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ABSTRACT. In [8], the author gave a subsystem of the $\lambda\rho$-calculus [7], and

showed that the subsystem corresponds to intuitionistic logic. The proof was
given with the intuitionistic tree sequent calculus [4, 6]. In this paper, we give
a observation to these two proof systems, and show there is a close connection
between them.

1. INTRODUCTION

The $\lambda\rho$-calculus $1[7]$ is a natural deduction style proof system for implicational
fragment of classical logic. In [8], the author gave a natural subsystem, called intu-
itionistic $\lambda\rho$-calculus, and showed that the subsystem corresponds to intuitionistic
logic. In [8], the proof was given with the intuitionistic tree sequent calculus TLJ
[4, 6]. On the other hand, in [1], the same fact was showed by purely proof theoretic
way. In this paper, we try to give another proof to the fact that TLJ corresponds
to intuitionistic logic by applying the technique in [1]. With observing this proof,
we can invent a close connection between the intuitionistic $\lambda\rho-$-calculus and TLJ.

We introduce the basic notions which we are going to use, before getting to the
main point.

1.1. TLJ. The set Fml of formulas (types) is defined, with a given countable set $P$

of propositional variables (atomic types), as follows.

$\alpha, \beta\in Fm1 p|(\alphaarrow\beta) , p\in P.$

We use metavariables $p,$ $q$ , . . . to stand for arbitrary propositional formulas, $\alpha,$
$\beta$ , . . .

for arbitrary formulas, $\Gamma,$
$\triangle$ , . . . for arbitrary finite sets of formulas. Parentheses

are omitted as follows: $\alphaarrow\betaarrow\gamma\equiv(\alphaarrow(\betaarrow\gamma$

$A$ finite tree is a structure $\langle T,$ $\leq,$ $r\rangle$ such that:
$\bullet$ $T$ is a nonempty finite set. Each element of $T$ is called a node of $\mathcal{T}.$

$\bullet\leq$ is a reflexive partial order on $T$ such that, for every $t\in T$ , the relation
$\leq$ is a total order on $\{s\in T|s\leq t\}.$

$\bullet$ $r$ is aleast element of $T$ with respect to the relation $\leq$ . We call this element
the root node of $\mathcal{T}.$

$1_{In}[8]$ , the author treat not only the $\lambda\rho$-calculus but also the $\lambda\mu$-calculus [10]. Although we
treat only the $\lambda\rho$-calculus in this paper, we can treat the $\lambda\mu$-calculus in the same way through the
following translation $m$ from $\lambda\rho$-terms into $\lambda\mu$-terms: $x^{m}\equiv x,$ $(MN)^{m}\equiv M^{m}N^{m},$ $(\lambda x.M)^{m}\equiv$

$\lambda x.M^{m},$ $(aM)^{m}\equiv\mu b.aM^{m}(b\not\in FV_{\mu}(M))$ , $(\rho a.M)^{m}\equiv\mu a.aM^{-}.$

数理解析研究所講究録

第 1950巻 2015年 108-120 108



NAOSUKE MATSUDA

Given a reflexive partial order $\leq$ , we write $t<s$ if both $t\leq s$ and $t\neq s$ hold,

and write $t<1s$ if $t<s$ and there are no elements $u\in T$ such that $t<u<s$ . We

say $t_{2}$ is a descendant of $t_{1}$ if $t_{1}<t_{2}$ , and say $t_{2}$ is a son of $t_{1}$ if $t_{1}<1t_{2}.$ A leaf
node of $\mathcal{T}$ is an element which has no descendants.

We write the tree $\langle\{r\},$ $\{(r, r)\},$ $r\rangle$ as $\mathcal{R}(r)$ (or write $\mathcal{R}$ simply).

Let $\mathcal{T}=\langle T,$ $\leq_{t},$ $r_{t}\rangle,$ $S=\langle S,$ $\leq_{s},$ $r_{s}\rangle$ be trees. We write $\mathcal{T}\sqsubset S$ if all of the

following conditions hold.
$\bullet$ $T\subseteq S,$ $\leq_{t}\subseteq\leq_{s}$ and $r_{t}=r_{s}.$

$\bullet$ If $t\in T$ then $\{s\in S|s\leq_{s}t\}\subseteq T.$

We say $\mathcal{T}$ is a subtree of $S$ if $\mathcal{T}\sqsubset S$ holds.
Let $t$ be a leaf node of $\mathcal{T}=\langle T,$ $\leq,$ $r\rangle$ . We define the subtree $\mathcal{T}_{-t}=\langle T’,$ $\leq’,$ $r’\rangle$ as

follows.

