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Abstract

The application of infinite dimensional integration techniques of oscillatory type to the
mathematical definition of Feynman path integrals is described. Recent applications to the

dynamics of quantum open systems, in particular to the quantum theory of continuous mea-
surement, are also presented.

\S 1. Introduction

Feynman integration techniques are widely used (often at an heuristic level) in many

areas of theoretical physics, such as quantum field theory, nonrelativistic quantum me-

chanics, statistical mechanics, see e.g. [22, 25, 28, 29, 34, 36, 46, 50]. The origins of

these ideas can be found the $40s[23]$ , when R. Feynman, inspired by a suggestion by

Dirac [19], proposed an alternative formulation of time evolution in quantum mechanics.

Feynman’s original aim was a variational Lagrangian formulation of quantum theory,

reintroducing the concept of trajectory, which had been banned by the “traditional’‘

formulation of quantum mechanics [49]. According to Feynman, the wave function $\psi$ of

a non relativistic quantum particle, namely the solution of the Schr\"odinger equation

(1.1) $\{\begin{array}{l}i\hslash\frac{\partial}{\partial t}\psi=-\frac{\hslash^{2}}{2m}\Delta\psi+V\psi\psi(0, x)=\psi_{0}(x)\end{array}$

(where $\hslash$ is the reduced Planck constant, $m>0$ is the mass of the particle and $F=-\nabla V$

is an external force) should be given by a “sum over all possible histories i.e. by a
heuristic integral over the space of all possible paths $\gamma$ (in the configuration space of

the system) with finite energy and fixed end point of the form:

(1.2) $\psi(t, x)=$
“

$C \int_{\{\gamma|\gamma(t)=x\}}e^{E^{i}}S_{t}(\gamma)\psi_{0}(\gamma(0))D\gamma$

,,
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In formula (1.2) $S_{t}(\gamma)$ is the classical action of the system evaluated along the path $\gamma$ :

(1.3) $S_{t}( \gamma)\equiv\int_{0}^{t}(\frac{m}{2}\Vert\dot{\gamma}(s)\Vert^{2}-V(\gamma(s)))ds,$

while the symbol $D\gamma$ stands for a heuristic Lebesgue “flat” measure on the space of
paths and $C$ for a normalization constant, formally $C= \int e\pi^{i}\int_{0}^{t}\frac{m}{2}\Vert\dot{\gamma}(s)\Vert^{2}dsD\gamma.$

Feynman’s approach to the description of quantum dynamics is particularly fasci-

nating as it creates a connection between the classical Lagrangian description and the
quantum one. Indeed it provides a quantization method, allowing, at least heuristically,

to associate a quantum evolution to each classical Lagrangian. Furthermore the study

of the semiclassical limit of quantum mechanics, i.e. the analysis of the asymptotic be-

havior of the solution of the Schr\"odinger equation (or the transition amplitudes) in the

limit where the Planck constant $\hslash$ can be regarded as a small parameter converging to $0,$

is particularly intuitive. Indeed, according to an heuristic application of the stationary

phase method to formula (1.2), when $\hbar\downarrow 0$ the paths which give the main contribution to

the integral should be those that make stationary the action functional $S_{t}(1.3)$ . These,

by Hamilton’s least action principle, are exactly the classical orbits of the system. On

the other hand formula (1.2), as it stands, is mathematically ill-defined: indeed nei-

ther the “infinite dimensional Lebesgue measure” $D\gamma$ , nor the normalization constant

in front of the integral are meaningful. In fact, at the beginning of the $60$ ’s Cameron

[16] proved that the heuristic Feynman measure, formally written as
$\overline{fe^{l}\hslash^{\mathcal{S}_{t}(\gamma)}D\gamma}$

’ cannot
$ek^{S_{t}(\gamma)_{D\gamma}}$

be realized as a complex $\sigma$-additive measure with finite total variation on the space of

“paths” $\gamma\in[0, t]^{R^{d}}$ , endowed with the $\sigma$-algebra generated by the cylindrical sets of

the form
$\{\gamma\in[0, t]^{\mathbb{R}^{d}} : \gamma(t_{1})\in B_{1}, \gamma(t_{k})\in B_{k}\},$

where $0<t_{1}<$ $<t_{k}\leq t$ and $B_{1},$ $B_{k}$ are Borel sets in $\mathbb{R}^{d}$ (see [41] for a dis-

cussion of this problem). This technical problem can be solved by changing point of

view and trying to realize the “Feynman integral”’ in terms of a linear continuous func-

tional on a Banach algebra of “integrable” functions, in the spirit of the Rietz-Markov
theorem, that states a one to one correspondence (on suitable topological spaces $X$ )

between complex bounded measures and hnear continuous functionals on $C_{\infty}(X)$ (the

continuous functions on $X$ vanishing at $\infty$). Nowadays several implementation of this

program can be found in the physical and in the mathematical literature, for instance

by means of analytic continuation of Wiener integrals [16, 44, 34, 47, 35, 20, 37, 43, 34],

or as an infinite dimensional distribution in the framework of Hida calculus [30], via

“complex Poisson measures”’ [38, 2], or via non standard analysis [4] or as a infinite

dimensional oscillatory integral. The latter method is particularly interesting as it is

the only one allowing a systematic implementation of an infinite dimensional version of
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the stationary phase method, as well as its application to the study of the semiclassical

limit of quantum mechanics[7]. Such an approach has its roots in a couple of papers by

Ito [32, 33] and was developed by S. Albeverio and R. $H\emptyset egh$-Krohn [7, 8], D.Elworthy

and A.Ruman [21], S. Albeverio and Z. Brze$\acute{z}niak[1]$ . It is based on a generalization of

the definition (and the main properties) of classical oscillatory integrals [31] to the case

where the integration is performed on an infinite dimensional Hilbert space. It provides

a mathematical definition of Feynman’s heuristic formula (1.2) in the case where the

initial datum $\psi_{0}$ and the potential $V$ are bounded continuous function which can be

written as the Fourier transform of $a$ (complex) finite measure on $\mathbb{R}^{d}[21]$ . Recently

more general quantum dynamical systems have been investigated by means of these

functional integration techniques, see e.g. [9, 39]. Particularly interesting applications

can be found in the quantum theory of open systems, a challenging area of theoretical

physics which intertwines foundational issues of quantum theory (such as phenomena

as decoherence and the process of measurement of a physical observable) and modern

applications (such as, for instance, the theory of quantum computing) [22].

In the traditional formulation of quantum mechanics the continuous time evolution

described by the Schr\"odinger equation (1.1) is valid if the quantum system is “undis-

turbed i.e. if it is isolated. On the other hand the concept of isolated system is not

realistic. We should not forget that all the informations we can have on the state of a
quantum system are the result of some measurement process. According to the tradi-

tional Copenhagen formulation of quantum mechanics, when the particle interacts with

the measuring apparatus, its time evolution is no longer continuous: the state of the

system after the measurement is the result of a random and discontinuous change, the

so-called “collapse of the wave function which cannot be described by the Schr\"odinger

equation. Indeed, let us consider an observables $\mathcal{A}$ represented by a self-adjoint operator
$A$ on a complex separable Hilbert space $\mathcal{H}$ , whose unitary vectors represent the states

of the system, and let us assume for simplicity that $A$ is bounded and its spectrum

is discrete. Let $\{a_{i}\}_{i\in N}\subset \mathbb{R}$ and $\{\psi_{i}\}_{i\in N}\subset \mathcal{H}$ be the corresponding eigenvalues and

eigenvectors. According to the traditional mathematical formulation by von Neumann

the consequences of the measurement are:

1. the decoherence of the state of the quantum system: because of the interaction with

the measuring apparatus an initial pure state $\psi$ becomes a mixed state, described

by the density operator $\rho^{\rho rior}(t)=\sum_{i}w_{i}P_{\psi_{i}}$ , where $P_{\psi_{i}}$ denotes the projector

operator onto the eigenspace which is spanned by the vector $\psi_{i}$ and $w_{i}=|\langle\psi_{i},$ $\psi\rangle|^{2}.$

Considering another observable $\mathcal{B}$ (represented by a bounded self-adjoint operator
$B)$ , its expectation value at time $t$ , after the measurement of the observable $\mathcal{A}$ (but

without the information of the result of the measurement of $\mathcal{A}$), is given by

$\mathbb{E}(B)_{t}^{prior}=Tr[\rho^{prior}(t)B]$
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The transformation mapping $\psi$ to the so-called “prior state”’ $\rho^{prior}(t)$ is named
“prior dynamics”’ or non selective dynamics.

