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Phase space Feynman path integrals of higher order
parabolic type

By

Naoto KUMANO-GO*

Abstract

This is a rough survey based on the talk at RIMS about the joint work [14] with A. S.
Vasudeva Murthy (TIFR-CAM). In [14], we proved the existence of the phase space path
integrals of higher order parabolic type with general functional as integrand. In this survey,
we explain the process of its proof along the talk at RIMS, using some figures of paths.

§1. Introduction to Phase Space Path Integral

Let 0 < T<T < oo,z € R" and m > 0. Let U(T,0) be the fundamental solution
for the m-th order parabolic equation such that

(1.1) (aT + H(T,z, Dm))U(T, 0)=0, U0,0) =1,

where D, = —i0,, O is the zero operator and I is the identity operator. By the Fourier
transform with respect to zo € R™ and the inverse Fourier transform with respect to
& € R™, we can write

1\" ;
Iv(z) =v(z) = (%) /R% ei(@=20) 40y (0 )dzodEs ,
1\" ;
Da:v(x) = "iazv(a;) = ('2‘;;) ./I‘tﬁ ez(m_mo)'eoﬁo’v(wo)dxodfo,

H(T,z,D;)v(z) = (%)n[mn ei(“““”°)'§°H(T,x,ﬁo)v(mo)dmodgo.
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We consider the symbol function U(T,0,z,&p) of U(T,0) satisfying

12)  UT,00) = (2—17;) [ 00,00, 6o(a0)dsudso.

As an approximation of U(T,0) as T' | 0, we use the operator I(T,0) defined by

1\" ;
I(T, 0)’!)(.’1}) = (ﬂ) LG ez(z—xo)-ﬁoe- IF H(t,z,ﬁo)dtv(mo)dxodé-o )

Let Aro: T =Ty41 > Ty > --- > Ty > Tp = 0 be any division of the interval [0, T]
into subintervals. Note that U(T,0) is a propagator. Then we have

U(T,0)w(z) = U(T, Ty)U(Ts,Ty_1) - - U(Ty, TL)U(Ty, O)o(z).

Set t; = T; — Tj—1 and |Aro| = maxi<j<s+1t;. When |Aro| — 0, we formally use
I(T;,T;-1) as an approximation of U(T},T;—1) and write

(13)  U(T,0)v(z) = am I(T, TH)I(Ty,Ts-1) - - - I(T2, T1)I(T1, O)v(z)

J+1 .
- lim (%)"( ) / i3 s =ai 1) &g1 = fp)_| Bt 65-1)dt)
IAT,Ol_’O v(§ R2n(J+1)
J
X’U(fL‘o) H d(L‘jdfj
=0

with £ = 741 (see [11, p.62, Remark 2°]). By (1.2) and (1.3), we can formally write

(14) €@y (T, 0,z,&)

. 1\" SIF iz —2j-1)-Eim1— [l H(t,xj,€j-1)dt) 2
= o (—2?) /Rsze e i T Hdmjdgj'

|A7,0]—0 )
Jj=1

According Feynman [5, Appendix B], we formally introduce a position path X (t) with
X(T;) = z; and a momentum path Z(t) with Z(T};) = £; (though the author does not
define the shapes of these paths in this stage, imagine Figure 1 for example). Then we
can formally rewrite (1.4) as

(1.5) ei@=20)S (T, 0,z,&) = / e XED(X, E).

Here

(1.6) $(X,E) = / (t) - dX(t) + / H(t, X (), 2(t))dt,
[0,T) [0,7)

is the action for the paths (X,E) on the phase space with X(T) = z and X(0) = zo
and Z(0) = &, and the phase space path integral [ ~ D(X,E) is a sum over all the
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(T, 2) (Ts,€0)
(T» 1132) (TJ’% (T2 &2) #
(Th (T1;&1)
(o, 3’70)/ Coiltinuous ? (0,€0)$— Jump ?
0 T1 Tn T, T=Tr1 0 T1 Tp T, T =Ty

Figure 1. What is the position path X ? What is the momentum path Z ?

paths (X,Z). The expression on the right-hand side of (1.4) or (1.3) is now called the
time slicing approximation for the path integral on the right-hand side of (1.5).

