
Infinite games recognized by 2-stack visibly pushdown automata

Wenjuan Li, Shohei Okisaka, Kazuyuki Tanaka

Mathematical Institute, Tohoku University, Sendai, 980-8578, Japan

1 Introduction

Two-player infinite games have been extensively studied in Descriptive Set Theory in the past

several decades, accompanied by a celebrated result due to Martin that all Gale-Stewart games
with Borel winning conditions are determined. In this paper, we are interested in the following

problem: if the winning set X is given as $X=L(\mathcal{M}\rangle_{\dot{\fbox{Error::0x0000}}}$ where $L(\mathcal{M})$ is the language recognized

by some kind of machine \mathcal{M}_{i} whether the game $G(X)$ is determined or not, and if one of the two

players has a winning strategy. whether the strategy is computable or not.
B\"uchi and Landweber (1969) first studied the Gale-Stewart game $G(X)$, where X is an $\omega-$

regular language accepted by a B\"uchi automaton. They showed that one can effectively decide the

winner of $G(X)$ and the winning strategy can be constructed by a finite transducer. Thomas (1995)

asked whether it can be extended to deterministic context-free ω-languages, which are accepted by

Muller pushdown automata. Walukiewicz (2001) presented a positive answer by showing that one
can effectively construct winning strategies in parity games played on pushdown graphs. This result
implies that the Gale-Stewart games over deterministic context-free ω-languages are determined

with computable winning strategies.

Finkel (2001) studied the cases where the winning sets are ω-languages accepted by nonde-

terministic pushdown automata and showed that in such games, it is undecidable to determine
which player has a winning strategy. Finkel (2013) also proved that the determinacy over the

class of context-free ω-languages is equivalent to the determinacy over the effective class of analytic

sets. Resear\v{c}h also extends to infinite games related with some variants of pushdown automata.

Well-known variants of pushdown automata include, extensions on the stacks, such as higher-order
stacks, multi-stacks, and restrictions on the input alphabet, such as visibly input.

As far as we know, two-player infinite games recognized by 2-stack visibly pushdown automata
have not been studied up to now. In this paper, we mainly treat 2-visibly pushdown automata with
Boolean combination of Σ_{1}^{0} accepting condition. The input alphabet of a 2-stack visibly pushdown

automaton is partitioned into push, pop alphabet for each stack separately, and internal alphabet,

which decide its visible actions. We show that there exists an infinite game recognized by 2-stack
visibly pushdown automata in which Player II has a winning strategy but no computable one.

2 Preliminaries

A finite word, over an alphabet $\Sigma_{\dot{\fbox{Error::0x0000}}}$ is a finite sequence of letters $x=a_{1}a_{2}\ldots a_{n}$, where $a_{i}\in\Sigma$ for

all $i\leq ri$. For $i\leq n,$ $x(i)$ denotes the ith letter of x . For $i\leq n,$ $x[i]=x(1)x(2)\ldots x(i)$, which

denotes the initial ith segment of $x.$ ϵ is the empty sequence. $\Sigma^{<\omega}$ denotes the set of finite words

数理解析研究所講究録

第 1950巻 2015年 121-137 121

over $\Sigma.$ L is a subset of $\Sigma^{<\omega}$ which is called a finite language over Σ . By $u.v$ or uv , we denote the

concatenation of finite words u and v . For $V\subseteq\Sigma^{<\omega},$ $V^{<\omega}=\{v_{1}\ldots v_{n}|n\in \mathbb{N}$ and $\forall i\leq n,$ $v_{i}\in V\}.$

An infinite word over Σ is an infinite sequence $a_{1}a_{2}\ldots a_{n}\ldots$, where for all $i\geq 1,$ $a_{i}\in\Sigma$. When σ

is an infinite word over Σ , we write $\sigma=\sigma(1)\sigma(2)\ldots\sigma(n)$
\ldots and $\sigma[n]=\sigma(1)\sigma(2)\ldots\sigma(n)$, which is the

prefix of σ with length $n.$
Σ^{ω} denotes the set of infinite words over Σ . An ω -language over Σ is a

subset of Σ^{ω} . The concatenation of a finite word u and an infinite word v is also written as $uv.$

Let Σ be a finite set. The topology on Σ^{ω} is defined by the metric d :

$d(\alpha, \beta)=2^{-\ell}$ where $\ell=\min\{i|\alpha(i)\neq\beta(i)\}$

with conventions that $\min\emptyset=+\infty$ and $2^{-\infty}=0$. Then we say a subset of Σ^{ω} is open if and only

if it is in the form $X\Sigma^{\omega}=\{uv\in\Sigma^{\omega}|u\in X$ and $v\in\Sigma^{\omega}\}$, where $X\subset\Sigma^{<\omega}.$

2.1 Pushdown automata

2.1.1 Pushdown automata on finite words

Roughly speaking, a pushdown automaton is a finite automaton equipped with a pushdown stack
as shown in Figure 1, which can push and pop the top letter of the stack.

Figure 1 A pushdown automaton with finite input.

This kind of automata can accept the language $\{a^{n}b^{n}|n\geq 1\}$. It can store a in the stack

when reading some a on the tape. When the letter b is encountered, a top a from the stack can
be removed. If the stack becomes empty on the completion of processing a given input, then the

pushdown automaton accepts the input. In contrast, this language can not be recognized by finite
automata. A finite automaton has only a finite number of states, it cannot remember the number

of a ’s in $a^{n}b^{n}$ where n is larger than the number of states of a finite automaton.
The formal definition of pushdown automata is given as follows.