2. The so-called (collapse of the wave function” : after the reading of the result of
the measurement of $\mathcal{A}$ (i.e. the real number $a_{i}$ ) the state of the system is the
corresponding eigenstate of the measured observable:

$\rho(t)_{a_{i}}^{post}=P_{\psi_{i}}.$

The expectation value of another observable $\mathcal{B}$ of the system at time $t$ (taking into

account the information about the value of the measurement of $A$ ) is given by:

$\mathbb{E}^{post}(B|A=a_{i})_{t}=Tx[\rho_{a_{i}}^{p\circ st}(t)B]=\langle\psi_{i}, B\psi_{i}\rangle$

The transformation mapping the initial state $\psi$ to one of the so-called “posterior

states”’ $\rho_{a_{i}}^{post}(t)$ is called “posterior dynamics” or selective dynamics and depends

on the result $a_{i}$ of the measurement of $\mathcal{A}.$

As it is suggested by the collapse of the wave function, the non selective dynamics maps
pure states to mixed states, while the selective one maps pure states to pure states. The
relation between the posterior state and the prior state is given by:

$\rho^{prior}(t)=\sum_{i}P(A=a_{i})\rho_{a_{i}}^{post}(t)$

where $P(A=a_{i})$ is the probability that the outcome of the measurement of $\mathcal{A}$ is the
eigenvalue $a_{i}$ and it is given by

$P(A=a_{i})=|\langle\psi_{i}, \psi\rangle|^{2}.$

We remark that

(1.4)
$\mathbb{E}(B)_{t}^{prior}=\sum_{i}\mathbb{E}^{post}(B|A=a_{i})P(A=a_{i})$ ,

This kind of phenomena, in particular the prior and posterior dynamics, cannot be
described by the traditional Schr\"odinger equation (1.1).

There are several efforts to include the process of measurement into the traditional
quantum theory and to deduce from its laws, instead of postulating, both the process
of decoherence (see point 1) and the collapse of the wave function (point 2). In par-

ticular the aim of the quantum theory of measurement is a description of the process
of measurement taking into account the properties of the measuring apparatus, which
is handled as a quantum system, and its interaction with the system submitted to the

measurement [17]. Even if also this approach is not completely satisfactory (also in this

99



FEYNMAN PATH INTEGRALS FOR QUANTUM OPEN SYSTEMS

case one has to postulate the collapse of the state of the compound system “measuring

apparatus plus observed system”’ or, more generally, “system plus environment it is

able to give a better description of the process of measurement.

An example of this approach is for instance the paper by Caldeira and Legget [15],

where the Lindblad equation for the evolution of the density operator $\rho$ , describing the

process of decoherence (i.e. the prior dynamics) is heuristically derived:

(1.5) $\frac{\partial}{\partial t}\rho^{prior}=\frac{1}{i\hslash}[H, f^{rior}]-\frac{\eta kT}{\hslash^{2}}[x, [x, \rho^{prior}$

The authors show how equation (1.5) is a consequence of the interaction of the system

with a ensemble of oscillators that model, for instance, the normal modes of an elec-

tromagnetic field or the vibrations of the atoms in a crystal. $H$ is the Hamiltonian of

the system, $k$ is Boltzmann constant, $T$ is the temperature of the crystal and $\eta$ is a
damping constant.

Feynman formulation of quantum dynamics can provide an heuristic but really intu-

itive description of quantum open systems. For instance, the functional integral descrip-

tion of the prior dynamics of a system interacting with an external environment has been

proposed by Feynman and Vernon in [26]. Let denote by $\rho s$ and $\rho_{E}$ the initial density

matrices of the system and of the environment and by $S_{S}$ and $S_{E}$ the action functionals

of the system and of the environment respectively. Let $S_{I}$ be the contribution to the

total action due to the interaction between the system and the environment. Then the

kernel of the reduced density operator of the system $\rho^{prior}$ (obtained by tracing out the

environmental coordinates) is heuristically given by

(1.6) $\rho^{prior}(t, x, y)= \int_{\gamma(t)=x}^{i}(s_{s(\gamma)-S_{S}(\gamma’))}\gamma’(t)=y^{e^{\hslash}F(\gamma,\gamma’)\rho_{S}(\gamma(0),\gamma’(0))D\gamma D\gamma’}$

”

where $F$ is the formal influence functional (shortly IF)

(1.7) $F(\gamma, \gamma’)$

$= \int_{\Gamma(t)=R}\Gamma,(t)=R^{e^{\hslash^{i}}e^{\frac{t}{\hslash}(S_{I}(\Gamma,\gamma)-S_{I}(\Gamma’,\gamma’))}\rho_{E}(\Gamma(0),\Gamma’(0))D\Gamma D\Gamma’dR}(s_{E(\Gamma)-S_{E}(\Gamma’))},,$

By construction the influence functional can be regarded as a correction of the isolated

dynamics of the system $S$ which depends explicitly on the model of the environment, as
well as on the form of the interaction between them. The IF formalism has been applied

to the description of Markovian open quantum systems and in the study of quantum

computing, where the implementation of real quantum processors is often hampered by

quantum decoherence phenomena (see, e.g., [48, 12, 45], and references therein).

Another heuristic path integral formula describing the time evolution of a quantum

system submitted to the continuous (unsharp) measurement of one of its observables
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has been proposed in [42]. From a physical point of view, the study of this problem is
particularly interesting, as it involves phenomena such as the the so-called Zeno effect,

which seems to forbid a satisfactory description of continuous measurements. Indeed
if a sequence of (ideal’ 1 measurements of an observable $\mathcal{A}$ (with discrete spectrum) is

performed and the time interval between two measurements is sufficiently small, then the

observed system does not evolve. In other words a particle whose position is continuously

monitored cannot move. This result is in apparent contrast with the experience: indeed

in a bubble chamber repeated measurements of the position of microscopical particles

are performed without “freezing” their state. This result can be obtained by means of
unsharp (fuzzy) continuous measurements. For instance, in the case where the position
$X$ of a quantum particle is continuously monitored giving a readout $[\omega]=\{\omega(s)\}_{s\in[0,t]},$

then the posterior (selective) dynamics of the system can be expressed by means or the
restricted path integral heuristic formula[42]:

(1.8) $\psi^{post}(t, x;[\omega])=\int_{\{\gamma|\gamma(t)=x\}}e^{\frac{i}{\hslash}S_{t}(\gamma)}e^{-k\int_{0}^{t}(\gamma(s)-\omega(s))^{2}ds}\psi_{0}(\gamma(0))D\gamma$

where $k\in \mathbb{R}^{+}$ is a constant proportional to the accuracy of the measurement. Formally,

according to formula (1.8) which contains the correction term $e^{-k\int_{o}^{t}(\gamma(s)-\omega(s))^{2}ds}$ , the

paths $\gamma$ which give the main contribution to the integral are those closer to the observed

trajectory $[\omega]$ . We point out that the restricted path integral formalism, although just

heuristic (at least at this level), is rather general as formula (1.8) does not depend on

the explicit form of the environment (or the measuring apparatus) and of the interaction

Hamiltonian.

