Let $P\in \mathbb{P}(\Omega)$ , and let $A\subset\Omega$ . Suppose that $\alpha$ is an ensemble for the

finite probability space P. Then $C_{A}(\alpha)$ is an ensemble for the finite probability space

$C(P, A)$ . $\square$

In order to prove Theorem 14, it is convenient to prove the following theorem first,

from which Theorem 14 follows.

Theorem 15. Let $P\in \mathbb{P}(\Omega)$ . Let $\alpha$ be an ensemble for $P$ , and let $a$ and $b$ be distinct

elements in $\Omega$ . Suppose that $\beta$ is the infinite sequence in $(\Omega-\{b\})^{\infty}$ obtained by replacing

all occurrences of $b$ by $a$ in $\alpha$ . Then $\beta$ is an ensemble for $Q$ , where $Q\in \mathbb{P}(\Omega-\{b\})$ such

that $Q(d)=P(a)+P(b)$ if $d=a$ and $Q(d)=P(d)$ otherwise.

Proof. We show the contraposition. Suppose that $\beta$ is not a Martin-L\"of $Q$-random se-

quence. Then there exists a Martin-L\"of $Q$-test $S$ such that $\beta\in[S_{n}]^{\prec}$ for every $n$ . For each
$\sigma\in(\Omega-\{b\})^{*}$ , let $f(a)$ be the set of all $\tau\in\Omega^{*}$ such that $\tau$ is obtained by replacing some

occurrences of $a$ in $\sigma$ , if exists, by $b$ . Note that if a has exactly $n$ occurrences of $a$ then
$\# f(\sigma)=2^{n}$ . We then define $T$ to be $\{(n, f(\sigma))|\sigma\in S_{n}\}$ . Since $Q(a)=P(a)+Q(b)$ , it

is easy to see that $\lambda_{Q}([\sigma]^{\prec})=\lambda_{P}([f(\sigma)]^{\prec})$ . Therefore $\lambda_{P}([T_{n}]^{\prec})=\lambda_{Q}([S_{n}]^{\prec})\leq 2^{-n}.$

Since $T$ is r.e., we see that $T$ is Martin-L\"of $P$-test. On the other hand, $\alpha\in[T_{n}]^{\prec}$ for

every $n$ , and therefore $\alpha$ is Martin-L\"of $P$-random. This completes the proof. $\square$

We show that the notion of conditional probability in a finite probability space can be

represented by an ensemble in a natural manner. For that purpose we recall the notion

of conditional probability in a finite probability space.
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Let $P\in \mathbb{P}(\Omega)$ , and let $B\subset\Omega$ be an event in the finite probability space $P$ . Suppose
that $P(B)>$ O. Then, for each event $A\subset\Omega$ , the conditional probability of A given $B,$

denoted by $P(A|B)$ , is defined as $P(A\cap B)/P(B)$ . This notion defines a finite probability
space $P_{B}\in \mathbb{P}(B)$ such that $P_{B}(a)=P(\{a\}|B)$ for every $a\in B.$

When an infinite sequence $\alpha\in\Omega^{\infty}$ contains infinitely many elements from $B,$ $Filtered_{B}(\alpha)$

is defined as the infinite sequence in $B^{\infty}$ obtained from $\alpha$ by eliminating all elements
in $\Omega-B$ occurring in $\alpha$ . If $\alpha$ is an ensemble for the finite probability space $P$ and
$P(B)>0$ , then a contains infinitely many elements from $B$ due to Theorem 7. There-
fore, $Filtered_{B}(\alpha)$ is defined in this case. Note that the notion of $Filtered_{B}(\alpha)$ in our
theory corresponds to the notion of partition in the theory of collectives by von Mises
[24].

We can then show Theorem 16 below, which states that ensembles are closed under
conditioning. For the proof of the theorem, see Tadaki [18].

Theorem 16 (Closure property under conditioning). Let $P\in \mathbb{P}(\Omega)$ , and let $B\subset\Omega$ be
an event in the finite probability space $P$ with $P(B)>0$ . For every ensemble $\alpha$ for $P,$

$Filtered_{B}(\alpha)$ is an ensemble for the finite probability space $P_{B}.$

Proof. In the case of $B=\Omega,$ $P_{B}=P$ and $Filtered_{B}(\alpha)=\alpha$ . Therefore the result is
obvious. Thus, in what follows, we assume $B$ is a proper subset of $\Omega.$

First, we choose any one $a\in\Omega-B$ and define $Q\in \mathbb{P}(B\cup\{a\})$ by the condition that
$Q(d)= \sum_{b\in\Omega-B}P(b)$ if $d=a$ and $Q(d)=P(d)$ otherwise. Let $\beta$ be the infinite sequence
in $(B\cup\{a\})^{\infty}$ obtained by replacing all occurrences of elements of $\Omega-B$ in $\alpha$ by $a$ . It
follows from Theorem 15 that $\beta$ is Martin-L\"of $Q$-random. In addition, note that

$1-Q(a)=P(B)$ , (3)

and therefore $Q(a)<1$ . Thus, it is sufficient to show that if $Filtered_{B}(\alpha)$ is not Martin-
L\"of $P_{B}$-random then $\beta$ is not Martin-L\"of $Q$-random.