$\bullet T’=T\backslash \{t\}.$

$\bullet\leq’=\leq\backslash \{(t’, t)\in\leq\}.$

$\bullet r’=r.$

A tree sequent is an expression of the form $\Gamma\vdash\tau_{\triangle}$ where:
$\bullet$ $\mathcal{T}=\langle T,$ $\leq,$ $r\rangle$ is a finite tree.
$\bullet$ $\Gamma,$

$\triangle$ are finite subsets of $\{t:\alpha|t\in \mathcal{T}, \alpha\in Fm1\}.$

Then the tree sequent calculus TLJ, which derives tree sequents, is defined by

the following rules.

Definition 1.1. The system TLJ consists of the following rules.

[axiom] $\{t : \alpha\}\vdash\tau\{t : \alpha\}.$

[inference rule]

$\frac{\Gamma\vdash^{\mathcal{T}}\Delta}{\Gamma\cup\Gamma\vdash\tau_{\triangle\cup\triangle}}$ (Weakening)

$\frac{\Gamma\vdash\tau_{\triangle}}{\Gamma\vdash^{S}\Delta}$ (Grow) $(\mathcal{T}\sqsubset S)$

$\frac{\{t:\alpha\}\cup\Gamma\vdash\tau_{\triangle}}{\{s:\alpha\}\cup\Gamma\vdash\tau_{\triangle}}($Heredity) $(s<t)$

$\frac{r\vdash\tau_{\triangle\cup\{t:\alpha\}}}{r\vdash\tau_{\triangle\cup\{s:\alpha\}}}($Heredity) $(t<s)$

$\frac{r_{1}\vdash\tau_{\triangle_{1}\cup\{t:\alpha\}\{t:\beta\}\cup\Gamma_{2}\vdash\tau_{\triangle_{2}}}}{\{t:\alphaarrow\beta\}\cup\Gamma_{1}\cup\Gamma_{2}\vdash\tau_{\triangle_{1}\cup\triangle_{2}}}(arrow\vdash)$

$\frac{\{t:\alpha\}\cup\Gamma\vdash\tau_{\Delta\cup\{t:\beta\}}}{\Gamma\vdash^{\mathcal{T}-t}\triangle\cup\{s:\alphaarrow\beta\}}(\vdasharrow)$ ( $s<1t$ and $t$ is a leaf)

In the $(\vdasharrow)$ -scheme, because the lower sequent is also a tree sequent, we implicitly

impose the following condition: if $u$ is a descendant of $t$ then $u$ does not occur in

the lower sequent.

Lemma 1.2. The cut rule

$\frac{r_{1}\vdash\tau_{\triangle_{1}\cup\{t:\alpha\}\{t:\alpha\}\cup\Gamma_{2}\vdash}\tau_{\triangle_{2}}}{\Gamma_{1}\cup\Gamma_{2}\vdash\tau_{\triangle_{1}\cup\triangle_{2}}}$ (Cut)

is admissible in TLJ.
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Theorem 1.3 ([4, 6, 9 $\varphi$ is intuitionistically valid if and only if $\emptyset\vdash^{\mathcal{R}}\{r:\varphi\}$ is
derivable in TLJ.

1.2. $\lambda\rho-$-calculus. Suppose that there exist a countable set $V_{\lambda}$ of $\lambda$ -variables and
a set $V_{\rho}$ of $\rho$-variables. The set $\Lambda_{\rho}$ of all $\lambda\rho$-terms is defined by the following
grammar.

$M, N\in\Lambda_{\rho} ::=x|(MN)|(\lambda x.M)|(aM)|\rho a.M,$

$x\in V_{\lambda}, a\in V_{\rho}.$

We use metavariables $x,$ $y,$ $z$ , . . . to stand for arbitrary $\lambda$-variables, $a,$ $b,$ $c$ , . . . for
arbitrary $\rho$-variables, $M,$ $N,$ $P$, . . . for arbitrary $\lambda\rho-$-terms. We use the abbreviations
such as:

$MNP\equiv((MN)P)$

$\lambda x.MN\equiv(\lambda x.(MN))$

$\lambda xy.M\equiv(\lambda x.(\lambda y.M))$

We also use notations such as $[N/x]M$ (the substitution of $N$ for free occurrences
of $x$ in $M)$ , Sub(M) (the set of all subterms of $M$ ), $FV_{\lambda(\rho)}(M)$ (the set of all
free $\lambda(\rho)$ -variables in $M$), $BV_{\lambda(\rho)}(M)$ (the set of all bound $\lambda(\rho)$ -variables in $M$ ).
In the following argument, we assume that each $\lambda\rho-$-term follows the Barendregt’s
convention 2.

