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An invariance principle for stochastic heat equations
with periodic coefficients
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Abstract

This is a shot note on the attempt to apply Kipnis-Varadhan’s theory on central limit
theorem for additive functionals of reversible Markov process to stochastic PDEs. We
considered the mild solution to a stochastic heat equation with periodic coefficients,
which is closely related to the dynamical sine-Gordon equation. We summarize the
results on the invariant measure, ergodicity and generator, and prove a central limit
theorem via the general method. We also obtain an invariance principle.

1 1-dimensional diffusion

A general theory of functional CLT for Markov processes is developed in [4], based
on a martingale-decomposition of the targeted functional. This method is extended to
non-reversible cases in many references, e.g. [6], [7], [8] and [10]. Combined with Itd’s
formula, it can be used to prove the central limit theorem for diffusion processes in R®
with periodic coefficients, as illustrated in [5, Chapter 9].

Heuristically, let d = 1 and a, U € C2(R) be two functions of period 1. Furthermore,
suppose that a has a strictly positive infimum and let X; € R be the solution to the
Itd stochastic differential equation
dX; = V(Xp)dt + a3 (X;)dw, a

Xo=z €R, .

where V(z) £ —1[U'(z)a(z) + o/(z)] and w; is a standard 1-dimensional Brownian
motion. Under regularity assumptions made about the coefficients, X; exists uniquely
and has the Markov property. Let P; be the transition probability semigroup generated
by X;, defined as

Pif(z) £ E[f(X,)|Xo = ]

for all f € Cy(R) and z € R. The generator £ associated to X; is

Lf@) = 5 [~V @)a(z) + d'(@)] (&) + 3@)f" (@)
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for f € C*(R) and z € R. Since [; Lf(z)e"U@dz = 0, e"U(@dz is invariant under P;.
To deal with the issue that e"U(®)dz is of infinite mass, let X; be the diffusion
induced by X; on the 1-dimensional torus T = R/ ~, where the equivalence relation
z ~ y holds if and only if x — y € Z. It is clear that this process is well-defined
because we have the periodic condition. Denote by P, £ the Markov semigroup on and
generator related to X, respectively. It is clear that the probability measure

1 _p
r(dz) = =e V@ 4z
(d3) = -
is invariant and ergodic under P, where Z is a normalization constant.
In order to prove the CLT for X; we consider the cell problem —Lf = V. It does
not take too much effort to solve it with

x
f@)=—-z+C / eU(y)a_l(y)dy + Cy
0

where C]! = fol- eVWa=1(y)dy and C; is an constant such that [ f(¢)dz = 0.

Notice that the trajectory of particle can be decomposed to the additive functional
fot V(X;)ds and the martingale fot a3(X,)dws. Applying the classical Itd’s formula to
f in the cell problem, we have

,‘ .
X =z + f(&) - f(X2) +/0 a3 (X,) [f/(Xs) + 1] dw,.

By the ergodic theorem and the martingale CLT (see in [11]), we obtain that as t — oo,
t_%Xt converges weakly to a centered normal distribution with variance given by

o, 1t Uz) . —1 2 _U)
ot == a(x) [Cle a (z) - 1] e dzx.
0

2 Stochastic heat equation

The following dynamical sine-Gordon equation is introduced in [3]
1 .
Ou = §Au+csin(5u+0) +¢, (2.1)

where ¢, 8 and € are real constants and £ denotes the space-time white noise. (2.1) is the
natural dynamic associated to the usual quantum sine-Gordon model, whose solution
can be constructed via classical Itd’s theory on stochastic PDE when spatial dimension
is 1, or via Hairer’s theory of regularity structures when spatial dimension is 2, see
in [3]. From a physical perspective, (2.1) describes globally neutral gas of interacting
charges at different temperature 3.

The strategy illustrated before is expected to be applicable to (2.1). We only deal
with a 1-dimensional general model here, written as

Beult, @) = 30%u(t,2) - Vi(u(t,2)) + W(5,2), ¢> 0,3 € (0,1),
Oz u(t,0) = du(t,1) =0, t>0,

u(0, z) = v(z), z € [0,1].