An alternative mathematical description of the same physical phenomenon can be

given by means of a class stochastic Schr\"odinger equations[14, 10, 11, 18, 27]. We

consider in particular Belavkin equation, a stochastic Schr\"odinger equation describing

the selective dynamics of a $d$-dimensional particle submitted to the measurement of

one of its (possible $M$-dimensional vector) observables, described by the self-adjoint

operator $R$ on $L^{2}(\mathbb{R}^{d})$

(1.9) $\{\begin{array}{l}d\psi(t, x)=-\frac{i}{\hslash}H\psi(t, x)dt-\frac{\lambda}{2}R^{2}\psi(t, x)dt+\sqrt{\lambda}R\psi(t, x)dW(t)\psi(0, x)=\psi_{0}(x) (t, x)\in[O, T]\cross \mathbb{R}^{d}\end{array}$

where $H$ is the quantum mechanical Hamiltonian, $W$ is an $M$-dimensional Brownian

motion on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ , $dW(t)$ is the Ito differential and $\lambda>0$ is a
coupling constant, which is proportional to the accuracy of the measurement. In the

lA measurement is called ideal if the correlation between the state of the measuring apparatus and
the state of the system after the measurement is maximal
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particular case of the description of the continuous measurement of position one has

$R=x$ , so that equation (1.9) assumes the following form:

(1.10) $\{\begin{array}{l}d\psi(t, x)=-\frac{i}{\hslash}H\psi(t, x)dt-\frac{\lambda}{2}x^{2}\psi(t, x)dt+\sqrt{\lambda}x\psi(t, x)dW(t)\psi(0, x)=\psi_{0}(x) (t, x)\in[O, T]\cross \mathbb{R}^{d},\end{array}$

while in the case of momentum measurement [6], $(R=-i\hslash\nabla)$ one has:

(1.11) $\{\begin{array}{l}d\psi(t, x)=-\frac{i}{\hslash}H\psi(t, x)dt+\frac{\lambda\hslash^{2}}{2}\Delta\psi(t, x)dt-i\sqrt{\lambda}\hslash\nabla\psi(t, x)dW(t)\psi(0, x)=\psi_{0}(x) (t, x)\in[O, T]\cross \mathbb{R}^{d}.\end{array}$

The aim of the present paper is the rigorous mathematical realization of the heuristic

Feynman path integral formulae (1.6) and (1.8) in terms of infinite dimensional os-

cillatory integration techniques. In section (2) we recall the definition and the main

properties of infinite dimensional oscillatory integrals. In section 3 we apply these tech-

niques to the mathematical definition of the Feynman-Vernon influence functional in

the case of the Caldeira-Leggett model. In section 4 we construct a functional inte-

gral representation for the solution of the stochastic Schr\"odinger equation (1.10) of the

“restricted path integral”’ type, i.e. similar to the heuristic Mensky formula (1.8).

\S 2. Infinite dimensional oscillatory integrals

In this section we give the definition of infinite dimensional oscillatory integral and

prove some important properties which will be used in the study of the time evolution

of a quantum system.

In the following we shall denote by $\mathcal{H}a$ (finite or infinite dimensional) real separable

Hilbert space, whose elements will be denoted by $x,$ $y\in \mathcal{H}$ and the scalar product by
$\langle x,$ $y\rangle;f$ : $\mathcal{H}arrow \mathbb{C}$ will be a Borel function on $\mathcal{H}$ and $L:\mathcal{D}(L)\subseteq \mathcal{H}arrow \mathcal{H}$ an invertible,

densely defined, and self-adjoint operator.

The study of oscillatory integrals on $\mathbb{R}^{n}$ with quadratic phase functions, called Ekes-

nel integrals

(2.1) $\int_{\mathbb{R}^{n}}^{i}\overline{2}7\langle x,x\rangle, \hslash>0,$

is alargely developed topic, and has strong connections with several problems in mathe-

matics, for instance in the theory of Fourier integral operators, and physics, for instance

in optics. Following H\"ormander [31], the integral (2.1) can be defined even if $f$ is not
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summable, by exploiting the cancellations due to the oscillatory behavior of the inte-

grand, via a limiting procedure. More precisely, Fresnel integrals can be defined as the

limit of a sequence of regularized, hence absolutely convergent, Lebesgue integrals.

Definition 2.1. A function $f$ : $\mathbb{R}^{n}arrow \mathbb{C}$ is called FVesnel integrable if for each

Schwartz test function $\phi\in S(\mathbb{R}^{n})$ , such that $\phi(0)=1$ , the limit

$\lim_{\epsilonarrow 0}(2\pi i\hslash)^{-n/2}\int e^{\frac{i}{2\hslash}\langle x,x\rangle}f(x)\phi(\epsilon x)dx$

exists and is independent of $\phi$ . In this case the limit is called Fresnel integral of $f$ and

is denoted by

$\overline{\int}e^{\pi^{i}}2\langle x,x\rangle f(x)dx.$

In [21] this definition is generalized to the case where $\mathbb{R}^{n}$ is replaced by an infinite

dimensional real separable Hilbert space $(\mathcal{H},$ $\langle$ , More precisely, an infinite dimen-

sional Fresnel integral can be defined as the limit of a sequence of finite dimensional

approximations.

Definition 2.2. A function $f$ : $\mathcal{H}arrow \mathbb{C}$ is said Fresnel integrable if for any sequence
$\{P_{n}\}_{n\in \mathbb{N}}$ of projectors onto $n$-dimensional subspaces of $\mathcal{H}$ , such that $P_{n}\leq P_{n+1}$ and
$P_{n}arrow 1$ strongly as $narrow\infty$ (1 being the identity operator in $\mathcal{H}$), the finite dimensional

approximations

$\overline{\int}_{P_{n}\mathcal{H}}e^{\pi^{i}}2\langle P_{n}x,P_{n}x\rangle f(P_{n}x)d(P_{n}x)$

are well defined (in the sense of Definition 2.1) and the limit

$\lim_{narrow\infty}\overline{\int}_{P_{n}\mathcal{H}}e^{\frac{i}{2\hslash}\langle P_{n}x,P_{n}x\rangle}f(P_{n}x)d(P_{n}x)$

exists and is independent of $\{P_{n}\}.$

In this case the limit is called FVesnel integral of $f$ and is denoted by

$\overline{\int}e^{\frac{i}{2\hslash}\langle x,x\rangle}f(x)dx.$

A complete (direct description” of the largest class of Fresnel integrable functions is

still missing, even in finite dimension. However, it is possible to find some interesting

subsets of it.

Let us denote by $\mathcal{M}(\mathcal{H})$ the Banach space of the complex bounded variation measures
$\mu$ on $\mathcal{H}$ , endowed with the total variation norm

$\Vert\mu\Vert=\sup\sum_{i}|\mu(E_{i})|,$
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where the supremum is taken over all sequences $\{E_{i}\}$ of pairwise disjoint Borel subsets

of $\mathcal{H}$ , such that $\bigcup_{i}E_{i}=\mathcal{H}$ . The space $\mathcal{M}(\mathcal{H})$ is a Banach algebra, where the product of

two measures $\mu*\nu$ is by definition their convolution:

$\mu*\nu(E)=\int_{\mathcal{H}}\mu(E-x)d\nu(x) , \mu, \nu\in \mathcal{M}(\mathcal{H})$ ,

and the unit element is the vector $\delta_{0}.$

Let $\mathcal{F}(\mathcal{H})$ be the space of complex functions on $\mathcal{H}$ which are Fourier transforms of

measures belonging to $\mathcal{M}(\mathcal{H})$ , namely functions $f$ : $\mathcal{H}arrow \mathbb{C}$ of the form

$f(x)= \int_{\mathcal{H}}e^{i\langle x,y\rangle}d\mu_{f}(y)\equiv\hat{\mu}_{f}(x) , x\in \mathcal{H},$

for some $\mu_{f}\in \mathcal{M}(\mathcal{H})$ . The set $\mathcal{F}(\mathcal{H})$ is a Banach algebra of functions, where the product

is the pointwise one, the unit element is the function 1, i.e. $1(x)=1\forall x\in \mathcal{H}$ , and the

norm is given by $\Vert f\Vert=\Vert\mu_{f}\Vert$ . The following result holds.

