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The notion of probability plays a crucial role in quantum mechanics. It appears in
quantum mechanics as the so-called Born rule, i.e., the probability interpretation of the
wave function. In modern mathematics which describes quantum mechanics, however,

probability theory means nothing other than measure theory, and therefore any opera-
tional characterization of the notion of probability is still missing in quantum mechanics.
In this sense, the current form of quantum mechanics is considered to be imperfect as a
physical theory which must stand on operational means.

We present an alternative rule to the Born rule based on the toolkit of algorithmic
randomness without reference to the notion of probability for the purpose of making

quantum mechanics perfect. Algorithmic randomness, also known as algorithmic infor-
mation theory, is a field of mathematics which enables us to consider the randomness of

an individual object. It originated in the groundbreaking works of Solomonoff [11], Kol-
mogorov [7], and Chaitin [1] in the mid-1960s. They independently introduced the notion
of program-size complexity, also known as Kolmogorov complexity, in order to quantify the
randomness of an individual object. Around the same time, Martin-L\"of [8] introduced
a measure theoretic approach to characterize the randomness of an individual infinite
binary sequence. This approach, called Martin-Lof randomness nowadays, is one of the
major notions in algorithmic randomness as well as program-size complexity. Later on,
in the $1970s$ Schnorr and Chaitin showed that Martin-L\"of randomness is equivalent to
the randomness defined by program-size complexity in characterizing random infinite bi-
nary sequences. In the 21st century, algorithmic randomness makes remarkable progress
through close interaction with recursion theory. See [10, 5] for the recent development as
well as the historical detail of algorithmic randomness.

We use the notion of Martin-Lof randomness with respect to Bernoulli measure to
state the alternative rule to the Born rule for specifying the property of the results of
quantum measurements in an operational way. As the first step of the research of this
line, we only consider, for simplicity, the case where the set of all possible outcomes of
a quantum measurement is finite, while the state space itself of the quantum system is

allowed to have an infinite dimension.
Recall that the Born rule of quantum mechanics is given as the following postulate:
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Postulate 1 (The Born rule). Quantum measurement is described by an observable, $M,$

a Hermitian operator on the state space of the system being measured. The observable
has a spectral decomposition

$M= \sum_{k=1}^{N}\lambda_{k}E_{k},$

where $E_{k}$ is the projector onto the eigenspace of $M$ with eigenvalue $\lambda_{k}$ . The possible
outcomes of the measurement correspond to the eigenvalues, $\lambda_{k}$ , of the observable. If
the state of the quantum system is $|\Psi\rangle$ immediately before the measurement then the
probability that result $\lambda_{k}$ occurs is given by $\langle\Psi|E_{k}|\Psi\rangle$ , and the state of the system after
the measurement is

$\frac{E_{k}|\Psi\rangle}{\sqrt{\langle\Psi|E_{k}|\Psi\rangle}}.$

$\square$

Thus, the Born rule uses the notion of probability. However, the operational char-
acterization of the notion of probability is not given in the Born rule, and therefore its
relation to an specific infinite sequence of outcomes of quantum measurements which are
being generated by an infinitely repeated measurements is unclear. We try to fix this
point.

Let $\Omega=\{\lambda_{1}, \lambda_{2}, . . . , \lambda_{N}\}$ be a finite alphabet, which serves as the set of all possible
measurement outcomes, and $\Omega^{\infty}$ the set of all infinite sequences over $\Omega$ . We introduce
the notion of Martin-L\"of $P$ -randomness for an infinite sequence over $\Omega$ , where $P=$

$(p_{1},p_{2}, \ldots,p_{N})$ is an $N$-tuple of non-negative reals such that $p_{1}+p_{2}+\cdots+p_{N}=1.$

Intuitively, a Martin-L\"of $P$-random sequence is an individual ‘typical’ infinite sequence
which is obtained as a result by performing an infinitely repeated Bernoulli trials where
the ‘probability’ $p_{k}$ is associated with the outcome $\lambda_{k}$ for each $k=1$ , 2, . . . , $N.$

Let us identify the form of the postulate of quantum measurements as it ought to
be, from a general point of view. Consider the sequence of the outcomes of quantum
measurements, which is an element of $\Omega^{\infty}$ . All that the experimenter of quantum mea-
surements can obtain through the measurements about quantum system is such a specific
infinite sequence of outcomes of the measurements which are being generated by infinitely
repeated measurements. Thus, the object about which the postulate of quantum mea-
surements makes a statement should be the properties of an specific infinite sequence of
outcomes of the measurements. Suggested by this consideration, we propose to replace
the Born rule, Postulate 1, by the following postulate:

Postulate 2. Quantum measurement is described by an observable, $M_{f}$ a Hermitian
operator on the state space of the system being measured. The observable has a spectral
decomposition

$M= \sum_{k=1}^{N}\lambda_{k}E_{k},$

where $E_{k}$ is the projector onto the eigenspace of $M$ with eigenvalue $\lambda_{k}$ . The possible
outcomes of the measurement is in the spectrum $\Omega=\{\lambda_{1}, \lambda_{2}, , \cdot\cdot, \lambda_{N}\}$ of M. Suppose
that the measurements are repeatedly performed over identical quantum systems whose
states are all $|\Psi\rangle$ , and the infinite sequence $\alpha\in\Omega^{\infty}$ of measurement outcomes is being
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generated. Then $a$ is Martin-Lof $P$ -random, where $P=(\langle\Psi|E_{1}|\Psi\rangle, \ldots, \langle\Psi|E_{N}|\Psi\rangle)$ . For
each of the measurements, $・_{}lhe$ state of the system immediately after the measurement is

$\frac{E_{k}|\Psi\rangle}{\sqrt{\langle\Psi|E_{k}|\Psi\rangle}}$ , (1)

where $\lambda_{k}$ is the corresponding measurement outcome. $\square$

We show that Postulate 2 is certainly a refinement of the Born rule from the point of
view of our intuitive understanding of the notion of probability. For example, according to
Postulate 2 we can show that the law of large numbers, i.e., the frequency interpretation,
holds for the infinite sequence $\alpha\in\Omega^{\infty}$ in Postulate 2. On the other hand, we verify the
self-consistency of Postulate 2 on some level, which suggests that Postulate 2 is not too
strong.

So far we have only considered the case of pure states. According to Postulate 2, the
result of the quantum measurements forms a Martin-L\"of $P$-random sequence of states
each of which is of the form (1). In the conventional quantum mechanics, this result
is described as a mixed state. Suggested by this, we give a mathematical definition of
the notion of a mixed state in terms of Martin-L\"of $P$-randomness. We then propose to
replace the Born rule about mixed states by a rule based on algorithmic randomness.

Finally, we consider the validity of our new rules, in particular, based on the many-
worlds interpretation of quantum mechanics $(MWI, for$ short) [6]. MWI is more than just
an interpretation of quantum mechanics. It aims to recover the predictions of quantum
mechanics without assuming the Born rule, Postulate 1. For that purpose, MWI usually
assumes that our world is ‘typical’ or ‘random’ among many coexisting worlds. However,
the proposal of MWI by Everett was nearly a decade earlier than the advent of algo-
rithmic randomness, and this assumption of‘typicality’ was not rigorous. The notion of
(typicality’ or (randomness’ is just the research object of algorithmic randomness. Based
on a generalization of the notion of Martin-L\"of $P$-randomness, we introduce a postulate,
called the principle of typicality, which is a refinement of the assumption of ‘typicality’
by Everett. We then show that all of our new rules can be derived from the principle
of typicality in a unified way. In particular, the principle of typicality is equivalent to
Postulate 2 in the case of pure states.
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