(2.2)



In (2.2), VI(u) & E%Vz(u) where V;(-) = V(z, -) is a family of C? functions on R indexed
by z € [0, 1], satisfying

(1) Vu € R, V,(u) is Borel-measurable in z;

(2) SUPyep,1yuer {IVa(u)] + V(w)]} < oo;

(3) Vz € [0 1] V, is global Lipschitz continuous with the same Lipschitz constant.

(4) vz € [0, 1], V; is periodic in u: Vz(u) = Vy(u +1).

The stochastic PDE (2.2) is originally defined in [2] for the purpose of describing the
motion of a flexible Brownian string in some potential field. The solution u(t) uniquely
exists in C[0, 1] and forms a continuous Markov process. Furthermore, if {wr}zep, is
a l-dimensional Brownian motion whose initial distribution is the Lebesgue measure
on R, then the reversible measure of u(t) is an infinite measure on C|[0, 1] given by

o) =exp{ -2 [ Valol@)de b (), (23)

where p,, stands for the measure induced by w, (sec in [2]).

Similar to the 1-dimensional diffusion, we consider an equivalence relation in C [0,1]
such that v; ~ vs if and only if v; — vy equals to some integer-valued constant function.
Let E = C[0,1]/ ~ and identify ¥ € E with its representative v € C|0, 1] such that

v(0) € [0,1). A function f on C[0,1] can be automatically regarded as-a function on E
if it satisfies that f(v + 1) = f(v). Let u(t) be the process induced by u(t) on E.

It is clear that u(t) inherits the Markov property and a finite reversible measure
form u(t). Precisely, suppose {wg }zefo,1) to be a 1-dimensional Brownian motion whose
initial distribution is the Lebesgue measure on [0, 1), then

r(d0) = %exp { —2 /0 1 V;;(v(a:))dx} mo(d) (2.4)

is a probability measure and is reversible for u(t), where 7, stands for th.e measure
of w, and Z is a normalization constant. Let H be the Hilbert space L*(E, ), with

the inner product (-, ), and the norm || - ||. Denote by {P;} the Markov semigroup

generated by u(t) on . Recall the results in [9] on the strong Feller property and
irreducibility of {P;}, we can conclude that 7 is the only one invariant measure, thus
it is ergodic.

Let £4(H) be the linear span of all real and imaginary parts of functions on H of
the form h — e where I € C2[0,1] such that I(0) = I'(1) = 0. Moreover, suppose
EA(E) to be the collection of functlons in £4(H) such that f(v) = f(v + 1) for all
v € E. For f € E4(E), define

Kof (4) = 3(GEDS (), ) + 5Tr [D2F@0)] ~ (DFGLV/(),  (25)

where D denotes the Fréchet derivative. The integration-by-part formula for Wiener

measure suggests that .
E-|Df|* = 2(f,~Kof)m, (2.6)

thus Ko is dissipative on H. Denote its closure by (D(K),K). Along a similar strategy
used in [1], we can conclude that K generates {Pt} on H.
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Proposition 2.1. For all f € D(IC), the following equation holds m-a.s. and in H.
t t
e = £0) + [ Kt + [ (Dfatr)), awe). (27)

Proof. If f € E4(E), (2.7) follows from the classical Itd’s formula easily.

For general f, pick fm € £4(E) such that f, — f, Kfm — Kf in H. Then (2.6)
suggests that || D f,, — Df|| also vanishes in H as m — oo. Therefore, (2.7) follows from
the 1t6 isometry. O

3 CLT and invariance principle

Theorem 3.1. Under an initial probability distribution v such that v < p,
u(t '

E[7(42) ) - [ra-wnaam)|=o 31)
\/Z R

holds for all f € Cy(C|0,1]), where o is a constant introduced later and N,2 stands for

a 1-dimensional centered Gaussian distribution on R with variance o2.

lim FE,
t—o0

We first define two Hilbert spaces related to the operator K. For f € £4(E) let

1713 = (K7, £)= = 3B IDFI.