Definition 1. A (nondeterministic) pushdown automaton (PDA) is a tuple

$\mathcal{M}=(Q, \Sigma, \Gamma, q_{j\cap}, \delta, F)$

where

\bullet Q is a finite set of states,

\bullet
Σ is a finite input alphabet,

\bullet
Γ is a finite stack alphabet, which includes a special bottom letter $\perp,$

\bullet $q_{in}\in Q$ is the initial state,

\bullet
δ : $Q\cross(\Sigma\cup\{\epsilon\})\cross\Gammaarrow \mathcal{P}(Q\cross\Gamma\cup\{\epsilon\})$ is the transition relation, and

122

\bullet $F\subseteq Q$ is a set of final states.

The content of stack is denoted by $\gamma\in(\Gamma/\{\perp\})^{<\omega}\perp$. The leftmost letter will be assumed to be on
the top of stack, also the bottom letter $\perp can$ never be deleted and the rightmost letter is always
$\perp.$

Definition 2. A configuration of pushdown automaton is a pair (q, γ) , where $q\in Q$ and $\gamma\in$

$(\Gamma/\{\perp\})^{<\omega}\perp.$

For $a\in\Sigma\cup\{\epsilon\},$ $\gamma\in(\Gamma/\{\perp\})^{<\omega}\perp,$ $p,$ $q\in Q$ and $v,$ $\beta\in\Gamma\cup\{\epsilon\}$, if $(q, \beta)\in\delta(p, a, v)$, then we
denote

$a:(p, v\gamma)\mapsto \mathcal{M}(q, \beta\gamma)$.

$\mapsto_{\mathcal{M}}^{<\omega}$ is the transitive and reflexive closure $of\mapsto \mathcal{M}.$

Definition 3. Let $u=a_{1}a_{2}\ldots a_{n}$ be a finite word over Σ . A finite sequence of configurations
$r=(q_{i}, \gamma_{i})_{1\leq i\leq s+1}$ is called a run of a pushdown automaton \mathcal{M} on u , starting from the initial

configuration $(q_{\dot{\ovalbox{\tt\small REJECT}}n}, \perp)$, if and only if:

(1) $(q_{1}, r_{1})=(q_{in}, \perp)$, and

(2) for each $1\leq i\leq s$. there exists $b_{i}\in\Sigma\cup\{\epsilon\}$ such that $b_{i}:(q_{i}, \gamma_{i})\mapsto \mathcal{M}(q_{i+1}, \gamma_{i+1})$ and such

that $a_{1}a_{2}\ldots a_{n}=b_{1}b_{2}\ldots b_{s}.$

The language accepted by \mathcal{M} is

$L(\mathcal{M})=\{u\in\Sigma^{<\omega}|\exists$ run r of \mathcal{M} on u starting from the initial configuration and

stopping with a final state in F}.

A language is called context-free if and only if it is accepted by a pushdown automaton. The class

of context-free languages is denoted as CFL.

CFL is closed under union, concatenation, and Kleene star operation. Note that it is not closed

under complement or intersection. However, if L_{1} is a context-free language and L_{2} is a regular

language (which is accepted by finite automata) then their intersection $L_{1}\cap L_{2}$ is a context-free
language.

A pushdown automaton $\mathcal{M}=(Q, \Sigma, \Gamma, q_{j\cap}, \delta, F)$ is said to be deterministic if and only if

$|\delta(q, a, \gamma)|+|\delta(q, \epsilon, \gamma)|\leq 1,$

where $q\in Q,$ $a\in\Sigma$ and $\gamma\in\Gamma$. By $|X|$, we denote the number of elements in a finite set X . The

class of languages accepted by deterministic pushdown automata is denoted as DCFL. DCFL is

closed under complement, but not closed under union, intersection or Kleene star operation.

We say a language is regular if it can be recognized by a finite automaton. The class of

regular languages is denoted as REG. It is known that for every regular language L , there

exists a deterministic automaton \mathcal{M} such that $L(\mathcal{M})=L$. A deterministic pushdown automa-

ton can simulate a finite automaton and ignores its stack. On the other hand, the deterministic

pushdown automata are less powerful than the nondeterministic ones. For example, $\{ww^{R}|w\in$

$\Sigma^{<\omega}$ and w^{R} is the reverse form of w }, is accepted by nondeterministic pushdown automata but

not any deterministic ones. Thus, $REG\subsetneq$ DCFL \subsetneq CFL.

123

2.1.2 Pushdown automata on infinite words

Figure 2 A pushdown automaton with infinite input.

When the input is an infinite sequence of letters as shown in Figure 2, we get an infinite run on
such an input.

Definition 4. Let $\sigma=a_{1}a_{2}\ldots a_{n}\ldots$ be an infinite word over Σ . An infinite sequence of configurations
$r=(q_{i}, \gamma_{i})_{i\geq 1}$ is called a run of \mathcal{M} on σ , starting from the initial configuration $(q_{\dot{\ovalbox{\tt\small REJECT}}n}, \perp)$, if and only

if:

(1) $(q_{1}, r_{1})=(q_{in}, \perp)$, and

(2) for each $i\geq 1$, there exists $b_{i}\in\Sigma\cup\{\epsilon\}$ such that b_{i} : $(q_{i}, \gamma_{i})\mapsto \mathcal{M}(q_{i+1}, \gamma_{i+1})$ and such that
$a_{1}a_{2}\ldots a_{n}\ldots=b_{1}b_{2}\ldots b_{n}\ldots.$

For every run r , Inf (r) is the set of states that are visited infinitely many times during run $r.$

Definition 5. A B\"uchi pushdown automaton (BPDA) is a tuple $\mathcal{M}=(Q, \Sigma, \Gamma, \delta, q_{jn}, F)$ where

\bullet $\mathcal{M}’=(Q, \Sigma, \Gamma, \delta, q_{jn})$ is a pushdown machine which is equipped with no accepting condition,

and

\bullet $F\subseteq Q$ is a set of final states.

The ω -language accepted by \mathcal{M} is

$L(\mathcal{M})=$ { $\sigma\in\Sigma\omega|$ there is a run r of \mathcal{M} on σ starting from the initial configuration

such that Inf$(r)\cap F\neq\emptyset$ }.