Assume that $Filtered_{B}(\alpha)$ is not Martin-L\"of $P_{B}$-random. Then there exists a Martin-
L\"of $P_{B}$-test $S$ such that $Filtered_{B}(\alpha)\in[S_{n}]^{\prec}$ for every $n$ . For each $\sigma\in\Omega^{+}$ , let $F(\sigma)$

be the set of all finite strings in $B\cup\{a\}$ of the form $a^{k_{1}}\sigma_{1}a^{k_{2}}\sigma_{2}\ldots a^{k_{L}}\sigma_{k_{L}}$ for some
$k_{1},$ $k_{2}$ , . . . , $k_{L}\in \mathbb{N}$ , where $\sigma=\sigma_{1}\sigma_{2}\ldots\sigma_{L}$ with $\sigma_{i}\in B$ . Then, by (3), we see that

$\lambda_{Q}([F(\sigma)]^{\prec})=\sum_{k_{1},k_{2},\ldots,k_{L}=0}^{\infty}\lambda_{Q}([a^{k_{1}}\sigma_{1}a^{k_{2}}\sigma_{2}\ldots a^{k_{L}}\sigma_{k_{L}}]^{\prec})$

$= \sum_{k_{1)}k_{2},\ldots,k_{L}=0}^{\infty}\lambda_{Q}([\sigma]^{\prec})Q(a)^{k_{1}}Q(a)^{k_{2}}\ldots Q(a)^{k_{L}}$

$= \lambda_{Q}([\sigma]^{\prec})(\sum_{k=0}^{\infty}Q(a)^{k})^{L}=\lambda_{Q}([\sigma]^{\prec})\frac{1}{(1-Q(a))^{L}}$

$= \lambda_{Q}([\sigma]^{\prec})\frac{1}{P(B)^{L}}=\lambda_{P_{B}}([\sigma]^{\prec})$ .

We then define $T$ to be $\{(n, F(\sigma))|\sigma\in S_{n}\}$ . It follows that $\lambda_{Q}([T_{n}]^{\prec})=\lambda_{P_{B}}([S_{n}]^{\prec})\leq$

$2^{-n}$ . Thus, since $T$ is r.e., we see that $T$ is Martin-L\"of $P_{B}$-test. On the other hand,
$\beta\in[T_{n}]^{\prec}$ for every $n$ , and therefore $\beta$ is not Martin-L\"of $P$-random. This completes the
proof. $\square$
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As an application of Theorem 16, we can consider the Von Neumann extractor as

follows.

Example 17 (Von Neumann extractor). Consider a Bernoulli sequence in the sense of
normal probability theory. Recall that the Von Neumann extractor takes successive pairs

of consecutive bits from the Bernoulli sequence. If the two bits matches, no output is

generated. If the bits differs, the value of the first bit is output. The Von Neumann

extractor can be shown to produce a uniform binary output. For the detail see [27].

In our framework, the Von Neumann extractor operates as follows: Let $P\in \mathbb{P}(\{O, 1\})$

and let $\alpha$ be an ensemble for P. Then $\alpha$ can be regarded as an ensemble for $Q\in$

$\mathbb{P}(\{00,01,10,11\})$ where $Q(ab)=P(a)P(b)$ for every $a,$ $b\in\{0$ , 1 $\}$ . Consider the event

$B=\{01$ , 10 $\}$ . It follows from Theorem 16 that $Filtered_{B}(\alpha)$ is an ensemble for $P_{B}\in$

$\mathbb{P}(\{01,10\})$ with $P_{B}(01)=P_{B}(10)=1/2$ . Namely, $\alpha$ is, in essence, Martin-L\"of random.

Hence, a random individual infinite sequence is certainly extracted by the Von Neumann

extractor in our framework.
$\square$

Let $P\in \mathbb{P}(\Omega)$ . For any events $A,$ $B\subset\Omega$ in the finite probability space $P$ , we say that
$A$ and $B$ are independent if $P(A\cap B)=P(A)P(B)$ . In the case of $P(B)>0,$ $A$ and $B$

are independent if and only if $P(A|B)=P(A)$ .