Theorem 2.3. Let $L:\mathcal{H}arrow \mathcal{H}$ be a selfadjoint trace-class operator, such that $(I-L)$

is invertible. Let $y\in \mathcal{H}$ and let $f$ : $\mathcal{H}arrow \mathbb{C}$ be the Fourier transform of a complex bounded

variation measure $\mu_{f}$ on $\mathcal{H}$ . Then the function $g:\mathcal{H}arrow \mathbb{C}$ defined by

$g(x)=e^{-}2\nabla^{i}e)f(x) , x\in \mathcal{H}$

is Fresnel integrable and the corresponding Fresnel integral can be explicitly computed in

terms of a well defined absolutely convergent one with respect to a $\sigma$ -additive measure,

by means of the Parseval-type equality:

$\sim\int ee^{-T2}e^{i\langle x,y\rangle}f(x)dx$

(2.2) $=( \det(I-L))^{-1/2}\int_{\mathcal{H}}e^{-\frac{x\hslash}{2}\langle x+y,(I-L)^{-1}(x+y)\rangle}d\mu_{f}(x)$ ,

where $\det(I-L)=|\det(I-L)|e^{-\pi iInd(I-L)}$ is the Fredholm determinant of the operator

$I-L,$ $|\det(I-L)|$ its absolute value and $Ind(I-L)$ the number of negative eigenvalues

of $I-L$ , counted with their multiplicity.

Proof. The result follows directly from Theorem 2.1 in [1] (see also [21]), which states
that for $g\in \mathcal{F}(\mathcal{H})$

$\overline{\int}^{i}\langle x,x\rangle^{i}\langle x,Lx\rangle=\frac{1}{\sqrt{\det(I-L)}}\int_{\mathcal{H}}e^{-\llcorner\hslash}2\langle x,(I-L)^{-1}(x)\rangle d\mu_{g}(x)$ ,

by choosing $\mu_{g}:=\delta_{y}*\mu_{f}.$ $\square$

From expression (2.2) the following result follows easily.
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Corollary 2.4. Under the assumptions of Theorem 2.3 the functional

$f\in \mathcal{F}(\mathcal{H})\mapsto\overline{\int}e^{\frac{i}{2\hslash}\langlex,(I-L)x\rangle}e^{i\langle x,y\rangle}f(x)dx$

is continuous in the $\mathcal{F}(\mathcal{H})$ -norm.

\S 3. The Feynman-Vernon influence functional

In order to handle the description of the time evolution of the density matrix of

a quantum system, in this section we introduce another type of infinite dimensional

oscillatory integrals on the product space $\mathcal{H}\cross \mathcal{H}$ (see [3] for more details).

Definition 3.1. A function $f:\mathcal{H}\cross \mathcal{H}arrow \mathbb{C}$ is Fresnel integrable if for any sequence
$\{P_{n}\}$ of projectors onto $n$-dimensional subspaces of $\mathcal{H}$ , such that $P_{n}\leq P_{n+1}$ and $P_{n}arrow 1$

strongly as $narrow\infty$ (1 being the identity operator in $\mathcal{H}$), the finite dimensional oscillatory

integrals

$\overline{\int}_{P_{n}\mathcal{H}}\overline{\int}_{P_{n}\mathcal{H}}e^{\pi^{i}\overline{2}}2e^{-\tau}f(P_{n}x, P_{n}y)d(P_{n}x)d(P_{n}y)$

are well defined and the limit

$\lim_{narrow\infty}\overline{\int}\overline{\int}2\langle P_{n}x,P_{n}x\rangle-\frac{i}{2\hslash}\langle P_{n}y,P_{n}y\rangle$

exists and is independent of the sequence $\{P_{n}\}$ . In this case the limit is denoted by

$\overline{\int_{\mathcal{H}}}\int_{\mathcal{H}}e^{\frac{i}{2\hslash}\langle x,x\rangle}e^{-\frac{i}{2\hslash}\langle y,y\rangle}f(x, y)dxdy\sim.$

Further, the following generalization of theorem 2.3 holds.

Theorem 3.2. Let $L:\mathcal{H}arrow \mathcal{H}$ be a trace-class operator, such that $I-L$ is invertible,

and let $f$ : $\mathcal{H}\cross \mathcal{H}arrow \mathbb{C}$ be the Fourier transfown of a complex bounded variation measure

$\mu_{f}$ on $\mathcal{H}\cross \mathcal{H}$ . Then the integral

$\overline{\int_{\mathcal{H}}}\overline{\int_{\mathcal{H}}}\}$

is well defined and is equal to

$\frac{1}{\det(I-L)}\int_{\mathcal{H}}\int_{\mathcal{H}}e^{-\frac{i\hslash}{2}\langle x+y,(I-L)^{-1}(x-y)\rangle}d\mu_{f}(x, y)$ ,

where $\det(I-L)$ is the Fkedholm determinant of $I-L.$
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Given a family $\{\mu_{\alpha}|\alpha\in \mathbb{R}^{d}\}$ in $\mathcal{M}(\mathcal{H})$ , we shall denote by $\int_{\mathbb{R}^{d}}\mu_{\alpha}d\alpha$ the measure
defined by

$\phi\mapsto\int_{\mathbb{R}^{d}}\int_{\mathcal{H}}\phi(x)d\mu_{\alpha}(x)d\alpha$

whenever it exists. The following Fubini-type theorem on the change of order of inte-

gration between oscillatory integrals and Lebesgue integrals holds.

Theorem 3.3. Let $L:\mathcal{H}arrow \mathcal{H}$ be as in the assumptions of Theorem 3.2 and let

$\mu$ : $\mathbb{R}^{d}arrow \mathcal{M}(\mathcal{H}\cross \mathcal{H})$ , $\alpha\mapsto\mu_{\alpha}$ , be a continuous map such that

$\int_{\mathbb{R}^{d}}|\mu_{\alpha}|d\alpha<\infty.$

Further assume that $f_{\alpha}(x, y)=\hat{\mu}_{\alpha}(x, y)$ , $(x, y)\in \mathcal{H}\cross \mathcal{H}$ . Then $\int_{\mathbb{R}^{d}}f_{\alpha}d\alpha\in \mathcal{F}(\mathcal{H}\cross \mathcal{H})$

and

$\int_{\mathbb{R}^{d}}\overline{\int_{\mathcal{H}}}\overline{\int_{\mathcal{H}}}^{i}\overline{2}\tau\overline{2}7\overline{2}7$

(3.1) $= \int^{t}^{\overline{\int_{\mathcal{H}\mathcal{H}^{ee^{-i}e^{-}}}}^{\sim}}\overline{2}\tau\overline{2}\pi\overline{2}7\int_{\mathbb{R}^{d}}f_{\alpha}(x, y)$dadxdy.

For a detailed proof of these results see [3].