Definition 6. A Muller pushdown automaton (MPDA) is a tuple $\mathcal{M}=(Q, \Sigma, \Gamma, \delta, q_{jn}, \mathcal{F})$ where

\bullet $\mathcal{M}’=(Q, \Sigma, \Gamma, \delta, q_{jn})$ is a pushdown machine, and

\bullet $\mathcal{F}\subseteq \mathcal{P}(Q)$ is a collection of state sets.

The ω -language accepted by \mathcal{M} is

$L(\mathcal{M})=$ { $\sigma\in\Sigma\omega|$ there is a run r of \mathcal{M} on σ starting from the initial configuration

such that Inf$(r)\in \mathcal{F}$}.

Cohen and Gold (1977) gave a characterization theorem for the ω-languages accepted by push-

down automata.

Theorem 1. Let CFL be the class of context-free (finite) languages. Then for any ω -language $L,$

the following three conditions are equivalent:

124

(1) $L\in\omega-KC(CFL)$.

(2) There exists a B\"uchi pushdown automaton that accepts $L.$

(3) There exists a Muller pushdown automaton that accepts $L.$

An ω-language is a context-free ω -language (CFL_{ω}) if and only if it satisfies one of the conditions

in the above theorem.

Recall the definition of ω-Kleene closure. For any family \mathcal{L} of finite languages over the alphabet
Σ , the ω -Kleene closure of \mathcal{L} is $\omega-KC(\mathcal{L})=\{\bigcup_{i=1}^{n}U_{i}V_{i}^{\omega}|U_{i},$ $V_{i}\in \mathcal{L},$ $(1\leq i\leq n)$ and $n\in \mathbb{N}\}.$

Finkel (2001) proved that CFL_{ω} exhausts the finite ranks of Borel hierarchy, i.e., for each $n\geq 1,$

there exists some Σ_{n}^{0}-complete set and some Π_{n}^{0}-complete set. Finkel (2003) also showed that there

exist some context-free ω-languages which are Borel sets of infinite rank. For more detailed and

recent studies on context-free ω-languages, there is an survey conducted by Finkel (2014). L\"oding

(2014) provided some new results on decision problems for deterministic pushdown automata on

infinite words.
We denote the class of ω-languages accepted by deterministic Muller pushdown automata, the

class of deterministic context-free ω-languages $(DCFL_{\omega})$. The the class of ω-languages accepted by

deterministic B\"uchi pushdown automaton is strictly included into the class of ω-languages accepted

by deterministic Muller pushdown automata. $DCFL_{\omega}$ belongs to the Boolean combinations of $\Sigma_{2}^{0}.$

2.2 Gale-Stewart games

Definition 7. Let $X\subseteq\Sigma^{\omega}$, where Σ is a finite alphabet. The Gale-Stewart game $G(X)$ is a game

of perfect information between two players.

\bullet Player I first chooses $a_{1}\in\Sigma$, then Player II chooses $b_{1}\in\Sigma$, then Player I chooses $a2\in\Sigma,$

and so on.

\bullet After ω steps, the two players have produced a word $x=a_{1}b_{1}a_{2}b_{2}$ of $\Sigma^{\omega}.$

\bullet Player I wins the play if and only if $x\in X$, otherwise Player II wins the play.

Definition 8. A strategy for Player I is a function

$fi:(\Sigma^{2})^{<\omega}arrow\Sigma$

from the set of words of even length to $\Sigma.$ A strategy for Player II is a function

$f_{II}:(\Sigma^{2})^{<\omega}\Sigmaarrow\Sigma$

from the set of words of odd length to $\Sigma.$

Definition 9. Player I follows the strategy f_{I} in a play $a_{1}b_{1}a_{2}b_{2}\ldots a_{n}b_{n}\ldots$ if for each integer $n\geq 1,$

$a_{n}=f_{I}(a_{1}b_{1}a_{2}a_{2}\ldots a_{n-1}b_{n-1})$. If Player I wins every play in which he has followed the strategy $f_{I},$

then we say that the strategy f_{I} is a winning strategy (w.s.) for Player I. The winning strategy for

Player II can be defined similarly.

Definition 10. \bullet Given $X\subseteq\Sigma^{\omega}$, the Gale-Stewart game $G(X)$ over winning set X , is said to

be determined if one of the two players has a winning strategy in $G(X)$.

125

\bullet For classC of ω-languages, we denote $Det(C)$ to assert “Every Gale-Stewart game $G(X)$ is
determined, where $X\in C.$

Table 1 is a summary of some important results on the determinacy of Gale Stewart games.

Table 1: Summary of classical results on determinacy.

$\frac{WinningsetsDeter\min acyresu1ts}{\Sigma_{1}^{0}Ga1eandStewart,1953}$

Π_{2}^{0} Wolfe, 1955
Σ_{3}^{0} Davis, 1964
Π_{4}^{0} Paris, 1972
Δ_{1}^{1} (Borel) Martin, 1975
Σ_{1}^{1} Martin, 1970 and Harrington, 1978

Besides these classical determinacy results over Borel sets, we are also interested in the deter-
minacy over the winning sets which are recognized by some machines. Table 2lists the complexity
of several languages recognized by various machines, where \mathcal{B} means the Boolean combinition.

Table 2: Complexity of the ω-languages accepted by various machines

$\frac{C1assof\omega-1anguagesComp1exityRemark}{REG_{\omega}\subset \mathcal{B}(\Sigma_{2}^{0})FAwithB\"{u} chiconditions}$

\cap

$DCFL_{\omega}$ $\subset \mathcal{B}(\Sigma_{2}^{0})$ determ. PDA with Muller conditions
\cap

DTM_{ω} with Muller $=\mathcal{B}(\Sigma_{2}^{0})$ determ. Turing machine with Muller conditions
CFL_{ω} $\subset\Sigma_{1}^{1}$ PDA with B\"uchi conditions

\cap

NTM_{ω} with B\"uchi $=\Sigma_{1}^{1}$ Taring ma$($jhine with B\"uchi conditions

In the case that a winning set is recognized by B\"uchi automaton $(i.e., \omega-$regular languages) ,
B\"uchi and Landweber (1969) showed that one of the two players has a winning strategy, which can
be effectively constructed, which is known as the B\"uchi-Landweber theorem.