Theorem 18 below gives operational characterizations of the notion of the indepen-

dence between two events in terms of ensembles. Let $\alpha,$
$\beta\in\Omega^{\infty}$ . We say that $\alpha$ and $\beta$ are

equivalent if there exists $P\in \mathbb{P}(\Omega)$ such that $\alpha$ and $\beta$ are both an ensemble for $P$ . The

following theorem gives an operational characterization of the notion of the independency

between two events by the notion of ensemble.

Theorem 18. Let $P\in \mathbb{P}(\Omega)$ , and let $A,$ $B\subset\Omega$ be events in the finite probability space

P. Suppose that $P(B)>0$ . Then the following conditions are equivalent to one another.

(i) The events $A$ and $B$ are independent.

(ii) For every ensemble $\alpha$ for the finite probability space $P,$ $C_{A}(\alpha)$ is equivalent to
$C_{A\cap B}(Filtered_{B}(\alpha))$ .

(iii) There exists an ensemble $\alpha$ for the finite probability space $P$ such that $C_{A}(\alpha)i\mathcal{S}$

equivalent to $C_{A\cap B}(Filtered_{B}(\alpha))$ .

Proof. Suppose that $\alpha$ is an arbitrary ensemble for the finite probability space $P$ . Then,

on the one hand, it follows from Theorem 14 that $C_{A}(\alpha)$ is Martin-L\"of $C(P, A)$ -random.

On the other hand, it follow from $P(B)>0$ and Theorem 16 that $Filtered_{B}(\alpha)$ is an

ensemble for the finite probability space $P_{B}$ . Therefore, by Theorem 14, we see that
$C_{A\cap B}(Filtered_{B}(\alpha))$ is Martin-L\"of $C(P_{B}, A)$ -random.

Assume that the condition (i) holds. Then $P_{B}(A)=P(A)$ . Therefore, for an arbi-

trary ensemble $\alpha$ for the finite probability space $P,$ $C_{A}(\alpha)$ and $C_{A\cap B}(Filtered_{B}(\alpha))$ are

equivalent. Thus, we have the implication $(i)\Rightarrow(ii)$ .

Since there exists an ensemble $\alpha$ for the finite probability space $P$ by Theorem 5, the

implication $(ii)\Rightarrow(iii)$ is obvious.
Finally, the implication $(iii)\Rightarrow(i)$ is shown as follows. Assume that the condition

(iii) holds. Then $C_{A}(\alpha)$ and $C_{A\cap B}(Filtered_{B}(\alpha))$ are Martin-L\"of $Q$-random for some
ensemble $\alpha$ for the finite probability space $P$ and some $Q\in \mathbb{P}(\{0,1$ Thus, $C_{A}(\alpha)$ is
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Martin-L\"of $C(P, A)$-random, and $C_{A\cap B}(Filtered_{B}(\alpha))$ is Martin-L\"of $C(P_{B}, A)$ -random.
Using Corollary 9 we see that $C(P, A)=Q=C(P_{B}, A)$ , and therefore $P(A)=P_{B}(A)$ .
This completes the proof. $\square$

6 Independence of random variables

In this section, we operationally characterize the notion of the independence of random
variables in a finite probability space in terms of ensembles.

A random variable on $\Omega$ is a function $X:\Omegaarrow\Omega’$ where $\Omega’$ is an alphabet. Let
$X_{1}:\Omegaarrow\Omega_{1}$ , . . . , $X_{n}:\Omegaarrow\Omega_{n}$ be random variables on $\Omega$ . For any predicate $F(v_{1}, \ldots, v_{n})$

with variables $v_{1}$ , . . . , $v_{n}$ , we use $F(X_{1}, \ldots, X_{n})$ to denote the event $\{a\in\Omega|F(X_{1}(a),$
$\ldots,$

$X_{n}(a))\}$ . We $sa\check{y}$ that the random variables $X_{1}$ , . . . , $X_{n}$ are independent if for every $x_{1}\in$

$\Omega_{1}$ , . . . , $x_{n}\in\Omega_{n}$ it holds that $P(X_{1}=x_{1} \ . . . \ X_{n}=x_{n})=P(X_{1}=x_{n})\cdots P(X_{n}=$

$x_{n})$ .
Let $\alpha\in\Omega^{\infty}$ , and $X:\Omegaarrow\Omega’$ be a random variable on $\Omega$ . We define $X(\alpha)$ as an

infinite sequence $\beta$ over $\Omega’$ such that $\beta(i)=X(\alpha(i))$ for every $i\in \mathbb{N}^{+}$ . Using Theorem 15
we can show the following theorem.