Let us consider now the time evolution of a quantum system made of two linearly

interacting subsystems $A$ and $B$ . We assume that the state space of the system $A$ is
$L^{2}(\mathbb{R}^{d})$ , while the state space of the system $B$ is $L^{2}(\mathbb{R}^{N})$ , and consider a total Hamil-

tonian of the compound system of the form

$H_{AB}=H_{A}+H_{B}+H_{INT},$

with

$H_{A}=- \frac{\Delta_{\mathbb{R}^{d}}}{2M}+\frac{M}{2}x\Omega_{A}^{2}x+v_{A}(x), x\in \mathbb{R}^{d}$

$H_{B}=- \frac{\triangle_{\mathbb{R}^{N}}}{2m}+\frac{m}{2}R\Omega_{B}^{2}R+v_{B}(R) , R\in \mathbb{R}^{N},$

$H_{INT}=xCR,$

where $C$ : $\mathbb{R}^{N}arrow \mathbb{R}^{d}$ is a linear operator and $\Omega_{A}$ (resp. $\Omega_{B}$ ) is a symmetric positive
$d\cross d$ (resp. $N\cross N$) matrix, $v_{A}$ : $\mathbb{R}^{d}arrow \mathbb{R}$ and $v_{B}$ : $\mathbb{R}^{N}arrow \mathbb{R}$ continuous bounded

functions. We assume that the quadratic part of the total potential, i.e. the function
$(x, R) \mapsto\frac{M}{2}x\Omega_{A}^{2}x+\frac{m}{2}R\Omega_{B}^{2}R+xCR$ is positive definite (so that the total Hamiltonian
is bounded from below) and that the density matrix of the compound system factorizes
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as $\rho_{AB}=\rho_{A}\rho_{B}$ and has a regular kernel $\rho_{AB}(x, y, R, Q)=\rho_{A}(x, y)\rho_{B}(R, Q)$ . In the

following we shall denote with $\Omega_{AB}$ the $(d+N)\cross(d+N)$ matrix

(3.2) $\Omega_{AB}^{2}=(\begin{array}{ll}\Omega_{A}^{2} C’C^{T} \Omega_{B}^{2}\end{array}),$

$($where $C’=C/\sqrt{Mm})$ .
Our aim is the construction of an infinite dimensional oscillatory integral represen-

tation for the reduced density operator at time $t$ , namely

$\int(e^{-}i\rho_{AB}e^{i})(x_{\rangle}y, R, R)dR.$

Heuristically, in the Feynman-path-integral form:

(3.3)
$\int\int_{\gamma(t)=x}\int_{\gamma’(t)=y^{e^{\pi^{(S_{A}(\gamma)+S_{B}(\Gamma)+S_{INT}(\gamma,\Gamma)-S_{A}(\gamma’)-S_{B}(\Gamma’)-S_{INT}(\gamma_{\rangle}’\Gamma’))}}}}^{i}\cross\Gamma(t)=R\Gamma’(t)=R$

$\cross\rho_{A}(\gamma(0), \gamma’(0))\rho_{B}(\Gamma(0), \Gamma’(0))D\gamma D\gamma’D\Gamma D\Gamma’dR$ ”,

where $\gamma$ and $\Gamma$ represent the generic path in the configuration space of the system and

of the reservoir, respectively, and

$S_{A}(\gamma)+S_{B}(\Gamma)+S_{INT}(\gamma, \Gamma)$

$= \int_{0}^{t}(\frac{M}{2}\dot{\gamma}^{2}(s)-\frac{M}{2}\gamma(s)\Omega_{A}^{2}\gamma(s)-v_{A}(\gamma(s)))ds$

$+ \int_{0}^{t}(\frac{m}{2}\dot{\Gamma}^{2}(s)-\frac{m}{2}\Gamma(s)\Omega_{B}^{2}\Gamma(s)-v_{B}(\Gamma(s)))ds-\int_{0}^{t}\gamma(s)C\Gamma(s)ds.$

Further, formula (3.3) can be written as

$\int_{\gamma(t)=x}\int_{\gamma’(t)=y}e^{\frac{i}{\hslash}(S_{A}(\gamma)-S_{A}(\gamma’))}F(\gamma, \gamma’)\rho_{A}(\gamma(0), \gamma’(0))D\gamma D\gamma’,$

where $F$ is the Feynman-Vernon influence functional formally:

$F( \gamma, \gamma’)=\int\int_{\Gamma(t)=R}\int_{\Gamma’(t)=R^{e^{\frac{i}{\hslash}(S_{B}(\Gamma)+S_{INT}(\gamma,\Gamma)-S_{B}(\Gamma’)-s_{INT(\gamma’,\Gamma’))}}}}\rho_{B}(\Gamma(0), \Gamma’(0))D\Gamma D\Gamma’dR$

Let us denote by $\mathcal{H}_{t}^{d}$ the Hilbert space of absolutely continuous paths $\gamma$ : $[0, t]arrow \mathbb{R}^{d}$ such

that $\gamma(t)=0$ and weak derivative $\dot{\gamma}\in L^{2}([0, t], \mathbb{R}^{d})$ , endowed with the inner product
$\langle\gamma_{1},$ $\gamma_{2}\rangle=\int_{0}^{t}\dot{\gamma}_{1}(\mathcal{S})\cdot\dot{\gamma}_{2}(s)ds.$

The following theorem provides a representation of the reduced density operator of

the system $A$ in terms of an infinite dimensional oscillatory integral on $\mathcal{H}_{t}^{d}.$
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Theorem 3.4. Let $\rho_{0}^{A}$ and $\rho_{0}^{B}$ be two density matrix operators on $L^{2}(\mathbb{R}^{d})$ and
$L^{2}(\mathbb{R}^{N})$ , respectively, with regular kernels $\rho_{0}^{A}(x, x’)$ and $\rho_{0}^{B}(R, R’)$ admitting a decom-

position into pure states of the form $\rho_{0}(x, y)=\sum_{i}p_{i}e_{i}(x)e_{i}^{*}(y)$ , with $p_{i}>0,$ $\sum_{i}p_{i}=1,$

$\langle e_{i},$ $e_{j}\rangle_{L^{2}(\mathbb{R}^{d})}=\delta_{ij}$ , and $e_{i}(x)=\hat{\mu}_{i}(x)$ , satisfying

(3.4) $\sum_{i}p_{i}|\mu_{i}|^{2}<\infty.$

Further let $\rho_{0}^{B}\in S(\mathbb{R}^{N}\cross \mathbb{R}^{N})$ . Let $t$ satisfy the inequalities

(3.5) $t\neq[(n+1/2)\pi]/\omega_{j}^{A}, n\in \mathbb{Z}, j=1\ldots d,$

(3.6) $t\neq[(n+1/2)\pi]/\omega_{j}^{B} n\in \mathbb{Z}, j=1\ldots N,$

(3.7) $t\neq[(n+1/2)\pi]/\lambda_{j}, n\in \mathbb{Z}, j=1\ldots d+N,$

where $\omega_{j}^{A},$ $\omega_{j}^{B}$ , and $\lambda_{j}$ , are the eigenvalues of the matrices $\Omega_{A},$ $\Omega_{B}$ and $\Omega_{AB}$ , respectively

(with $\Omega_{AB}^{2}$ defined by (3.2)). Let us assume moreover that $t$ is such that the determinant

of the $d\cross d$ left upper block of the $n\cross n$ matrix $\cos(\Omega_{AB}t)is$ non-vanishing.