Theorem 2 (B\"uchi-Landweber, 1969). REG_{ω} games are effectively determined with a computable
winning strategy.

This theorem is extended by Walukiewicz (2001) to deterministic Muller pushdown automata.

Theorem 3 (Walukiewicz, 1996). $DCFL_{\omega}$ games are effectively determined with a computable

winning strategy.

Fridman et al. (2011) studied the delay games over deterministic context-free ω-languages.
Delay games are kind of infinite games where one player may postpone his choices. It is undecidable
to determine a winner in delay games over deterministic context-free ω-languages.

126

Finkel (2001) proved that it is undecidable to determine the winner in the Gale-Stewart games

with winning sets of context-free ω-languages. Recently, Finkel (2013) showed that the determinacy

of context-free ω-languages is equivalent to the determinacy of the effective class $\Sigma_{1}^{1}.$

Theorem 4 (Finkel, 2013). $Det(\Sigma_{1}^{1})rightarrow Det(CFL_{\omega})$.

Further extensions are conducted to deterministic higher-order pushdown automata (DHPDA).

Higher-order pushdown automata are generalization of pushdown automata, which are equipped

with higher-order stacks. Higher-order stacks can be regarded as stacks of stacks structures. The

order of higher-order pushdown automata depends on the depth of nested stacks. Higher-order

pushdown automata can not only push and pop letter on the top of the stack, but also can push

copy of the topmost stack of any order. An example of an order-3 pushdown automaton is illustrated

in Figure 3.

Figure 3 An order-3 pushdown automaton.

The class of ω-languages accepted by higher-order pushdown automata is denoted as $HPDL_{\omega}$. By
$DHPDL_{\omega}$, we denote the ω-languages accepted by deterministic higher-order pushdown automata.

Theorem 5 (Cachat, 2003; Carayol, Hague, Meyer, Ong, 2008). $DHPDL_{\omega}$ games are effectively

determined with a computable winning strategy.

A summary of results on determinacy and computable winning strategies in illustrated as fol-

lows.

REG_{ϖ}

Figure 4 A summary of results on determinacy and computable winning strategy

3 Infinite game recognized visibly pushdown automata

In this section, we are going to extend the winning set of infinite games to the language recognized by

2-stack visibly pushdown automata. First, we will review the (1-stack) visibly pushdown automata

on finite words and infinite words. Then, we consider 2-stack visibly pushdown automata on infinite

words, and concentrate on the determinacy and computable winning strategies of infinite games

recognized by 2-stack visibly pushdown automata.

127

3.1 1-stack visibly pushdown automata

Visibly pushdown automata are kind of pushdown automata with restriction on the input alphabet.
The alphabet is partitioned into Push, Pop, Int. The transitions are as follows.

Figure 5 Al-stack visibly pushdown automaton on finite input.

It is an input driven machine. That is, when reading a letter from Push, it pushes a letter on
the stack, when reading a letter from Pop, it pops the top letter from the stack, and when reading
a letter from Int, it does not touch the stack.

The formal definition is given as follows.

Definition 11. A visibly pushdown automaton(VPA) is a tuple $\mathcal{M}=(\Sigma, \Gamma, Q, q_{\dot{\ovalbox{\tt\small REJECT}}n}, \delta, F)$, where

\bullet $\Sigma=$ Push $\cup Pop\cup Int$ is a finite input alphabet,

\bullet
Γ is a finite stack alphabet, which contains a special bottom letter $\perp,$

\bullet Q is a finite set of control states,

\bullet $q_{j\cap}\in Q$ is the initial state,

\bullet $\delta=\delta_{Push}\cup\delta_{Pop}\cup\delta r_{nt}$ is a transition relation, where

$\star\delta_{Push}\subseteq Q\cross$ Push $\cross Q\cross(\Gamma/\{\perp\})$,

$\star\delta_{Pop}\subseteq Q\cross Pop\cross\Gamma\cross Q,$

$\star\delta_{Int}\subseteq Q\cross Int\cross Q,$

\bullet $F\subseteq Q$ is a set of final states.

A visibly pushdown automaton \mathcal{M} is deterministic (DVPA) if the $\delta=\delta_{Push}\cup\delta_{Pop}\cup\delta_{Int}$ is a
transition function such that

$\star\delta_{Push}:Q\cross$ Push $arrow Q\cross\Gamma/\{\perp\},$

$\star\delta_{Pop}:Q\cross Pop\cross\Gammaarrow Q,$

$\star\delta_{Int}:Q\cross Intarrow Q,$

128

Definition 12. Let $u=a_{1}a_{2}\ldots a_{n}$ be finite word over Σ . A finite sequence of configurations
$r=(q_{i}, \gamma_{l}’)_{1\leq i\leq n}$ is called a run of a visibly pushdown automaton \mathcal{M} on u . starting from the initial

configuration $(q_{\dot{\ovalbox{\tt\small REJECT}}n}, \perp)$, if and only if:

(1) $(q_{1}, \gamma_{1})=(q_{in}, \perp)$, and

(2) for each $i\in\{1, n\},$

\bullet $(q_{i}, a_{i}, q_{i+1}, v)\in\delta_{Push}$ and $\gamma_{i+1}=v\gamma_{i}$. or

\bullet $(q_{i}, a_{i}, v, q_{i})\in\delta_{Pop}$ and either $(v\in\Gamma/\{\perp\}$ and $\gamma_{i}=v\gamma_{i+1})$ or $(v=\perp=\gamma_{i}=\gamma_{i+1})$, or

\bullet $(q_{i}, a_{i}, q_{i+1})\in\delta_{Int}$ and $\gamma_{i}=\gamma_{i+1}.$

A finite word $a_{1}\ldots a_{n}\in A^{<\omega}$ is recognized by a VPA \mathcal{M} if there exists a run that ends with

a state in F . The class of languages recognized by visibly pushdown automata is VPL. VPL is

closed under intersection. union, complementation, concatenation, and Kleene star operation. It is

a subclass of DCFL and a superclass of REG (Alur, Madhusudan. 2004).