Theorem 19 (Closure property under the mapping by a random variable). Let $X:\Omegaarrow$

$\Omega’$ be a random variable on $\Omega$ , and let $P\in \mathbb{P}(\Omega)$ . If $\alpha$ is an ensemble for $P$ then $X(\alpha)$

is an ensemble for $P’\in \mathbb{P}(\Omega’)$ where $P’(x)=P(X=x)$ for every $x\in\Omega’.$ $\square$

We introduce the notion of the independence of ensembles as follows. Let $\Omega_{1}$ , . . . , $\Omega_{n}$

be alphabets. For any $\alpha_{1}\in\Omega_{1}^{\infty}$ , . . . , $\alpha_{n}\in\Omega_{n}^{\infty}$ , we use $\alpha_{1}\cross\cdots\cross\alpha_{n}$ to denote an infinite
sequence over $\Omega_{1}\cross\cdots\cross\Omega_{n}$ such that $\alpha(i)=(\alpha_{1}(i), \ldots, \alpha_{n}(i))$ for every $i\in \mathbb{N}^{+}.$

Definition 20 (Independence of ensembles). Let $\Omega_{1}$ , . . . , $\Omega_{n}$ be alphabets, and let $P_{1}\in$

$\mathbb{P}(\Omega_{1})$ , . . . , $P_{n}\in \mathbb{P}(\Omega_{n})$ . Let $\alpha_{1}$ , . . . , $\alpha_{n}$ be ensembles for $P_{1}$ , . . . , $P_{n}$ , respectively. We say
that $\alpha_{1}$ , . . . , $\alpha_{n}$ are independent if $\alpha_{1}\cross\cdots\cross\alpha_{n}$ is an ensemble for $P\in \mathbb{P}(\Omega_{1}\cross\cdots\cross\Omega_{n})$

where $P(a_{1}, \ldots, a_{n})=P_{1}(a_{1})\cdots P_{n}(a_{n})$ for every $a_{1}\in\Omega_{1}$ , . . . , $a_{n}\in\Omega_{n}.$ $\square$

Note that the notion of the independence of ensembles in our theory corresponds to
the notion of independence of collectives in the theory of collectives by von Mises [24]. The
following theorem gives equivalent characterizations of the notion of the independence of
random variables in terms of that of ensembles.

Theorem 21. Let $X_{1}:\Omegaarrow\Omega_{1},$
$\backslash$ . . , $X_{n}:\Omegaarrow\Omega_{n}$ be random variables on $\Omega$ , and let

$P_{1}\in \mathbb{P}(\Omega_{1})$ , . . . , $P_{n}\in \mathbb{P}(\Omega_{n})$ . Then the following conditions are equivalent to one another.

(i) The random variables $X_{1}$ , . . . , $X_{n}$ are independent.

(ii) For every ensemble $\alpha$ for the finite probability space $P$ , the ensembles $X_{1}(\alpha)$ , . . . , $X_{n}(\alpha)$

are independent.

(iii) There exists an ensemble $\alpha$ for $P$ such that the ensembles $X_{1}(\alpha)$ , . . . , $X_{n}(\alpha)$ are
independent. $\square$
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In the rest of this section we consider the notion of Martin-Lof $P$ -randomness relative

to an oracle. The relativized computation is a generalization of normal computation. Let
$\beta_{1}$ , . . . , $\beta_{m}$ be arbitrary infinite sequences over an alphabet. In the relativized compu-

tation, $a$ (deterministic) Turing machine is allowed to refer to $(\beta_{1}, \ldots, \beta_{m})$ as an oracle
during the computation. Namely, in the relativized computation, a Turing machine can
query $(k, i)$ at any time and then obtains the response $\beta_{k}(i)$ during the computation.

Such a Turing machine is called an oracle Turing machine. The relativized computation

is more powerful than normal computation, in general.
We can define the notion of Martin-Lof $P$ -test relative to $\beta_{1}$ , . . . , $\beta_{m}$ where the Turing

machine which computes the Martin-L\"of $P$-test is an oracle Turing machine which can
refer to the sequence $\beta_{1}$ , . . . , $\beta_{m}$ during the computation. Using the notion of Martin-
L\"of $P$-tests relative to $\beta_{1}$ , . . . , $\beta_{m}$ , we can define the notion of Martin-Lof $P$ -randomness

relative to $\beta_{1}$ , . . . , $\beta_{m}$ in the same manner as the second part of Definition 4. 0bviously,

the following holds.