A typing judgement is an expression of the form $\Gamma\vdash M$ : $\alpha,$

$\Delta$ where:
$\bullet$

$\Gamma$ is a finite subset of the set $\{x : \alpha|x\in V_{\lambda}, \alpha\in Fm1\}.$

$\bullet$ $M$ is a $\lambda\rho-$-term.
$\bullet$ $\alpha$ is a formula.
$\bullet$

$\triangle$ is a finite subset of the set $\{a:\alpha|a\in V_{\rho}, \alpha\in Fm1\}.$

Definition 1.4. The typing system $TA_{\lambda\rho}$ consists of the following rules.
[axiom] $\{x : \alpha\}\vdash x$ : $\alpha,$

$\emptyset$

[inference rule]

$\frac{\Gamma_{1}\vdash M:\alphaarrow\beta,\Delta_{1}\Gamma_{2}\vdash N:\alpha,\triangle_{2}}{\Gamma_{1}\cup\Gamma_{2}\vdash MN:\beta,\Delta_{1}\cup\Delta_{2}}$ (App)

$\frac{\Gamma\vdash M:\beta,\Delta}{\Gamma\backslash \{x:\alpha\}\vdash\lambda x.M:\alphaarrow\beta,\Delta}$ (Abs)

$\frac{\Gamma\vdash M:\alpha,\Delta}{\Gamma\vdash aM:\beta,\Delta\cup\{a:\alpha\}}(App-\rho)$ $\frac{\Gamma\vdash M:\alpha,\Delta}{\Gamma\vdash\rho a.M:\alpha,\Delta\backslash \{a:\alpha\}}(Abs-\rho)$

Note 1.5. The rule $(App-\rho)$ works like the right-side weakening rule of LJ. Simi-
larly, we can see that the rule $(Abs-\rho)$ works like the right-side contraction rule.

Note 1.6. If $\{x_{1} : \alpha_{1}, . . . , x_{n} : \alpha_{n}\}\vdash M:\beta,$ $\{a_{1} : \gamma_{1}, . . . , a_{m} : \gamma_{m}\}$ is derivable in
$TA_{\lambda\rho}$ , then $FV_{\lambda}(M)=\{x_{1}, . . . , x_{n}\}$ and $FV_{\rho}(M)=\{a_{1}, . . . , a_{m}\}.$

$2_{M}$ follows the Barendregt’s convention if the following two conditions hold: (1) All bound
variables in $M$ are all different from each other. (2) $FV_{\lambda}(M)\cap BV_{\lambda}(M)=\emptyset,$ $FV_{\rho}(M)\cap BV_{\rho}(M)=$

$\emptyset.$

For every $M$ , there is a $\lambda\rho$-term $N$ which is $\alpha$ equivalent to $M$ and follows the Barendregt
convention.
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Note 1.7. If $\Gamma\vdash M$ : $a,$
$\emptyset$ is derivable in $TA_{\lambda\rho}$ and $M$ is a $\lambda$-term, then this typing

judgement can be derived in $TA_{\lambda}3$

Komori [7] showed that $\lambda\rho$-terms correspond to classical logic in the following

sense: $\varphi$ is classically valid if and only if there exists a closed $\lambda\rho$-term $M$ such that
$\emptyset\vdash M$ : $\varphi,$

$\emptyset$ is derivable in $TA_{\lambda\rho}.$

1.3. Intuitionistic $\lambda$ -calculus.

Definition 1.8. Define the subset $\Lambda_{\rho}^{Int}$ of $\Lambda_{\rho}$ as follows.

$\bullet V_{\lambda}\subseteq\Lambda_{\rho}^{Int}.$

$\bullet$ $M,$ $N\in\Lambda_{\rho}^{Int}\Rightarrow MN,$ $aM,$ $\rho a.M\in\Lambda_{\rho}^{Int}.$

$\bullet M\in\Lambda_{\rho}^{Int},$ $x \in\bigcup_{a\in FV_{\rho}}{}_{(M)}FV_{\lambda}^{a}(M)\Rightarrow\lambda x.M\in\Lambda_{\rho}^{Int}.$

Here $FV^{a}(M)=\{x\in FV_{\lambda}(M)|$ there is a subterm of $M$ of the form $a(\ldots x\ldots$

Theorem 1.9 ([8]). $\varphi$ is intuitionistically valid if and only if there exists a closed

term $M\in\Lambda_{\rho}^{Int}$ such that $\emptyset\vdash M:\varphi,$ $\emptyset$ is derivable in $TA_{\lambda\rho}.$

2. PROOF OF THEOREM 1.9 WITH TREE SEQUENT

In this subsection, we give a sketch of the proof of theorem 1.9 given in [8]. The

key of our proof is the following notion.

Definition 2.1. For each $M\in\Lambda_{\rho}$ following the Barendregt’s convention, we define
the tree structure $\mathcal{T}^{M}=\langle T^{M},$ $<^{M},$ $r^{M}\rangle$ as follows.