Next we will consider 1-stack visibly pushdown automata on infinite input.

Figure 6 A1-stack pushdown automaton with infinite input.

Similar with pushdown automata on infinite input, a run of a 1-stack visibly pushdown automa-

ton on $a_{1}\ldots a_{n}\ldots$ is an infinite sequence of configurations:

$(q_{0}, \perp)arrow^{a_{1}}(q_{1}, \gamma_{1})\ldotsarrow^{a_{n}}(q_{n}, \gamma_{n})arrow^{a_{n+1}}$

An infinite word $a_{1}\ldots a_{n}\ldots\in A^{\omega}$ is recognized by VPA $\mathcal{M}=(\Sigma.\Gamma, Q, q_{\dot{\ovalbox{\tt\small REJECT}}n}, \delta, F)$ with B\"uchi accepting

condition if there exists a run visiting F infinitely many times. We denote the class of ω-languages

accepted by VPA and DVPA as VPL_{ω} and $DVPL_{\omega}.$

L\"oding, Madhusudan, Serre (2004) showed that VPL_{ω} is contained in $\mathcal{B}(\Sigma_{3}^{0})$ sets and $DVPL_{\omega}$

in $\mathcal{B}(\Sigma_{2}^{0})$. They also proved that visibly pushdown games are determined, where visibly pushdown

games are kind of games on graphs generated by visibly pushdown processes. Since $DVPL_{\omega}$ is a

subclass of $DCFL_{\omega}$, we know that

Theorem 6. $\dot{D}VPL_{\omega}$ games are effectively determined with a computable winning strategy.

129

Then the above results on determinacy and computable winning strategies have been extended
as follows.

$\sum_{1}^{1}=BTM_{\omega}=BCL_{\omega}(2)$

Figure 7 A summary of results on determinacy and computable winning strategy

On possible further investigation is to look at the 2-stack visibly pushdown automata $(2VPA)$.
In the following section, we would like to review $2VPA$ and 2DVPA (deterministic $2VPA$) on finite
words, then extend to an ω-languages. Finally, we will focus on the infinite games with winning
set recognized by 2DVPA.

3.2 2-stack visibly pushdown automata

For a 2-stack visibly pushdown automaton, the alphabet is partitioned into $Push_{1},$ $Pop_{1},$ $Push_{2},$

Pop_{2} , Int.

Definition 13. A 2-stack visibly pushdown automaton is a tuple $\mathcal{M}=(\Sigma, \Gamma, Q, q_{in}, \delta, F)$, where

\bullet $\Sigma=Push_{1}\cup Pop_{1}\cup Push_{2}\cup Pop_{2}\cup Int$ is a finite input alphabet,

\bullet
Γ is a finite stack alphabet, which contains a special bottom letter $\perp,$

\bullet Q is a finite set of states,

\bullet $q_{j\cap}\in Q$ is the initial state,

\bullet $\delta=\delta_{Push_{1}}\cup\delta_{Pop_{1}}\cup\delta_{Push_{2}}\cup\delta_{Pop_{2}}\cup\delta_{Int}$ is a transition relation, where

$\star\delta_{Push_{1}}\subseteq Q\cross Push_{1}\cross Q\cross(\Gamma/\{\perp\})$,

$\star\delta_{Pop_{1}}\subseteq Q\cross Pop_{1}\cross\Gamma\cross Q,$

$\star\delta_{Push_{2}}\subseteq Q\cross Push_{2}\cross Q\cross(\Gamma/\{\perp\})$,

$\star\delta_{Pop_{2}}\subseteq Q\cross Pop_{2}\cross\Gamma\cross Q,$

$\star\delta_{Int}\subseteq Q\cross Int\cross Q,$

\bullet $F\subseteq Q$ is a set of final states.

A configuration of a 2-stack visible pushdown automaton is in the form $(q, \gamma^{1}, \gamma^{2})$, where $q\in Q,$

$\gamma^{1},$ γ^{2} represent contents of the two stacks and $\gamma^{0},$ $\gamma^{1}\in(\Gamma/\{\perp\})^{<\omega}\perp.$

130

Definition 14. Let $u=a_{1}a_{2}\ldots a_{n}$ be finite word over Σ . A finite sequence of configurations
$r=(q_{i}, \gamma_{i}^{1}, \gamma_{i}^{2})_{1\leq i\leq n}$ is called a run of a $2VPA\mathcal{M}$ on u , starting from the initial configuration
(q_{jn}, \perp, \perp) , if and only if:

(1) $(q_{1}, \gamma_{1}^{1}, \gamma_{1}^{2})=(q_{j\cap}, \perp, \perp)$, and

(2) for each $i\in\{1, n\},$

\bullet $(q_{i}, a_{i}, q_{i+1}, v)\in\delta_{Push_{1}}$ and $\gamma_{i+1}^{1}=v\gamma_{i}^{1}$. or
\bullet $(q_{i}, a_{i}, v, q_{i+1})\in\delta_{Pop_{1}}$ and either $(v\in\Gamma/\{\perp\}$ and $\gamma_{i}^{1}=v\gamma)$ or $(v=\perp=\gamma_{i}^{1}=\gamma_{i+1}^{1})$,

or

\bullet $(q_{i}, a_{i}, q_{i+1}, v)\in\delta_{Push_{2}}$ and $\gamma_{i+1}^{2}=v\gamma_{i}^{2}$, or