Then the kerveel $\rho_{R}(t, x, y)$ of the reduced density operator of the system $A$ evaluated

at time $t$ is given by

(3.8) $\rho_{R}(t, x, y)$

$=e^{-\frac{tt}{2\hslash}x\Omega_{A}^{2}x}e^{\frac{it}{2\hslash}y\Omega_{A}^{2}y}\cross$

$\cross\overline{\int}_{\mathcal{H}_{t}^{d}}\overline{\int}_{\mathcal{H}_{t}^{d}}^{i}e\overline{2}\tau^{\langle\gamma,(I_{d}-L_{A})\gamma\rangle^{i}\langle\gamma’,(I_{d}-L_{A})\gamma’\rangle}e^{-\eta 2}\cross$

$\cross e^{-\hslash\pi^{i}}i\int_{0}^{t}(x\Omega_{A}^{2}\gamma(s)ds-y\Omega_{A}^{2}\gamma’(s))_{e^{-}}ds\int_{0}^{t}(v_{A}’(\gamma(s)+x)-v_{A}’(\gamma(s)+y))ds_{\cross}$

$\cross F(\gamma, \gamma’, x, y)\rho_{0,A}’(\gamma(0)+x, \gamma’(0)+y)d\gamma d\gamma’,$

where $\rho_{0,A}’(x, y)=\rho_{0}^{A}(x/\sqrt{M}, y/\sqrt{M})$ , $v_{a}’(x)$ $:=v_{A}(x/\sqrt{M})$ and $F(\gamma, \gamma’, x, y)$ is the

influence functional

(3.9) $F(\gamma, \gamma’, x, y)$

$= \int_{\mathbb{R}^{N}}e^{-}e^{+^{it}yC’R^{i}\int_{0}^{t}(\gamma(s)-\gamma’(s))C’Rds}e^{-}it\cross$

$\cross\overline{\int}_{\mathcal{H}_{t}^{N}}\overline{\int}_{\mathcal{H}_{t}^{N}}^{t}\overline{2}7\langle\Gamma,(I_{N}-L_{B})\Gamma\rangle-+_{2}\langle\Gamma’,(I_{N}-L_{B})\Gamma’\rangle^{i}\langle\Gamma,L^{N}C^{\prime T}\gamma\rangle^{i}\langle\Gamma’,L^{N}C^{\prime T}\gamma’\rangle\cross$

$\cross e^{-k\int_{0}^{t}R\Omega_{B}^{2}(\Gamma(s)-\Gamma’(s))ds}e^{-\frac{i}{\hslash}\int_{0}^{t}(xC’\Gamma(s)-yC’\Gamma’(s))ds}\cross$

$\cross e^{-}\pi i\int_{0}^{t}(v_{B}’(\Gamma(s)+R)-v_{B}’(\Gamma’(s)+R))ds\cross$

$\cross\rho_{0,B}’(\Gamma(0)+R, \Gamma’(0)+R)d\Gamma d\Gamma’dR,$

with $\rho_{0,B}’(R, Q)=\rho_{0}^{B}(R/\sqrt{m}, Q/\sqrt{m})$ , $v_{B}(R)$ $:=v_{B}(R/\sqrt{m})$ .
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These results can be applied to the study of the Caldeira-Leggett mode1[15] with

a finite dimensional heat bath, that is to the special case in which the heat bath is

described by a finite number of oscillators and thus $v_{B}=0$ . Further the model presume

that the environment is initially in equilibrium at temperature $T$ , i.e. that its initial

density matrix $\rho_{0}^{B}(R, Q)$ is of the form $\rho_{0}^{B}(R, Q)=\prod_{j=1}^{N}\rho_{B}^{(j)}(R_{j}, Q_{j}, 0)$ , where

$\rho_{B}^{(j)}(R_{j}, Q_{j}, 0)=\sqrt{\frac{m\omega_{j}}{\pi\hslash\coth(\hslash\omega_{j}/2kT)}}e^{-(\frac{m\omega_{j}}{2\hslash\sinh(\hslash\omega_{j}/kT)}((R_{J}^{2}+Q_{j}^{2})\cosh_{7}^{\hslash\omega}\neq-2R_{j}Q_{j}))}$

with $\omega_{j},$ $j=1$ , . . . , $n$ , the eigenvalues of the matrix $\Omega_{B}$ . For notational simplicity we
put again $m=M=1$ ; the general case can be handled by replacing $C,$ $v_{A},$

$\rho_{0}^{A}$ , and $\rho_{0}^{B}$

with $C’,$ $v_{A}’,$ $\rho_{0,A}’$ , and $\rho_{0,B}’$ , respectively.

Inserting the terms defined above in the general formula (3.9), the influence func-

tional becomes

$F(\gamma, \gamma’, x, y)$

$=K(x, y, t)e^{-\frac{i}{2\hslash}\langle(\gamma-\gamma’),A(\gamma+\gamma’)\rangle_{e^{-\hslash}}^{i}\langle\gamma,CL^{N}(I_{N}-L_{B})^{-1}v_{C,x}\rangle}\cross$

$\cross e^{\hslash^{i}},e^{\frac{i}{2\hslash}C^{T}(x-y)\int_{0}^{t}\frac{\sin(\Omega_{B}t)\mathring{s}in(\Omega_{B}(t-s\rangle)}{\Omega_{B}^{2}cs(\Omega_{B}t)}C^{T}(\gamma(s)+\gamma’(s))ds}\langle\gamma’,CL^{N}(I_{N}-L_{B})^{-1}vc_{y}\rangle\cross$

$\cross\int_{\mathbb{R}^{N}}dh_{0}’\tilde{\rho}_{0}^{B}(h_{0}’-\frac{1}{2}a, h_{0}’+\frac{1}{2}a)e^{i(h_{0}-\frac{a}{2})\frac{1-c\mathring{s}(\Omega_{B}t)}{\Omega_{B}^{2}cs(\Omega_{B}t)}c^{\tau_{x}}}e^{-i(h_{0}+\frac{a}{2})\frac{1-c\mathring{s}(\Omega_{B}t)}{\Omega_{B}^{2}cs(\Omega_{B}t)}C^{T}y}\cross$

$\cross e^{i\hslash h_{o}’\frac{\sin\Omega_{B}t}{\Omega_{B}\cos\Omega_{B}t}a}e^{i\langle\gamma-\gamma’,CL^{N}(I_{N}-L_{B})^{-1}h_{o}’G_{0}\rangle},$

where

$K(x, y, t)=\pi^{N}2^{N}e^{\frac{i}{2\hslash}C^{T}(x-y)}(\Omega_{B^{-\frac{\sin(\Omega_{B}t)}{\Omega_{B}^{3}\cos(\Omega_{B}t)})C^{\tau}(x-y)}}t$

$e^{-\frac{i}{2\hslash}\langle(\gamma-\gamma’),A(\gamma+\gamma’)\rangle}=e^{\frac{i}{2\hslash}\int_{0}^{t}C^{T}(\gamma-\gamma’)(s)\Omega^{-1}\int_{0}^{S}\sin(\Omega_{B}(s-r))C^{T}(\gamma+\gamma’)(r)drds},$

and

$a=- \frac{1}{\hslash}\int_{0}^{t}\cos(\Omega_{B}s)C^{T}(\gamma(s)-\gamma’(s))ds-\frac{1}{\hslash}(\Omega_{B})^{-1}\sin(\Omega_{B}t)C^{T}(x-y)$ .

By direct computation we obtain

$F(\gamma,\gamma’, x, y)$

$=e^{*_{2}\int_{0}^{t}C^{T}(\gamma(s)+x-\gamma’(s)-y)\Omega_{B}^{-1}\int_{0}^{S}\sin(\Omega_{B}(s-r))C^{T}(\gamma(r)+x+\gamma’(r)+y)drds}\cross$

$\cross e^{2}-\tau^{1}\int_{0}\iota_{C^{T}(\gamma(s)+x-\gamma’(s)-y)\Omega_{B}^{-1}\coth_{5}}(^{\hslash\Omega}\not\in)\int_{0}^{S}\cos(\Omega_{B}(s-r))C^{T}(\gamma(r)+x-\gamma’(r)-y)$drds,

which yields the result heuristically derived in [26].
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\S 4. The stochastic Schr\"odinger equation

In this section we shall prove that the solution of the stochastic Schr\"odinger equation

(1.10) can be represented by an infinite dimensional oscillatory integral of the form:

(4.1) $\psi(t, X^{\sim})=\int^{l}\overline{2}7\int_{0}^{t}|\dot{\gamma}(s)|^{2}ds-\lambda\int_{0}^{t}|\gamma(s)+x|^{2}d^{i}s\int_{0}^{t}V(\gamma(s)+x)ds$

$e^{\int_{0}^{t}\sqrt{\lambda}(\gamma(s)+x)\cdot dW(s)}\psi_{0}(\gamma(0)+x)d\gamma.$

The first step is the generalization of theorem 2.3 to the case of complex valued phase

functions.