$\bullet$ $T^{M}=\{r^{M}\}\cup\{\overline{x}|x\in BV_{\lambda}(M)\}.$

$\bullet$ $r^{M}<^{M}x$ for every $x\in BV_{\lambda}(M)$ .
$\bullet$ $\overline{x}<^{M}\overline{y}(x, y\in BV_{\lambda}(M))$ if $\lambda y$ is in the scope of $\lambda x$ in $M.$

In addition, for each subterm $N$ of $M$ , we define the subtree $\mathcal{T}^{M}(N)=\langle T^{N},$ $<^{M}$

, $r^{N}\rangle$ of $\mathcal{T}^{M}$ as follows.
$\bullet$ $T^{N}=\{r^{M}\}\cup\{\overline{x}\in T^{M}|\overline{x}\leq^{M}\overline{y}$ for some $y\in FV_{\lambda}(N)\}.$

$\bullet<^{N}=\{(\overline{x},\overline{y})|\overline{x}<^{M}\overline{y}$ and $\overline{x},$
$\overline{y}\in T^{N}\}.$

$.$ $r^{M}=r^{N}.$

Example 2.2. Let $M\equiv\lambda x.(\lambda y.\rho a.ay)(\lambda z.xz)$) then the tree $\mathcal{T}(M)$ is the structure
$\langle T^{M},$ $<^{M},$ $r^{M}\rangle$ (see also figure 1) where:

$\bullet T^{M}=\{r^{M},$ $\overline{x},$ $\overline{y},$ $z$

$\bullet<_{1}^{M}=\{(r^{M},\overline{x})$ , $(\overline{x},$

$y$
$(\overline{x},$ $z$

Proof of theorem 1.9 with $t\tau ee$ sequent. The “only if” part is obvious, because $\Lambda_{\rho}^{Int}$

includes all $\lambda$-terms. Hence we show “if” part.
Suppose $M$ is a closed $\lambda\rho$-term following the Barendregt’s convention, and there

is a $TA_{\lambda\rho}$-derivation $\Sigma$ of $\emptyset\vdash M$ : $\varphi,$

$\emptyset$ . We first define $[N]\in \mathcal{T}(M)$ and $[a]_{N}\in$

$\mathcal{T}(M)$ , for each $N\in Sub(M)$ and $a\in FV_{\rho}(N)$ , as follows.

$\bullet$ $[N]$ is the greatest element, with respect to $<^{M}$ , of the set $\{r^{M}\}\cup\{\overline{x}|x\in$

$FV_{\lambda}(N)\}.$

$\bullet$ $[a]_{N}$ is the greatest element, with respect to $<^{M}$ , of the set $\{r^{M}\}\cup\{\overline{x}|x\in$

$FV_{\lambda}^{a}(N)\}.$

$3_{TA_{\lambda}}$ is a typing system for $\lambda$-terms, see [5] for $TA_{\lambda}$
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$M$ : $\lambda x.\prec_{\lambda z^{-\rho a.\prec_{y}^{a}}}^{\lambda y}.\prec_{z}^{x}$

$\overline{y}$

$\overline{z}$

FIGURE 1. $M\equiv\lambda x.(\lambda y.\rho a.ay)(\lambda z.xz)$

Then we can show, by induction on the size of the $TA_{\lambda\rho}$-derivation, that if

$\{x_{1}:\alpha_{1}, . . . , x_{n}:\alpha_{n}\}\vdash N:\beta, \{a_{1}:\gamma_{1}, . . . , a_{m}:\gamma_{m}\}$

occurs in $\Sigma$ then the tree sequent

$\{x_{1}^{-} : \alpha_{1}, . . . , x_{n}^{-} : \alpha_{n}\}\vdash^{\mathcal{T}^{M}(N)}\{[N] : \beta\}\cup\{[a_{1}]_{N} : \gamma_{1}, . . . , [a_{m}]_{N} : \gamma_{m}\}$

is derivable in TLJ. In particular, we can see that $\emptyset\vdash^{\mathcal{R}(r^{M})}\{r^{M} : \varphi\}$ is derivable
in TLJ. Hence $\varphi$ is intuitionistically valid. $\square$

3. PROOF OF THEOREM 1.9 WITH REDUCTION

In section 2, we give a proof to theorem 1.9, by use of the sequent calculus
TLJ. On the other hand, in [1], the theorem was proved by purely proof theoretic
method. In this subsection, we give a sketch of the proof.

First, we give a derivation reduction for the $\lambda\rho-$-calculus as follows.

Definition 3.1. We define a binary relation $\triangleright 1$ on $\Lambda_{\rho}$ by the following rules.