Proposition 22. Let $\beta_{1}$ , . . . , $\beta_{m}$ be infinite sequences over an alphabet, and let $P\in \mathbb{P}(\Omega)$ .

For every $\alpha\in\Omega^{\infty}$ , if $\alpha$ is Martin-L\"of $P$ -random relative to $\beta_{1}$ , . . . , $\beta_{m}$ , then $\alpha$ is Martin-
$L\dot{0}fP$ -random. $\square$

The converse does not necessarily hold. In the case where $\alpha$ is Martin-L\"of $P$-random,

the converse means that the Martin-L\"of $P$-randomness of $\alpha$ is independent of $\beta_{1}$ , . . . , $\beta_{m}$

in a certain sense.
For any $P\in \mathbb{P}(\Omega)$ , we say that $P$ is computable if $P(a)$ is a computable real for every

$a\in\Omega$ . The following theorem gives an equivalent characterization of the notion of the
Independence of ensembles in terms of Martin-L\"of $P$-randomness relative to an oracle.

Its proof is obtained by modifying the proof of van Lambalgen’s Theorem [21].

Theorem 23. Let $P_{1}\in \mathbb{P}(\Omega_{1})$ , . . . , $P_{n}\in \mathbb{P}(\Omega_{n})$ . Let $\alpha_{1}$ , . . . , $\alpha_{n}$ be ensembles for $P_{1}$ , . . . , $P_{n},$

respectively. Suppose that $P_{1}$ , . . . , $P_{n}$ are computable. Then the ensembles $\alpha_{1}$ , . . . , $\alpha_{n}$ are
independent if and only iffor every $k=1$ , . . . , $n$ it holds that $\alpha_{k}$ is Martin-Lof $P_{k}$ -random
relative to $\alpha_{1}$ , . . . , $\alpha_{k-1},$ $\alpha_{k+1}$ , . . . , $\alpha_{n}.$

$\square$

Combining Theorem 21 with Theorem 23 we obtain the following theorem.

Theorem 24. Let $X_{1}:\Omegaarrow\Omega_{1}$ , . . . , $X_{n}:\Omegaarrow\Omega_{n}$ be random variables on $\Omega$ , and let
$P\in \mathbb{P}(\Omega)$ . For each $k=1$ , . . . , $n$ , let $P_{k}\in \mathbb{P}(\Omega_{k})$ be a finite probability space such that
$P_{k}(x)=P(X_{k}=x)$ for every $x\in\Omega_{k}$ . Suppose that $P$ is computable. Then the following

conditions are equivalent to one another.

(i) The random variables $X_{1}$ , . . . , $X_{n}$ are independent.

(ii) For every ensemble $\alpha$ for $P$ and every $k=1$ , . . . , $n$ it holds that $X_{k}(\alpha)$ is $Martin-L\dot{0}f$

$P_{k}$ -random relative to $X_{1}(\alpha)$ , . . . , $X_{k-1}(\alpha)$ , $X_{k+1}(\alpha)$ , . . . , $X_{n}(\alpha)$ .

(iii) There exists an ensemble $\alpha$ for Psuch that for every $k=1$ , . . . , $n^{t}it$ holds that $X_{k}(\alpha)$

is $Martin-L\dot{o}fP_{k}$ -random relative to $X_{1}(\alpha)$ , . . . , $X_{k-1}(\alpha)$ , $X_{k+1}(\alpha)$ , . . . , $X_{n}(\alpha)$ . $\square$
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7 Application to information theory

In this section, we make some application of our formalism to information theory. In-
stantaneous codes play a basic role in the noiseless source coding problem in information
theory, as described in what follows.

Let $\Omega$ be an alphabet, as in the preceding sections. An instantaneous code $C$ for
$\Omega$ is an injective mapping from $\Omega$ to $\{0, 1\}^{*}$ such that $C(\Omega)$ $:=\{C(a)|a\in\Omega\}$ is a
prefix-free set. A sequence $a_{1},$ $a_{2}$ , . . . , $a_{N}\in\Omega$ is called a message. On the other hand,
the finite binary string $C(a_{1})C(a_{2})\ldots C(a_{N})$ is called the coded message for a message
$a_{1},$ $a_{2}$ , . . . , $a_{N}.$

Let $P\in \mathbb{P}(\Omega)$ be a finite probability space, and let $X_{1},$ $X_{2}$ , . . . , $X_{N}$ be independent
identically distributed random variables drawn from the probability mass function $P(a)$

with $a\in\Omega$ . In the source coding problem, the probability space $P$ is called an information
source which emits a symbol in $\Omega$ . The objective of the noiseless source coding problem
is to minimize the length of the coded message for a message $a_{1},$ $a_{2}$ , . . . , $a_{N}$ generated
by the random variables $X_{1},$ $X_{2}$ , . . . , $X_{N}$ as $Narrow\infty$ . For that purpose, it is sufficient
to consider the average codeword length $L_{P}(C)$ of an instantaneous code $C$ for a finite
probability space $P$ defined by