\bullet $(q_{i}, a_{i}, v, q_{i+1})\in\delta_{Pop_{2}}$ and either $(v\in\Gamma/\{\perp\}$ and $\gamma_{i}^{2}=v\gamma)$ or $(v=\perp=\gamma_{i}^{2}=\gamma_{i+1}^{2})$,
or

\bullet $(q_{i}, a_{i}, q_{i+1})\in\delta_{Int},$ $\gamma_{i}^{1}=\gamma_{i+1}^{1}$, and $\gamma_{i}^{2}=\gamma_{i+1}^{2}.$

Example 1. Given $\Sigma=(\{a\}, \{\overline{a}\}, \{b\}, \{\overline{b}\}, \emptyset)$, the language

$\{(ab)^{n}\overline{a}^{n}b|n\in \mathbb{N}\}$

is recognized by a deterministic 2-stack visibly pushdown automaton $(2DVPA)$.

Example 2. Given $\Sigma=(\{a\}, \{c, d\}, \{b\}, \{x, y\}, \emptyset)$, the language

$\{(ab)^{n}c^{i}d^{n-i}x^{i}y^{n-i}|n,$ $i\in \mathbb{N}$ and $i\leq n\}$

is recognized by a non-deterministic 2-stack visibly pushdown automaton $(2VPA)$, but not $2DVPA.$

Details: The input alphabet is partitioned into $Push_{1}=\{a\},$ $Pop_{1}\{c, d\},$ $Push_{2}=\{b\},$ $Pop_{2}=$

$\{x, y\}$, Int $=\emptyset.$

For a non-deterministic $2VPA,$

\bullet while reading a and b , it can push $\#$ onto Stack 1 and Stack 2 separately, and

\bullet nondeterministically switch to push ◇ onto both stacks.

Intuitively, this switch corresponds to the guess of what i is. While popping, it checks that $c’s$ are
used to pop ◇ and $d’s$ for $\#$, and $y’s$ for ◇ and $x’s$ for $\#.$

The class of finite languages recognized by $2VPA$ is denoted as $2VPL.$ $2VPL$ is closed under
union, intersection and complement (Carotenuto, Murano, Peron, 2007).

3.3 Main results

There are many ways to extend machines on finite words to infinite words by different accepting
conditions as we introduced in the previous sections. such as B\"uchi condition, Muller condition. In
this study, we mainly use a $\mathcal{B}(\Sigma_{1}^{0})$ accepting condition for a 2DVPA \mathcal{M} . By $2DVPL_{\omega}$, we denote
the class of ω-languages accepted by such 2DVPA.

The statement of our main theorem is as follows.

Theorem 7. There exists a deterministic 2-stack visibly pushdown automaton \mathcal{M} such that

131

(1) the ω -language $L(\mathcal{M})$ is defined by a Boolean combination of Σ_{1}^{0} accepting condition, and

(2) in the game $G(L(\mathcal{M}))$, Player II has a winning strategy but no computable winning strategies
in this game.

To show this theorem, we need to reca112-register machines.
A2-register machine $(2RM)\mathcal{R}$ is a list of programs

$\mathcal{R}=<$ $(0 : I_{0})$, $($ 1 : $I_{1})$, $(k : I_{k})>$

where the first column denotes the line number and the second is the instruction. Instructions
include:

\bullet INC (X_{i}) : increase the content of register i by 1,

\bullet DEC (X_{i}) : decrease the content of register i by 1,

\bullet HALT, and

\bullet IF $X_{i}=0$, GOTO s , ELSE GOTO $s’$, where $i\in\{0$, 1 $\}$ and $0\leq s,$ $s’\leq k.$

A configuration a 2-register machine is (ℓ, m, n) , where ℓ is the line number and $m,$ n represents

the contents of the two registers. We say a configuration is a halting configuration if its instruction is
HALT. The transitions of a 2-register machines are defined as follows. For $\ell\in\{0, k\},$ $m,$ $n\in N,$

$0\leq s,$ $s’\leq k,$

$(\ell, m, n)\mapsto \mathcal{R}(\ell+1, m+1, n)$, if $I_{\ell}=INX(X_{0})$,

$(\ell, m, n)\mapsto \mathcal{R}(\ell+1, m, n+1)$, if $I_{\ell}=INX(X_{1})$,

$(\ell, m, n)\mapsto \mathcal{R}(\ell+1, m-1, n)$, if $I_{\ell}=DEC(X_{0})$ and $m\neq 0,$

$(\ell, m, n)\mapsto \mathcal{R}(\ell+1, m, n)$, if $I_{\ell}=DEC(X_{0})$ and $m=0,$

$(\ell, m, n)\mapsto \mathcal{R}(\ell+1, m, n-1)$, if $I_{\ell}=DEC(X_{1})$ and $n\neq 0,$

$(\ell, m, n)\mapsto \mathcal{R}(\ell+1, m, n)$, if $I_{\ell}=DEC(X_{1})$ and $n=0,$

$(\ell, m, n)\mapsto \mathcal{R}(s’, m, n)$, if $I_{\ell}=IFX_{0}=0$, GOTO s , ELSE GOTO $s’$ and $m\neq 0,$

$(\ell, m, n)\mapsto \mathcal{R}(s’, m, n)$, if $I_{\ell}=IFX_{1}=0$, GOTO s , ELSE GOTO $s’$ and $n\neq 0,$

$(\ell, m, n)\mapsto \mathcal{R}(s, m, n)$, if $I_{\ell}=IFX_{0}=0$, GOTO s , ELSE GOTO $s’$ and $m=0,$

$(\ell, m, n)\mapsto \mathcal{R}(s, m, n)$, if $I_{\ell}=IFX_{1}=0$, GOTO s , ELSE GOTO $s’$ and $n=0.$

We code a configuration $(\ell, m, 7\prime l)$ of a 2-register machine as $\ell a^{m}b^{n}$. A run of a 2-register

machine is a sequence of configurations

$\ell_{0}a^{m0}b^{n_{0}}\triangleright\ell_{1}a^{m_{1}}b^{n_{1}}\triangleright\ell_{2}a^{m_{2}}b^{n_{2}}\triangleright\cdots$

A run of a 2-register machine is finite if it visits the halting configuration, otherwise it is an
infinite sequence of configurations.