(1) $aMN\triangleright 1aM.$

(2) $N(aM)\triangleright 1aM.$

(3) $\lambda x.aM\triangleright 1aM$ if $x\not\in FV_{\lambda}(M)$ .
(4) $b(aM)\triangleright 1aM.$

(5) $\rho a.M\triangleright 1M$ if $a\not\in FV_{\rho}(M)$ .
(6) $\rho a.aM\triangleright 1M$ if $a\not\in FV_{\rho}(M)$ .
(7) $M\triangleright 1N\Rightarrow PM\triangleright {}_{1}PN.$

(8) $M\triangleright 1N\Rightarrow MP\triangleright 1NP.$

(9) $M\triangleright 1N\Rightarrow$ Ax. $M\triangleright 1\lambda x.N.$

(10) $M\triangleright 1N\Rightarrow aM\triangleright 1aN.$

(11) $M\triangleright 1N\Rightarrow\rho a.M\triangleright 1$ pa.N.

Furthermore, we define the relation $\triangleright as$ the reflexive transitive closure $of\triangleright 1.$

We can easily check the following properties.

Lemma 3.2.

(1) If $M\triangleright 1N$ , then $FV_{\lambda}(M)\supseteq FV_{\lambda}(N)$ and $FV_{\rho}(M)\supseteq FV_{\rho}(N)$ .
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(2) If $M\triangleright 1N$ and $\Gamma\vdash M$ : $\varphi,$

$\Delta$ is derivable in $TA_{\lambda\rho}$ , then

$\{x : \alpha|x : \alpha\in\Gamma, x\in FV_{\lambda}(N)\}\vdash N$ : $\varphi,$ $\{a : \beta|a : \beta, b\in FV_{\rho}(N)\}$

is derivable in $TA_{\lambda\rho}.$

(3) If $M\triangleright 1N$ and $M\in\Lambda_{\rho}^{Int}$ , then $N\in\Lambda_{\rho}^{Int}.$

By use of these properties, we can give another proof to theorem 1.9 as follows.

Proof of theorem 1.9 with reduction. Suppose that there is a closed $\lambda\rho^{Int}$-term $M$

such that $\emptyset\vdash M$ : $\varphi,$

$\emptyset$ is derivable in $TA_{\lambda\rho}$ . First we can.easily check that $M$ can
be reduced to a closed $\lambda$-term $N$ with the reduction $\triangleright$ . From lemma 3.2, we have:

$\bullet$ $N$ is closed.
$\bullet$

$\emptyset\vdash N$ : $\varphi,$

$\emptyset$ is derivable in $TA_{\lambda\rho}.$

With note 1.7, it can be checked that $\emptyset\vdash N$ : $\varphi,$

$\emptyset$ is derivable in $TA_{\lambda}$ . Therefore
$\varphi$ is intuitionistically valid. $\square$

4. PROOF OF THEOREM 1.3

In section 2, theorem 1.9 is proved with a close connection between the systems

TLJ and the intuitionistic $\lambda\rho$-calculus. On the other hand, in section 3, theorem

1.9 is proved by purely proof theoretic method. Then a question arises:

$($# $)$ Can we prove the “if” part of theorem 1.3 with technique in section 3?

In this section, we give an affirmative answer to this question.

4.1. On the $re’$duction $\triangleright 1$ . First, we explain what role the reduction $\triangleright 1$ play in the
proof. The rules (1)$-(6)$ in definition 3.1. gives the following derivation reduction.

(1)

$\frac{\frac{\Gamma_{1}\vdash M:\alpha,\triangle_{1}::}{\Gamma_{1}\vdash aM:\betaarrow\gamma,\Delta_{1}\cup\{a:\alpha\}\Gamma_{1}\cup\Gamma_{2}\vdash aMN:\gamma,\triangle_{1}\cup\{a}:\Gamma_{2}\vdash N:\beta:}{:\alpha\}\cup\triangle_{2}}$

$\triangleright 1$

$\frac{\Gamma_{1}\vdash M:\alpha,\Delta_{1}::}{\Gamma_{1}\vdash aM:\gamma,\triangle_{1}\cup\{a:\alpha\}}$

: :
: :

(2)

$\Gamma_{2}\vdash N^{:}:\alpha:, \triangle_{2}$

$\frac{\Gamma_{1}\vdash M:\betaarrow\gamma,\Delta_{1}\Gamma_{2}\vdash aN:\beta,\triangle_{2}\cup\{a:\alpha\}::}{\Gamma_{1}\cup\Gamma_{2}\vdash M(aN):\gamma,\Delta_{1}\cup\triangle_{2}\cup\{a:\alpha\}}$

$\triangleright 1$

$\frac{\Gamma_{2}\vdash N^{:}:\alpha,\triangle_{2}:}{\Gamma_{2}\vdash aN:\gamma,\Delta_{2}\cup\{a:\alpha\}}$