$L_{P}(C):= \sum_{a\in\Omega}P(a)|C(a)|$

independently on the value of $N$ . We can then show that $L_{P}(C)\geq H(P)$ for every
instantaneous code $C$ for $\Omega$ and every finite probability space $P\in \mathbb{P}(\Omega)$ , where $H(P)$ is
the Shannon entropy of $P$ defined by

$H(P):=- \sum_{a\in\Omega}P(a)\log_{2}P(a)$
.

Hence, the Shannon entropy gives the data compression limit for the noiseless source cod-
ing problem based on instantaneous codes. For this reason, it is important to consider
the notion of absolutely optimality of an instantaneous code, where we say that an in-
stantaneous code $C$ for $\Omega$ is absolutely optimal for a finite probability space $P\in \mathbb{P}(\Omega)$ if
$L_{P}(C)=H(P)$ .

As an application of our formalism, we regard a “typical” infinite sequence in $\Omega^{\infty}$

which is a realization of the infinite sequence of the random variables $X_{1},$ $X_{2},$ $X_{3}$ , . . . as
an ensemble for the finite probability space $P$ . For any $\alpha\in\Omega^{\infty}$ we denote by $Coded_{C}(\alpha)$

the infinite binary sequence

$C(\alpha(1))C(\alpha(2))C(\alpha(3))\ldots\ldots$

We can then show the following theorem.

Theorem 25. Let $P\in \mathbb{P}(\Omega)$ , and let $C$ be an instantaneous code for $\Omega$ . Suppose that $\alpha$

is an ensemble for P. Then the following conditions are equivalent:

(i) The instantaneous code $C$ is absolutely optimal for the finite probability space $P.$

(ii) $Coded_{C}(\alpha)$ is Martin-Lof random. $\square$
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Recall from Theorem 3 that Martin-L\"of random sequences are precisely the infinite
binary sequences which cannot be compressible any more. Thus, Theorem 25 rephrases in
a sharp manner the basic result of the noiseless source coding problem that the Shannon
entropy gives the data compression limit, in the form of our formalism.

8 Application to cryptography

In this section, we make some application of our formalism to cryptography by presenting

new equivalent characterizations of the notion of perfect secrecy in terms of our formalism.
The notion of perfect secrecy plays a basic role in cryptography. First, we review the

definition of encryption schemes to which the notion of perfect secrecy is applied.

Definition 26 (Encryption scheme). Let $\mathcal{M},$
$\mathcal{K}$ , and $C$ be alphabets. $An$ encryption

scheme over a message space $\mathcal{M}$ , a key space $\mathcal{K}$ , and a ciphertext space $C$ is a tuple
$\Pi=(P_{K}, Enc, Dec)$ such that

(i) $P_{K}\in \mathbb{P}(\mathcal{K})$ ,

(ii) Enc: $\mathcal{M}\cross \mathcal{K}arrow C,$

(iii) Dec: $C\cross \mathcal{K}arrow \mathcal{M}$ , and

(iv) Dec$(Enc(m, k)$ , $k$ ) $=m$ for every $m\in \mathcal{M}$ and $k\in \mathcal{K}.$ $\square$

Let $\Pi=$ $(P_{K}, Enc, Dec)$ be as in Definition 26, and let $Q\in \mathbb{P}(\mathcal{M})$ , which serves
as a probability distribution over message space $\mathcal{M}$ for the encryption scheme $\Pi$ . We
consider a finite probability space $P_{\Pi,Q}\in \mathbb{P}(\mathcal{M}\cross \mathcal{K})$ defined by the condition that
$P_{\Pi,Q}(m, k)=Q(m)P_{K}(k)$ for every $m\in \mathcal{M}$ and $k\in \mathcal{K}$ . We then define random variables
$M_{\Pi,Q}$ and $C_{\Pi,Q}$ on $\mathcal{M}\cross \mathcal{K}$ by $M_{\Pi,Q}(m, k)=m$ and $C_{\Pi,Q}(m, k)=Enc(m, k)$ , respectively.
The notion of perfect secrecy is then defined as follows.