Theorem 4.1. Let $\mathcal{H}$ be a real separable Hilbert space, let $y\in \mathcal{H}$ and let $L_{1}$ and $L_{2}$

be two self-adjoint, trace class commuting operators on $\mathcal{H}$ such that $I+L_{1}$ is invertible

and $L_{2}$ is non negative. Let moreover $f\in \mathcal{F}(\mathcal{H})$ , with $f\equiv\hat{\mu}_{f},$ $\mu_{f}\in \mathcal{M}(\mathcal{H})$ .

Then the function $g:\mathcal{H}arrow \mathbb{C}$ defined as

$g(x)=e\overline{2}ef(x)i$

$(L$ being the operator on the complexification $\mathcal{H}^{\mathbb{C}}$ of the real Hilbert space $\mathcal{H}$ given by

$L=L_{1}+iL_{2})$ is Fresnel integrable (in the sense of definition 2.2) and its infinite
dimensional oscillatory integral

$\int_{\mathcal{H}^{e^{T2}e^{\langle y,x\rangle}f(x)dx}}^{\sim_{i\langle x,(I+L)x\rangle}}$

can be explicitly computed by means of the following Parseval type equality:

(4.2) $\overline{\int_{\mathcal{H}}}2\langle x,(I+L)x\rangle\langle y,x)=\det(I+L)^{-1/2}\int_{\mathcal{H}}e^{\frac{-l\hslash}{2}\langle k-iy,(I+L)^{-1}(k-iy)\rangle}\mu_{f}(dk)$

For a detailed proof, see [5, 40].

Let us consider the stochastic Schr\"oedinger equation (1.10), which is convenient to

write in the Stratonovich equivalent form:

(4.3) $\{\begin{array}{l}d\psi=-\frac{i}{\hslash}H\psi dt-\lambda|x|^{2}\psi dt+\sqrt{\lambda}x\psi\circ dW(t)\psi(0, x)=\psi_{0}(x) t\geq 0, x\in \mathbb{R}^{d}\end{array}$

The existence and uniqueness of a strong solution is proved in [27]. We recall that a

strong solution for the stochastic equation (4.3) is a predictable process with values in
$\mathcal{H}=L^{2}(\mathbb{R}^{d})$ , such that
$\psi(t)\in D(-i/\hslash H-\lambda|x|^{2})$ P-a.s.
$P(\int_{0}^{T}(\Vert\psi(t)\Vert^{2}+\Vert(-i/\hslash H-\lambda|x|^{2})\psi\Vert^{2})dt<\infty)=1$
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$P(\int_{0}^{T}\Vert|x|\psi(t)dt\Vert^{2}<\infty)=1$ and
$P$ a.s. for all $t\in[0, T]$ :

(4.4) $\{\begin{array}{ll}d\psi=-\frac{i}{\hslash}H\psi dt-\lambda|x|^{2}\psi dt+\sqrt{\lambda}x\cdot\psi odW(t) t\geq 0, x\in \mathbb{R}^{d}\psi(0, x)=\psi_{0}(x) \end{array}$

Let us consider the Cameron-Martin Hilbert space $H_{t}$ of absolutely continuous paths

$\gamma$ : $[0, t]arrow \mathbb{R}^{d}$ with weak derivative $\dot{\gamma}\in L^{2}([0, t], \mathbb{R}^{d})$ and such that $\gamma(t)=0$ , endowed

with the inner product $\langle\gamma_{1},$ $\gamma_{2}\rangle=\int_{0}^{t}\dot{\gamma}_{1}(s)\cdot\dot{\gamma}_{2}(s)ds$ . Let $H_{t}^{\mathbb{C}}$ be its complexification. Let
$L:H_{t}^{\mathbb{C}}arrow H_{t}^{\mathbb{C}}$ the operator on $H_{t}^{\mathbb{C}}$ defined by

$\langle\gamma_{1}, L\gamma_{2}\rangle=-a^{2}\int_{0}^{t}\gamma_{1}(s)\cdot\gamma_{2}(s)ds$ ;

where $a^{2}=-2i\lambda\hslash$ . The $j$ -th component of $L\gamma,$ $L\gamma=(L\gamma_{1}, \ldots, L\gamma_{d})$ , is given by

(4.5) $(L \gamma)_{j}(s)=2i\lambda\hslash\int_{s}^{t}ds’\int_{0}^{s’}\gamma_{j}(s")ds"$ $j=1$ , . . . , $d$

one can verify (see [21] for more details) that $iL:Harrow H$ is self-adjoint with respect

to the $H_{t}$-inner product, it is trace-class and its FYedholm determinant is given by:

$\det(I+L)=\cos(at)$ .

Moreover $(I+L)$ is invertible and its inverse is given by:

$[(I+L)^{-1} \gamma]_{j}(s)=\gamma_{j}(s)-a\int_{s}^{t}\sin[a(s’-s)]\gamma_{j}(s’)ds’$

$+ \sin[a(t-s)]\int_{0}^{t}[\cos at]^{-1}a\cos(as’)\gamma_{j}(s’)ds’$ $j=1$ , .. . , $d.$

Let us introduce the vector $l\in H_{t}$ defined by

(4.6) $\langle l, \gamma\rangle=-\sqrt{\lambda}\int_{0}^{t_{\omega(s)\cdot\dot{\gamma}(s)d_{S}=\sqrt{\lambda}}}\int_{0}^{t}\gamma(s)\cdot dW(s)$ ,

which is given by $l( \mathcal{S})=\sqrt{\lambda}\int_{s}^{t}\omega(\tau)d\tau.$

Under suitable assumptions on the potential $V$ and the initial wave function $\psi_{0},$

it is possible to realize the heuristic expression (4.1) in terms of the following infinite

dimensional oscillatory integral on the Cameron-Martin space $H_{t}$ :

(4.7) $o(t_{X},\omega)\overline{\int_{H_{t}}}7^{i}i$

where $C(t, x, \omega)=e^{-\lambda|x|^{2}+\sqrt{\lambda}x\cdot\omega(t)}$ is a constant depending on $t,$ $x\in \mathbb{R}^{d},$ $\omega\in\Omega$ . Indeed

the integrand $\exp(\frac{i}{2\hslash}\Phi)$ in (4.1), where $\Phi(\gamma)\equiv\int_{0}^{t}|\dot{\gamma}(s)|^{2}ds+2i\hslash\lambda\int_{0}^{t}|\gamma(s)+x|^{2}ds-$
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$2i \hslash\int_{0}^{t}\sqrt{\lambda}(\gamma(s)+x)\cdot dW(s)$ can be rigorously defined as the functional on the Cameron

Martin space $H_{t}$ given by $\Phi(\gamma)=\langle\gamma,$ $(I+L)\gamma\rangle-2i\hslash\langle l,$ $\gamma\rangle-2\hslash\int_{0}^{t}a^{2}x\cdot\gamma(s)ds-a^{2}|x|^{2}t-$

$2i\hslash\sqrt{\lambda}x\cdot\omega(t)$ , where $L$ is the operator (4.5) and $l$ is the vector (4.6), see [5] for details.

Theorem 4.2. Let $V,$ $\psi_{0}\in \mathcal{F}(\mathbb{R}^{d})$ be Fourier transforms of complex bounded varia-

tion measures on $\mathbb{R}^{d}$ . Then there exist $a$ (strong) solution of the Stratonovich stochastic

differential equation $(4\cdot 3)$ and it is given by the infinite dimensional oscillatory integral

with complex phase (4.7).

Remark. The result can be extended to general initial vectors $\psi_{0}\in L^{2}(\mathbb{R}^{d})$ , using

the fact that $\mathcal{F}(\mathbb{R}^{d})$ is dense in $L^{2}(\mathbb{R}^{d})$ .

Proof. The proof in divided into 3 steps.