: :
: :

(3)

$\Gamma\vdash M:\alpha::, \triangle$ :
:

$\frac{\Gamma\vdash aM:\beta,\triangle\cup\{a:\alpha\}}{\Gamma\vdash\lambda x.aM:\gammaarrow\beta,\Delta\cup\{a:\alpha\}} \triangleright 1 \frac{\Gamma\vdash M:\alpha,\Delta}{\Gamma\vdash aM:\gammaarrow\beta,\triangle\cup\{a:\alpha\}}$

: :
: :
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(4)

$\Gamma\vdash\Lambda I:\alpha::, \Delta$

$\frac{\Gamma\vdash aM:\beta,\triangle\cup\{a:\alpha\}}{\Gamma\vdash b(aM):\gamma,\triangle\cup\{a:\alpha,b:\beta\}} \triangleright 1 \frac{\Gamma\vdash\Lambda I:\alpha,\Delta::}{\Gamma\vdash aM:\gamma,\Delta\cup\{a:\alpha\}}$

: :
: :

(5)
:

$\frac{\Gamma\vdash M:\alpha,\Delta:}{\Gamma\vdash\rho a.M:\alpha,\Delta} \triangleright 1 \Gamma\vdash M:\alpha::, \triangle$

: :
: :

(6)
:
:

$\Gamma\vdash M:\alpha, \triangle$

$\frac{\Gamma\vdash aM:\alpha,\Delta\cup\{a:\alpha\}}{\Gamma\vdash\rho a.aM:\alpha,\Delta} \triangleright 1 \Gamma\vdash M:\alpha::, \Delta$

: :
: :

By observing the above figures, we can see that the reduction $\triangleright 1$ gives the opera-
tion to remove a redundant weakening from proof terms. Then the proof in section
3 tells u\S that closed intuitionistic $\lambda\rho-$-calculus can be transformed into a closed
$\lambda$-term (i.e. an NJ-derivation) by removing all redundant weakening.

Then, in the following argument, we show that TLJ-derivation can be trans-
formed into an LJ-derivation 4 by removing all redundant weakening rules from
the TLJ-derivation.

4.2. Extracting an LJ-derivation from a TLJ-derivation. First, to simplify
the argument, we introduce a new proof system.

Definition 4.1. The tree sequent calculus TLJ’ is obtained from TLJ by:
$\circ$ removing the rules $($Heredity) $,$

$($Heredity) and (Grow).
$\bullet$ modifying the axiom scheme as: $\{t:\alpha\}\vdash\tau\{s:\alpha\}(t\leq s)$ .
$\bullet$ modifying the $(\vdasharrow)$-rule as follows.

$\frac{\{t:\alpha\}\cup\Gamma\vdash^{\mathcal{T}}\Delta\cup\{t:\beta\}}{r\vdash\tau_{\triangle\cup\{s:\alphaarrow\beta\}}}(\vdasharrow)’(s<1t)$

Here we impose the following condition (called label condition): no descen-
dants of $t$ occur in the lower sequent.

Then, we can easily show the following lemma,

Lemma 4.2. If $\Gamma\vdash\tau_{\Delta}$ is derivable in TLJ, then $\Gamma\vdash^{S}\Delta$ is derivable in $TLJ’$ for
some $S\sqsupseteq \mathcal{T}.$

From this lemma, for our purpose, it suffices to show the following theorem.

Theorem 4.3. If $\emptyset\vdash\tau\{r:\varphi\}$ is derivable in $TLJ’$ , then $\varphi$ is provable in LJ.

$4_{LJ}$ and NJ are proof systems for intuitionistic logic originally introduced by Gentzen [2, 3].
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We then specify the notion “redundant weakening”.

Definition 4.4. Let $\Sigma$ be a $TLJ’$-derivation and $\mathcal{W}$ be an occurrence of weakening
rule in $\Sigma$ . We say $\mathcal{W}$ is necessary if $\mathcal{W}$ occurs as the lowest inference rule in $\Sigma$ (i.e.
$\mathcal{W}$ derives the endsequent of $\Sigma$ ) or $\mathcal{W}$ satisfies the following conditions.

$\bullet$ $A(\vdasharrow)$-rule $\mathcal{I}$ occurs immediately after $\mathcal{W}.$

$\bullet$
$\mathcal{W}$ adds exactly one side formula of $\mathcal{I}.$

We say $\mathcal{W}$ is redundant if it is not necessary. An essential $TLJ$ -derivation is a
$TLJ’$-derivation in which no redundant weakening rules occur.

Then we start proving the theorem.

Lemma 4.5. A TLJ-derivation $\Sigma$ can be transformed into an essential derivation.