Definition 27 (Perfect secrecy, Shannon [17]). Let $\mathcal{M},$
$\mathcal{K}$ , and $C$ be alphabets. Let

$\Pi=(P_{K}, Enc, Dec)$ be an encryption scheme over a message space $\mathcal{M}$ , a key space $\mathcal{K}$ , and
a ciphertext space C. The encryption scheme $\Pi$ is perfectly secret if for every $Q\in \mathbb{P}(\mathcal{M})$

it holds that the random variables $M_{\Pi,Q}$ and $C_{\Pi,Q}$ are independent. $\square$

Using Theorems 21 and 24 we can show the following theorem, which characterizes
the notion of perfect secrecy in terms of the notions of the independence of ensembles
and Martin-L\"of $P$-randomness relative to an oracle.

Theorem 28 (New equivalent characterizations of perfect secrecy). Let $\mathcal{M},$
$\mathcal{K}$ , and $C$

be alphabets. Let $\Pi=(P_{K}, Enc, Dec)$ be an encryption scheme over a message space $\mathcal{M},$

a key space $\mathcal{K}$ , and a ciphertext space C. For each $Q\in \mathbb{P}(\mathcal{M})$ , let $R_{Q}\in \mathbb{P}(C)$ be a finite
probability space such that $R_{Q}(c)=P_{\Pi,Q}(C_{\Pi,Q}=c)$ for every $c\in C$ . Suppose that $P_{K}$ is
computable. Then the following conditions are equivalent to one another.

(i) The encryption scheme $\Pi$ is perfectly secret.

(ii) For every $Q\in \mathbb{P}(\mathcal{M})$ and every ensemble $\alpha$ for $P_{\Pi,Q}$ , the ensembles $M_{\Pi,Q}(\alpha)$ and
$C_{\Pi,Q}(\alpha)$ are independent.
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(iii) For every $Q\in \mathbb{P}(\mathcal{M})$ there exists an ensemble $\alpha$ for $P_{\Pi,Q}$ such that the ensembles
$M_{\Pi,Q}(\alpha)$ and $C_{\Pi,Q}(\alpha)$ are independent.

(iv) For every computable $Q\in \mathbb{P}(\mathcal{M})$ and every ensemble $\alpha$ for $P_{\Pi,Q}$ it holds that
$M_{\Pi,Q}(\alpha)$ is Martin-Lof $Q$ -random relative to $C_{\Pi,Q}(\alpha)$ , and $C_{\Pi,Q}(\alpha)$ is Martin-Lof
$R_{Q}$ -random relative to $M_{\Pi,Q}(\alpha)$ .

(v) For every computable $Q\in \mathbb{P}(\mathcal{M})$ there exists an ensemble $\alpha$ for $P_{\Pi,Q}$ such that
$M_{\Pi,Q}(\alpha)$ is Martin-Lof $Q$ -random relative to $C_{\Pi,Q}(\alpha)$ , and $C_{\Pi,Q}(\alpha)$ is Martin-Lof
$R_{Q}$ -random relative to $M_{\Pi,Q}(\alpha)$ . $\square$

Note that the finite probability space $P_{K}$ , which serves as a probability distribution
over key space $\mathcal{K}$ , is normally computable in modern cryptography.

9 Application to quantum mechanics

The notion of probability plays a crucial role in quantum mechanics. It appears in quan-
tum mechanics as the so-called Born rule, i.e., the probability interpretation of the wave

function. In modern mathematics which describes quantum mechanics, however, prob-
ability theory means nothing other than measure theory, and therefore any operational
characterization of the notion of probability is still missing in quantum mechanics. In
this sense, the current form of quantum mechanics is considered to be imperfect as a
physical theory which must stand on operational means.

As a major application of our theory, in this section we present an alternative rule
to the Born rule based on the notion of ensemble for the purpose of making quantum
mechanics perfect. Namely, we use the notion to state the alternative rule to the Born
rule for specifying the property of the results of quantum measurements in an operational
way. As the first step of the research of this line, we only consider, for simplicity, the
case where the set of all possible outcomes of a quantum measurement is finite, as in the
preceding sections. We remark, however, that in our treatment the state space itself of a
quantum system is allowed to have an infinite dimension, as long as the set of all possible
outcomes of a quantum $meaSlt^{rement}$ performed over the quantum system is finite.