We say that $m_{0}\in L(\mathcal{R})$ if and only if $\ell_{0}a^{m_{0}}b^{n_{0}}\triangleright\ell_{1}a^{m_{1}}b^{n_{1}}\triangleright\cdots\triangleright\ell_{s}a^{m_{s}}b^{n_{s}}$ where $n_{0}=0$ and
$\ell_{s}=$ HALT.

It is known that the halting problem for 2-register machines is undecidable.

132

Sketch of proof for Theorem 7

Given a 2-register machine \mathcal{R} , we construct a game $G_{\mathcal{R}}$ such that” the existence of computable

winning strategies for Player II in $G_{\mathcal{R}}\Leftrightarrow the$ decidability of $L(\mathcal{R})$.
We consider the following infinite games. First Player I provides a number m_{0} and asks whether

$m_{0}\in L(\mathcal{R})$ holds or not. Then it is Player II’s turn to answer Yes or No.

\bullet If Player II chooses Yes, then Player II should provide a sequence of configurations on m_{0} of
\mathcal{R} to support her argument.

\bullet Otherwise, Player II chooses No, then

0 Player I will defend by providing a sequence of configurations on m_{0} of \mathcal{R} that he claims

correct, and

0 while Player I writing the sequence of configurations. Player II may challenge at the

point she believes Player I has cheated.

Then we define the winning condition for Player II in this game.

\bullet In the case that Player II chooses Yes. Player II wins by providing a sequence of configurations

on m_{0} of \mathcal{R} (Σ_{1}^{0}-statement).

\bullet In the case that Player II chooses No.

0 If Player I defends by providing an infinite sequence of configurations on m_{0} of \mathcal{R} and

Player II never challenge, then Player I loses (Π_{1}^{0}-statement).

0 If Player II challenges somewhere and shows Player I has cheated, then Player II wins

(Σ_{1}^{0}-statement).

We would like to see more details of how Player II challenge when she answers No. Player II

$pr6$vides a modified reverse form of the previous two configurations as illustrated in Figure 9.

I $m_{0}\in L(R)$? $\ell_{0}a^{m_{0}}b^{n_{0}}\triangleright$

$\triangleright l_{i}a^{m_{\fbox{Error::0x0000}}}b^{n_{l}}\triangleright l_{j+}abb^{m_{\fbox{Error::0x0000}+1}}$

II No Challenge: d)
$Ca\mathfrak{Y}\overline{\ell}\triangleleft\overline{b}^{\dagger}Ca\overline{{\}})^{-\{\prime\eta,/\eta_{+1}\rangle_{\overline{*\ell}}}-$

Figure 9 Challenge by Player II.

where $c(\in Int)$ is a letter for challenge, ${\}(\in Push_{2})$ and $\overline{{\}}(\in Pop_{2})$ are for comparing m_{i+1} with

m_{i} , and $\overline{*}is$ a witness for error.
For this game, the winning set for Player II can be recognized by a 2DVPA with the input

alphabet Σ partitioned into

\bullet $Push_{1}=\{a, b, \triangleright, \ell_{i}\}$ for $\ell_{i}\in\{I_{0}, I_{k}\},$ $Pop_{1}=\{a, \overline{b}, \triangleleft, \overline{\ell}\},$

\bullet $Push_{2}=$ $\{$ $ $\},$ $Pop_{2}=$ $\{$ $ $\}$, and

\bullet Int $=\{c\}.$

133

We can regard a play in $G_{\mathcal{R}}$ as an input of a 2DVPA as in Figure 10. The operations and
conditions of the two stacks while reading the play from left to right are explained as follows.

Figure 10 Regarding a play as an input of a 2-stack visibly pushdown automaton.

1 While it reads letters $a,$ $b,$ $\triangleright,$
ℓ_{i} , it pushes the same letters onto the top of Stack 1.

2 Letter c indicates a start of a challenge.

3 By reading \overline{b} , it pops the top b in Stack 1.

4 While reading in the section $(\overline{a}{\})^{m_{i+1}}$, it pops one a in Stack 1 and by reading $ it pushes

one symbol into Stack 2. In such a way, after reading the section $(a{\})^{m_{i+1}}$, it not only pops
all the m_{i+1} many a on the top of Stack 1 but also stores the number of a ’s it popped from

Stack 1 to Stack 2.

5 Letter $\overline{\ell}$ is used to pop the ℓ_{i+1} on the top of the current Stack 1.

6 When reading letter \triangleleft , the top element $\triangleright in$ Stack 1 will be popped.

7 By reading n_{i} many \overline{b} , all the b in $b^{n_{i}}$ on the top of Stack 1 are popped.

8 After reading $(a\overline{{\}})^{\min\{m_{i)}m_{i+1}\}}$, it popped $\min\{m_{i}, m_{i+1}\}$ many a from the top of Stack 1 and

also $\min\{m_{i}, m_{i+1}\}$ many $ from the top of Stack 2. Then, the current condition of the two

stacks might be specified as follows.

(a) the top of Stack 2 $is\perp and$ that of Stack 1 is $a,$

(b) the top of Stack 2 is $ and that of Stack 1 is ℓ_{i} , or

(c) other cases.

9 Finally, we meet letter $\overline{*}$, a witness for error.

134

Figure 11 Regarding a play as an input of a 2-stack visibly pushdown automaton.