Proof. The theorem is proved by double induction on:

$\bullet$ the number $n$ of the redundant weakening rules occurring in $\Sigma.$

$\bullet$ the height $h$ of the lowest occurrence of redundant weakening in $\Sigma.$

It is easy to see that $\Sigma$ can be transformed into another derivation, without
changing the endsequent, whicb we can apply the inductive hypothesis (see [9] in
detail). As an example, we treat the following two cases.

(1) Suppose a lowest occurrence $\mathcal{W}$ of redundant weakening has the following
form.

(A)

$\frac{}{}\frac{\Gamma\vdash^{\mathcal{T}}\triangle}{\{t:\alpha\}\cup\Gamma’\cup\Gamma\vdash\tau_{\Delta\cup\triangle\bigcup_{arrow}}\{t:\beta\},\Gamma\cup\Gamma\vdash^{\mathcal{T}}\triangle\cup\triangle\cup\{s:’\alpha\beta\}}\mathcal{W}(\vdasharrow)’$

(B)

Then we transform this derivation into the following derivation.

$:(A)$

$\frac{\Gamma\vdash’\Gamma\triangle}{\Gamma\cup\Gamma\vdash^{\mathcal{T}}\triangle\cup\triangle\cup\{s:\alphaarrow\beta\}}$ (Weakening)

:: (B)

Obviously, we can apply the inductive hypothesis to the lower derivation.
(2) Suppose a lowest occurrence $\mathcal{W}$ of redundant weakening has the following

form.

$::(C)$

$\frac{\frac{r_{1}\vdash\tau_{\triangle_{1}}}{\Gamma_{1}\cup\Gamma_{2}\vdash^{\mathcal{T}}\triangle_{1}\cup\Delta_{2}\cup\{t:\alpha\}}\mathcal{W}\{t:\beta\}\cup\Gamma_{3}\vdash\tau_{\triangle s}:(D)}{\{t:\alphaarrow\beta\}\cup\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}\vdash\tau\triangle_{1}\cup\triangle_{2}\cup\triangle_{3}}(arrow\vdash)$

:: (E)
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Then we transform this derivation into the following derivation.

$::(C)$

$\frac{\Gamma_{1}\vdash\tau_{\triangle_{1}}}{\{t:\alphaarrow\beta\}\cup\Gamma_{1}\cup\Gamma_{2}\cup\Gamma_{3}\vdash\tau\Delta_{1}\cup\Delta_{2}\cup\Delta_{3}}$ (Weakening)

.
(E)

Obviously, we can apply the inductive hypothesis to the lower derivation.
$\square$

Lemma 4.6. Suppose that $\Sigma$ is an essential $TLJ’$-derivation of $\emptyset\vdash\tau\{r:\varphi\}$ . If
$\Gamma\vdash\tau_{\Delta}$ occurs in $\Sigma$ , then $\Delta$ is a singleton set.

Proof Suppose there is a sequent whose right side is not singleton and take an
uppermost occurrence $S$ of such sequent. From the form of inference rule, $S$ is
derived by a weakening rule as follows.

$::(A)$

$\frac{}{}\frac{\{t:\alpha\}\cup\Gamma\vdash\tau_{\{u:\gamma\}}}{\{t:\alpha\}\cup\Gamma\vdash\tau_{\{u:\gamma\}\cup\{t:\beta\}},r\vdash\tau_{\{u:\gamma\}\cup\{s:\alphaarrow\beta\}}}(\vdasharrow)($

Weakening)

:
:

Here, $S=\{t:\alpha\}\cup\Gamma\vdash\tau\{u:\gamma\}\cup\{t:\beta\}$ . From the condition of $S$ , there are no
weakening rules which add a formula in right side of a sequent in the subderivation
(A) . Then we can show, by checking the form of inference rules, the following fact:

O If the sequent $\{t_{1} : \delta\}\cup\Pi\vdash\tau\{t_{2} : \epsilon\}$ occurs in the subderivation (A) , then
$t_{2}$ is a descendant of $t_{1}.$

From this observation, we especially obtain the fact that $u$ is a descendant of $t.$

However this violates the label condition of the $(\vdasharrow)$ -rule. $\square$

Proof of theorem 4.3 (proof of theorem 1.3). Suppose there is a $TLJ’$-derivation of
$\emptyset\vdash\tau\{r:\varphi\}$ , then, from lemma 4.5, we can transform this derivation into another
derivation $\Sigma$ which is essential. From lemma 4.6, if $\Gamma\vdash\tau_{\Delta}$ occurs in $\Sigma$ , then $\triangle$ is
singleton. Hence we obtain an LJ-derivation of $\emptyset\vdash\{\varphi\}$ from $\Sigma$ by replacing each
tree sequent $\Gamma\vdash\tau\{t:\alpha\}$ by the sequent $\{\beta|t:\beta\in\Gamma\}\vdash\{\alpha\}.$ $\square$

Example 4.7. Let $\mathcal{T}_{1},$ $\mathcal{T}_{2},$ $\mathcal{T}_{3}$ be the following tree.