Recall that the Born rule of quantum mechanics is given as the following postulate:

Postulate 1 (The Born rule). Quantum measurement is described by an observable, $M,$

a Hermitian operator on the state space of the system being measured. The observable
has a spectral decomposition

$M= \sum_{k=1}^{N}\lambda_{k}E_{k},$

where $E_{k}$ is the projector onto the eigenspace of $M$ with eigenvalue $\lambda_{k}$ . The possible
outcomes of the measurement correspond to the eigenvalues, $\lambda_{k}$ , of the observable. If
the state of the quantum system is $|\Psi\rangle$ immediately before the measurement then the
probability that result $\lambda_{k}$ occurs is given by $\langle\Psi|E_{k}|\Psi\rangle$ , and the state of the system after
the measurement is

$\frac{E_{k}|\Psi\rangle}{\sqrt{\langle\Psi|E_{k}|\Psi\rangle}}.$

$\square$
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Thus, the Born rule uses the notion of probability. However, the operational char-
acterization of the notion of probability is not given in the Born rule, and therefore its
relation to an specific infinite sequence of outcomes of quantum measurements which are
being generated by an infinitely repeated measurements is unclear. We fix this point
based on the notion of ensemble.

Let $\Omega=\{\lambda_{1}, \lambda_{2}, . . . , \lambda_{N}\}$ be an alphabet consisting of reals, which serves as the set of
all possible measurement outcomes. Let us identify the form of the postulate of quantum
measurements as it ought to be, from a general point of view. Consider the sequence of
the outcomes of quantum measurements, which is an element of $\Omega^{\infty}$ . All that the experi-
menter of quantum measurements can obtain through the measurements about quantum
system is such a specific infinite sequence of outcomes of the measurements which are
being generated by infinitely repeated measurements. Thus, the object about which the
postulate of quantum measurements makes a statement should be the properties of an
specific infinite sequence of outcomes of the measurements. Suggested by this considera-
tion, we propose to replace the Born rule, Postulate 1, by the following postulate:

Postulate 2. Quantum measurement is described by an observable, $M_{f}$ a Hermitian
operator on the state space of the system being measured. The observable has a spectral
decomposition

$M= \sum_{k=1}^{N}\lambda_{k}E_{k},$

where $E_{k}$ is the projector onto the eigenspace of $M$ with eigenvalue $\lambda_{k}$ . The possible
outcomes of the measurement is in the spectrum $\Omega=\{\lambda_{1}, \lambda_{2}, . . . , \lambda_{N}\}$ of M. Suppose
that the measurements are repeatedly performed over identical quantum systems whose
states are all $|\Psi\rangle$ , and the infinite sequence $\alpha\in\Omega^{\infty}$ of measurement outcomes is being
generated. Then $\alpha$ is an ensemble for a finite probability space $P$ such that $P\in \mathbb{P}(\Omega)$

and $P(\lambda_{k})=\langle\Psi|E_{k}|\Psi\rangle$ for every $k=1$ , . . . , N. For each of the measurements, the state

of the system immediately after the measurement is

$\frac{E_{k}|\Psi\rangle}{\sqrt{\langle\Psi|E_{k}|\Psi\rangle}}$ , (4)

where $\lambda_{k}$ is the corresponding measurement outcome. $\square$

As seen in Section 4, we can see that Postulate 2 is certainly a refinement of the Born
rule from the point of view of our intuitive understanding of the notion of probability.
For example, according to Postulate 2 we can show that the law of large numbers, i.e.,
the frequency interpretation, holds for the infinite sequence $\alpha\in\Omega^{\infty}$ in Postulate 2. On
the other hand, we verify the self-consistency of Postulate 2 on some level, which suggests
that Postulate 2 is not too strong.

So far we have only considered the case of pure states. According to Postulate 2, the
result of the quantum measurements forms a Martin-L\"of $P$-random sequence of states
each of which is of the form (4). In the conventional quantum mechanics, this result is
described as a mixed state. Suggested by this, we can give a mathematical definition of
the notion of a mixed state in terms of the notion of ensemble. We can then replace the
Born rule about mixed states by a rule based on algorithmic randomness.
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Finally, we consider the validity of our new rules, in particular, based on the many-
worlds interpretation of quantum mechanics $(MWI, for$ short) [9]. MWI is more than
just an interpretation of quantum mechanics. It aims to recover the predictions of quan-
tum mechanics without assuming the Born rule, Postulate 1. For that purpose, MWI
usually assumes that our world is (typical’ or ‘random’ among many coexisting worlds.
However, the proposal of MWI by Everett was nearly a decade earlier than the advent

of algorithmic randomness, and this assumption o$f^{}$ typicality’ was not rigorous. The no-
tion of‘typicality’ or ‘randomness’ is just the research object of algorithmic randomness.
Based on a generalization of the notion of Martin-L\"of $P$-randomness, we can introduce
a postulate, called the principle of typicality, which is a refinement of the assumption of
‘typicality’ by Everett. We can then show that all of our new rules can be derived from
the principle of typicality in a unified way. In particular, the principle of typicality is
equivalent to Postulate 2 in the case of pure states.
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