First of all we consider the case $V\equiv 0$ and approximate the trajectory $tarrow\omega(t)$ of

the Wiener process by a sequence of smooth curves, i.e. we consider the sequence of

functions $2n \int_{t-\frac{1}{n}}^{t}\omega(s)ds\equiv\omega_{n}(t)$ , $n\in \mathbb{N}$ . We have that $\omega_{n}arrow\omega$ uniformly on
$[0, T]$ , indeed

$\sup_{s\in[0,T]}|W_{n}(s)-W(s)|arrow 0$ as $narrow\infty$ $\mathbb{P}a.s.$

Let us consider the sequence of approximated problems:

(4.8) $\{\begin{array}{l}d\psi_{n}=-\frac{i}{\hslash}H\psi_{n}dt-\lambda|x|^{2}\psi_{n}dt+\sqrt{\lambda}x\cdot\psi_{n}dW_{n}(t)\psi_{n}(0, x)=\psi_{0}(x)\end{array}$

where $dW_{n}(t)$ is an ordinary differential, i.e. $dW_{n}(t)=\dot{\omega}_{n}(t)dt$ , and we can also write:

(4.9) $\{\begin{array}{l}\dot{\psi}_{n}=-\frac{i}{\hslash}H\psi_{n}-\lambda|x|^{2}\psi_{n}+\sqrt{\lambda}x\cdot\psi_{n}\dot{\omega}_{n}(t)\psi_{n}(0, x)=\psi_{0}(x)\end{array}$

which can be recognized as a family of Schr\"odinger equations, with a complex potential,

labeled by the random parameter $\omega\in\Omega$ . By applying theorem 4.1, in the case where
$\psi_{0}\in \mathcal{F}(\mathbb{R}^{d})$ , the solution of (4.9) can be computed in terms of the infinite dimensional

oscillatory integral:

$\psi_{n}(t, x)=\overline{\int_{H_{t}}}e^{\nabla^{i}}2\int_{0^{t}}|\dot{\gamma}(s)|^{2}ds-\lambda\int_{0}^{t}|\gamma(s)+x|^{2}dse^{\sqrt{\lambda}\int_{0}^{t}(\gamma(s)+x)\cdot\dot{\omega}_{n}(s)ds}\psi_{0}(\gamma(0)+x)d\gamma$

$=e \frac{-ia^{2}|x|^{2}t}{2\hslash}+\overline{\int_{H_{t}}}e^{\nabla^{i}}2e^{\langle l_{n},\gamma\rangle}\int_{\mathbb{R}^{d}}e^{i\alpha\cdot x}e^{i\langle b(\alpha,x),\gamma\rangle}\tilde{\psi}_{0}(\alpha)d\alpha d\gamma$

where $a^{2}=-2i\lambda\hslash,$ $l_{n}\in \mathcal{H}_{t}$ is the vector defined by $l_{n}(s)= \sqrt{\lambda}\int_{s}^{t}\omega_{n}(\tau)d\tau$ and $b(\alpha, x)\in$

$H_{t}$ , precisely:

$b( \alpha, x)(s)=\alpha(t-s)-\frac{xa^{2}}{2\hslash}(t^{2}-s^{2})$

$\overline{2Here}$we denote, as usual, the trajectory of the Wiener process $W(t)$ as $\omega(t)$ .
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The second step is the proof of the convergence of the sequence of approximated

solutions, namely the proof that the following equation

(4.10) $\{\begin{array}{ll}d\psi=-\frac{i}{\hslash}H\psi dt-\lambda|x|^{2}\psi dt+\sqrt{\lambda}x\cdot\psi\circ dW(t) t>0\psi(0, x)=\psi_{0}(x) , \psi_{0}\in S(\mathbb{R}^{d}) \end{array}$

has a unique strong solution given by the Feynman path integral

$\psi(t, x)=\overline{\int}e^{T^{i}}2\int_{0}^{t}|\dot{\gamma}(s)|^{2}ds-\lambda\int_{0}^{t}|\gamma(s)+x|^{2}dse^{\sqrt{\lambda}\int_{0}^{t}(\gamma(s)+x)\cdot dW(s)}\psi_{0}(\gamma(0)+x)d\gamma$

rigorously realized as the infinite dimensional oscillatory integral with complex phase

on $H_{t}$

$e^{-\lambda|x|+\sqrt{\lambda}x\cdot\omega(t)}2\overline{\int_{H_{t}}}e\overline{2}\pi^{\langle\gamma,(I+L)\gamma\rangle}e^{\langle l,\gamma\rangle}e^{-2\lambdax\cdot\int_{0}^{t}\gamma(s)ds}\psi_{0}(\gamma(0)+x)d\gamma i$

Moreover it can be represented by the process

$\psi(t, x)=\int_{\mathbb{R}^{d}}G(t, x, y)\psi_{0}(y)dy$

where

$G(t, x, y)= \frac{1}{\sqrt{2\pi i\hslash}}\sqrt{\frac{a}{\sin(at)}}e^{\sqrt{\lambda}x\cdot\omega(t)-\frac{r_{\lambda ax}}{\sin(at)}\cdot\int_{0}^{t}\cos(as)\omega(s)ds}$

$e^{\frac{i\hslash\lambda}{2}(-a\int_{0}^{t}\omega(s)\int_{8}^{t}\omega(s’)\sin[a(s’-s)]ds’ds)}$

. $e^{\frac{i\hslash\lambda}{2}(-a\int_{0}^{t}\sin(as)\omega(s)ds\cdot\int_{0}^{t}\cos(as)\omega(s)ds-a\cot(at)|\int_{0}^{t}\cos(as)\omega(s)ds|^{2})}$

$e^{\frac{i}{2\hslash}}( \cot(at)(|x|^{2}+|y|^{2})_{at)}-\frac{2x}{\sin(}JL)_{e^{a\sqrt{\lambda}y\cdot\frac{1}{s\ln(at)}(\int_{0}^{t}\cos[a(s-t)]\omega(s)ds)}}$

(see [5] for more details).

The third step is the study of the case where a potential $V\in \mathcal{F}(\mathbb{R}^{d})$ is present by

means of a perturbative argument. Let us consider the infinite dimensional oscillatory

integrals

(4.11) $\Theta(t, 0)\psi_{0}(x)=\overline{\int_{H_{t}}}e^{\frac{i}{2\hslash}\int_{0}^{t}|\dot{\gamma}(s)|^{2}ds-\lambda\int_{0}^{t}|\gamma(s)+x|^{2}ds}e^{-\frac{i}{\hslash}\int_{0}^{t}V(\gamma(s)+x)ds}$

. $e^{\sqrt{\lambda}\int_{0}^{t}(\gamma(s)+x)\cdot dW(s)}\psi_{0}(\gamma(0)+x)d\gamma$

and

(4.12)

$\Theta_{0}(t, 0)\psi_{0}(x)=\overline{\int_{H_{t}}}^{i}\int^{t}|\dot{\gamma}(s)|^{2}ds-\lambda\int_{0}^{t}|\gamma(s)+x|^{2}ds.$
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By means of simple computations (see [5]) it is possible to show that:

(4.13) $\Theta(t, 0)\psi_{0}(x)=\Theta_{0}(t, 0)\psi_{0}(x)-i\int_{0}^{t}\Theta(t, u)(V\Theta_{0}(u, 0)\psi_{0})(x)du$

Now the iterative solution of the latter integral equation is the Dyson series for $\Theta(t, 0)$ ,

which coincides with the corresponding power series expansion of the solution of the

stochastic Schr\"odinger equation, which converges strongly in $L^{2}(\mathbb{R}^{d})$ . The equality holds

pointwise. On the other hand, following [27], it is possible to prove that the problem

(4.10) has a strong solution that verifies (4.13) in the $L^{2}$ sense, therefore $\Theta(t, 0)\psi_{0}$

coincides with the solution $\psi(t)$ . This concludes the proof of theorem 4.2. $\square$
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