$t_{2} t_{2} t_{3}$

$\mathcal{T}_{1} t_{1}| \mathcal{T}_{2} t_{1}|| \mathcal{T}_{3} \bigvee_{t_{1}}|$

$r r r$
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Suppose that the following TLJ-derivation $\Sigma$ is given.

$\underline{\{t_{2}:p\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p\}}($

Heredity)

$\frac{}{}(\vdasharrow)\frac{\frac{}{}(\frac{\{t_{1}:p\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p\}}{\{t_{1}:p,t_{3}.q\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p,t_{3}:p\}\{t_{1}:p\}\vdash^{\mathcal{T}_{2}}\{t_{2}:p,.t_{1}:qarrow p\}}}{\{t_{1}:p,t_{2}:q\}\vdash^{\mathcal{T}_{2}}\{t_{2}.p,t_{1}\cdot qarrow p\},\frac{\{t_{1}:p\}\vdash^{\mathcal{T}_{1}}\{t_{1}:qarrow p\}}{\emptyset\vdash^{\mathcal{R}(r)}\{r:parrow qarrow p\}}(\vdasharrow}($Weakening)

$($Weakening)

$\vdasharrow))$

Then we extract an LJ-derivation from $\Sigma$ as follows.

$\Sigma$

$\nabla$ Lemma 4.2

$\frac{}{}(\vdasharrow)\frac{\frac{}{}(\frac{\{t_{1}.p\}\vdash^{\mathcal{T}_{3}}\{t_{2}\cdot p\}}{\{t_{1}:p,t_{3}\cdot.q\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p,t_{3}:p\}\{t_{1}:p\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p,t_{1}:qarrow p\}}(}{\{t_{1}:p,t_{2}:q\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p,t_{1}:qarrow p\},\frac{\{t_{1}:p\}\vdash^{\mathcal{T}_{3}}\{t_{1}:qarrow p\}}{\emptyset\vdash^{\mathcal{T}_{3}}\{r:parrow qarrow p\}}(\vdasharrow}($

Weakening)Weakening)
$\vdasharrow))$

$\nabla$ Lemma 4.5

$\frac{}{}(\vdasharrow)\frac{\{t_{1}:p\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p\}}{\{t_{1}:p,t_{2}:q\}\vdash^{\mathcal{T}_{3}}\{t_{2}:p\},\frac{\{t_{1}:p\}\vdash^{\mathcal{T}_{3}}\{t_{1}:qarrow p\}}{\emptyset\vdash^{\mathcal{T}_{3}}\{r:parrowqarrow p\}}}($

Weakening)

$(\vdasharrow)$

$\nabla$

$\frac{\frac{\{p\}\vdash\{p\}}{\{p,q\}\vdash\{p\}}(}{\emptyset\vdash\{parrow qarrow p\}}(\vdasharrow)\frac{}{\{p\}\vdash\{qarrow p\}}(\vdasharrow)$

Weakening)

4.3. Advantages of our method. In [4, 6], the proof of the (if part of theorem
1.3 is given with a translation, called formulaic translation,.from tree sequents into
formulas. In comparison with their method, our method has three advantages in
comparison with the standard method.

One is that our method can be applied to many other logics. As we showed in
the above argument, our method can work well in implicational fragment. On the
other hand, the standard method does not work well in disjunction-less fragments
or negation-less fragments.

The second advantage is that our method provides a natural transformation from
TLJ-derivation into LJ-derivation in comparison with the standard method. For
example, using the formulaic translation, we transform the TLJ-derivation $\Sigma$ given
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in example 4.7 into the derivation in figure 2. As example 4.7 showed, using our
method, we extract the essential part from a given derivation and can give a natural
LJ-derivation.

The other advantage is that our method give a proof to Gentzen’s Hauptsatz
[2, 3]. With our method, we can obtain a cut-free LJ-derivation. On the other hand,
as figure 2 shows, the algorithm with formulaic translation constructs a derivation
including a lot of cut-rules.
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$\vee\wedge\hat{oC^{\vee}\wedge}^{\backslash s}\hat{b\backslash QQQ\downarrow\downarrow\downarrow}\wedge\vee\wedge\wedge\vee\vee<33T|_{\downarrow}^{T}<\wedge\vee\wedge\vee\vee\vee\backslash 3QQ\hat{Q\hat{Q}|\circ b3}6\downarrow T\downarrow\downarrow$

$\vee T$

FIGURE 2
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