If satisfying all the following conditions. then Player II succeeds her challenge and wins this

game.

i) $\ell_{i}=INC(X_{0})arrow\overline{*}\neq\overline{{\}}$, and

ii) $\ell_{i}=DEX(X_{0})arrow\overline{*}\neq a$, and

iii) $\ell_{i}\neq INC(X_{0})$ or $DEX(X_{0})arrow\overline{*}\neq\emptyset.$

For the winning set constructed, Player II clearly has a winning strategy τ such that $L(\mathcal{R})=$

$\{m_{0}|\tau(m_{0})=$ (Yes}. Thus if the halting problem on \mathcal{R} is undecidable, then there is no computable

winning strategy for Player II.
\square

By sophisticating the above proof, we can also show the following.

Corollary 1. For any arithmetical set A , there exists a game defined by a $2DVPA$ with a Boolean

combination of Σ_{1}^{0} accepting condition such that Player II has a winning strategy but no simpler

than A , i. e., A is computable in any winning strategy for Player II.

To explain the idea of the proof for Corollary 1, assume that A is a Σ_{3}^{0} subset of \mathbb{N} . Then there

is a 2-register machine \mathcal{R} such that $m_{0}\in A$ if and only if $\exists m_{1}\forall m_{2}\mathcal{R}$ halts on $m=2^{m_{0}}3^{m_{1}}5^{m_{2}}.$

Now we consider the following game.

\bullet Player I starts the game by asking if $m_{0}\in A.$

\bullet Player II answers Yes or No.

0 If Player II answers Yes, she also needs to choose m_{1} , and then Player I chooses $m_{2}.$

After that, Player II constructs a sequence of configurations of \mathcal{R} on $m=2^{m_{0}}3^{m_{1}}5^{m_{2}}$ in

the same way as in the proof for Theorem 7.

0 If Player II answers No, then the game continues similarly as the roles of the players

switched.

The details will appear in future literature. Furthermore, we conjecture that the determinacy

of $2DVPL_{\omega}$ with $\mathcal{B}(\Sigma_{2}^{0})$ accepting condition is the same as that of the DTM_{ω} (the ω-language

recognized by deterministic Turing machines with Muller condition, which is contained in $\mathcal{B}(\Sigma_{2}^{0})$)

with respect to the complexity of winning strategies.

135

Figure 12 A summary of results on determinacy and computable winning strategy.

4 Conclusions

We have introduced infinite games recognized by 2-stack visible pushdown automata with $\mathcal{B}(\Sigma_{1}^{0})$

accepting condition. We showed that there is such a game with no computable winning strategy.
From the perspective of decidability and computable winning strategies in infinite games, our
result can be seen as an undecidable counterpart of many studies on games over $DVPL_{\omega},$ $DCFL\omega$

(Walukiewicz, 2001), and $DHPDL_{\omega}$ (Cachat, 2003; Carayol, Hague, Meyer, Ong, 2008). We
may further extend this study on infinite games to other machines or other accepting conditions.
Another interesting problem is to investigate the strength of determinacy of computable games
from the viewpoint of reverse mathematics (Nemoto, MedSalem, Tanaka, 2007).

References

[1] R. Alur, and P. Madhusudan, Visibly pushdown languages. In Proceedings of the Thirty-sixth
Annual ACM Symposium on Theory of Computing, 2004, 202-211.

[2] J.R. B\"uchi and L.H. Landweber, Solving sequential conditions by finite-state strategies. Trans-
actions of the American Mathematical Society, 1969(138): 295-311.

[3] T. Cachat, Higher order pushdown automata, the Caucal hierarchy of graphs and parity
games. Automata, Languages and Programming. Springer Berlin Heidelberg, 2003, 556-569.

[4] A. Carayol, M. Hague, A. Meyer, C. H. Ong, and O. Serre, Winning regions of higher-order
pushdown games. Logic in Computer Science, 2008. LICS’08. 23rd Annual IEEE Symposium
on. IEEE, 2008, 193-204.

[5] D. Carotenuto, A. Murano, and A. Peron, 2-visibly pushdown automata. Developments in
Language Theory. Springer Berlin Heidelberg, 2007, 132-144.

[6] R.S. Cohen and A.Y. Gold, Theory of ω-languages. Parct I: Characterization of $\omega-context$-free
languages. Journal of Computer and System Sciences, 1977, 15(2): 169-184.

[7] O. Finkel, Topological complexity of context free ω-languages: A survey Language, Culture,
Computation: Studies in Honor of Yaacov Choueka, Lecture Notes in Computer Science,
Volume 8001, Springer, 2014, 50-77.

136

[8] O. Finkel, The determinacy of context-free games. Journal of Symbolic Logic, 2013, 78(4):

1115-1134.

[9] O. Finkel, On omega context free languages which are Borel sets of infinite rank. Theoretical

Computer Science, 2003, 299(1): 327-346.

[10] O. Finkel, Topological properties of omega context-free languages. Theoretical Computer

Science, 2001, 262(1): 669-697.

[11] W. Fridman, C. L\"oding and M. Zimmermann, Degrees of lookahead in context-free infinite

games. LIPIcs-Leibniz International Proceedings in Informatics. Schloss Dagstuhl-Leibniz-

Zentrum fuer Informatik, 2011, 12.

[12] C. L\"oding, Decision problems for deterministic pushdown automata on infinite words. Pro-

ceedings 14th International Conference on Automata and Formal Languages, EPTCS 151,

2014, 55-73.

[13] C. L\"oding, P. Madhusudan and O. Serre, Visibly pushdown games. Foundations of Software

Technology and Theoretical Computer Science. Springer Berlin Heidelberg, 2005, 408-420.

[14] T. Nemoto, M. Y. Ould MedSalem, K. Tanaka, Infinite games in the Cantor space and

subsystems of second order arithmetic. Mathematical Logic Quarterly, 2007, 53(3): 226-236.

[15] I. Walukiewicz, Pushdown processes: Games and model-checking. Information and Computa-

tion, 2001, 164(2): 234-263.

137