Let H; be completion of £4(F) under || - ||1, which turns to be a Hilbert space if all f
such that || f||; = O are identified with 0. On the other hand, let

I= {f € H; | fll-1 2 sup  (f,g)r < 00}
ge€&A(E) |lgll1=1
Let H_; be the completion of Z_; under || - ||-1, which also becomes a Hilbert space
if all f with ||f||-1 = O are identified with 0. Denote by (-,-); and (-,-)_; the inner
products defined by polarization in H; and #_; respectively.

Proof of Theorem 3.1. Pick ¢ € C?[0,1] such that ¢'(0) = ¢'(1) = 0. The tré,jectory
of (u(t),y) can be written as a sum of the additive functional f(f V¥(u(r))dr plus a
Brownian motion (W}, ), where V¥ is a functional on E defined as

1 1
Vo) 2 /O o(@)¢" () dz ~ /O V! (u())p(z)dz.

It is not hard to verify that V¥ € HNH_; and ||[V?||-1 < l/—§||¢|1, however to solve the
cell problem in H turns to be not easy. Instead, for A > 0 we consider the resolvent

equation written as )
ME - Kff =Ve. (32)

Taking inner product with fY in (3.2), since u(t) is reversible under m we have

sup [[Kf{ -1 = sup || f{1l1 < IV¥]-1 < 0. (3.3)
A>0 A>0



Decompose the additive functional as [} V¥ (u(r))dr = M{(t) + R{(t), where MY is
the Dynkin’s martingale and RY, is the residual term

ME(t) = £2(a(t)) — £2(a(0) - / K5 (a(r))dr,

t
RS0 = 5 6(0) = 5 0(0) + | fHatrar.
Applying (2.7) to fY, combining it with this decomposition, we have
' t
(u(t),#) = (w0), ) + [ (DILa) + 0, W) + R 1),

Condition (3.3) implies that (see in [5, Chapter 2]) there exists some f¥ € H; and an
adapted process R?(t) such that

t
(u(t), ) = (u(0), ¢) + / (DF*(u(r) + p, dW,) + R2(0).

Now the vanishment of R¥(t) (see in [5, Chapter 2]) and martingale CLT show that
under initial distribution v < u,

E [f (3‘%—‘”) } fo] - f(y)Naz(dy)[ 0 (3.4)

lim E,
t—oo

for all f € Cy(R) and 6 € R, where 0% = Eq||Df? + %
Finally, to prove Theorem 3.1 we only need to pick ¢ = ej in (3.4) such that {e;}
forms a CONS of L?[0, 1] including the constant function 1 and sum them up. O

Now fix T' > 0 and consider the C[0, 1]-valued process {u(®(t) = eu(e"%)}te[O,T].
By checking the tightness we can prove the next invariance principle.

Theorem 3.2. Under initial distribution v < u, {eu(e™%t),t € [0, T} converges weakly
to a Gaussian process {oB;-1,t € [0, T} as € | 0, where B, is a I-dimensional Brownian
motion on [0,T] and o is the same constant as in Theorem 3.1.

Proof. Tt is sufficient to verify the tightness. Recall that u(t) satisfies that
t t
u(t) = S(t)v —l—/ S(t —r)[=V/(u(r,-))]dr + / S(t —r)dW,
0 0

Denote the three terms in the right-hand side by X(t), Y (t) and Z(¢) respectively.
Furthermore, let X1 (¢) £ X(t) — fol X (t,z)dz and define Y, Z+ similarly. Then

. .
eu(e™2t) = e/ u(e™?t, z)dx + XL (e7%t) + YL (e72t) + 2+ (e72t).
0

When € | 0, [5, Theorem 2.32] yields that the integral term is tight, while {e X+ (e7%t),t €
[0,T]} vanishes uniformly since the heat semigroup is contractive.
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The tightness of the two terms about Y+ and Z* follows from the following esti-

mates. For all p > 1, there exists a finite constant C, only depending on {V;} such
that for all t1, to € [0,00) and z1,z2 € [0,1],

L L 2 P P
E|Y4(t,2) - Y*(ta,22)| < Cyllts = talf + ] — 2l?); (3.5)
2p
E|Z*(ts, 1) = 24 (ta,m2)| < Cpllts — tolf + fo1 = 22P). (36)
(3.5) and (3.8) are standard estimates for stochastic heat equations and the proof only
involves computations, so we omit them here. O
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