However, in the sense of mathematics, the measure D(X, Z) for the path integral of
(1.5) which weighs all the paths (X, E) equally, does not exist. Why can we say the path
integral of (1.5) is a kind of integral ? Furthermore, in the sense of quantum mechanics,
by the uncertainty principle, we can not have the position X (t) and the momentum
Z(t) at the same time ¢. In (1.3), it seems that the approach via L?-operator does not
distinguish the difference between the configuration path integral and the phase space
path integral. Why can we say the paths (X, E) are phase space paths ? Furthermore,
L. S. Schulman [16, p.303] says about phase space path integral that ‘in this method
formal trick of great power can give just plain wrong answers’.

In [14], using the time slicing approximation via piecewise constant paths, we proved
the existence of the phase space Feynman path integrals

(1.7) / X8 p(X,E)D(X, E)

of the m~th order parabolic type with general functionals F/(X,Z). We regard (1.5) as
the particular case of (1.7) with F(X,Z) = 1. More precisely, we give a general class
F of functionals F'(X,E) so that for any F(X,ZE) € F, the time slicing approximation
of the phase space path integral (1.7) converges uniformly on compact subsets with
the endpoint x of position paths X and the starting point £, of momentum paths Z
(therefore, the author says that the paths (X, =) are phase space paths). Furthermore,
we proved some properties of the path integrals similar to the properties of the standard
integrals. More precisely, though we need to pay attention for use, we proved the
interchange of the order of the phase space path integrals with some integrals and some
limits (therefore, the author says that the phase space path integral is a kind of integral).

Remark. For the phase space path integral of the Schrédinger type, there have been
developed various mathematical approaches (cf. Schulman [16, §31]). For example,
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Daubechies-Klauder [4] via analytic continuation from measure, Albeverio-Guatteri-
Mazzucchi [2][1, §10.5.3][15, §3.3] via Fresnel integral transform, Smolyanov-Tokarev-
Truman [19] via Chernoff formula, Bock-Grothaus (3] via white noise analysis, H.
Kumano-go-Kitada [8], N. Kumano-go [10], Ichinose[7] via Fourier integral operators
and so on. Recently, N. Kumano-go-Fujiwara [12][13] proved the existence of the phase
space path integrals of the Schrodinger type with general functional as integrand and
proved their properties similar to some properties of standard integrals. On the other
hand, in [14], we discussed the case of higher order parabolic type.

§ 2. Phase Space Path Integrals Exist

§2.1. Assumption for the symbol function H(t,z,¢)

For the higher order parabolic equations which were discussed in C. Tsutsumi [17]
and H. Kumano-go [9, §4 of Chapter 7], as we considered the phase space path integrals
of (1.5) in [11], we consider the phase space path integrals of (1.7) with general functional
F(X,E). In order to state the assumption for the symbol function H(t,z,€) of (1.1),
we need some notations.

Assumption 1. Let (¢) = (1 + [¢]?)/2. We say that a real-valued C°°-function
A(€) is a weight function if A(£) satisfies the following conditions:

(1) There exists a positive constant Cy such that
(2.1) 1 < A(€) < Cof§)
(2) For any multi-index 3, there exists a positive constant Cg such that

(22) 1927(©)| < Cante)1.

Example 2.1.

(1) A& = (&)
(2) AM€) = (1 + Ty, [€F]Pm*)/C™) where £ = (€%,...,6") € R®, mx € N, k =
1,2,...,n and m = maxy<k<n Mk-

Remark. Though the author use A(§) for generality, the reader may regard A(¢) = (£)
for simplicity.

Remark. C. Tsutsumi [18] constructed the fundamental solution of (1.1) under more
general conditions with a more general weight function A\(z, ) depending on both z and
£. However, we are yet to consider the path integrals under these conditions.
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Our assumption for the symbol function H (¢, z,£) of (1.1) is the following (see also
H. Kumano-go [9, Theorem 4.1 of Chapter 7)).

Assumption 2. Let m >0and 0 < < p < 1. Let H(t,z,£) be a complex-valued
C*°-function satisfying the following conditions:

(1) There exist positive constants ¢, C such that
(2.3) ' 0<c<ReH(tz &) <CXE™.

Here Re H(t,z,£) is the real part of H(t,z,¢&).

(2) For any multi-indices a, (3, there exists a positive constant C, g such that
(2.4) D2O2H(t,z,€)/Re H(t,x,£)| < Caph()1e1—F1A1

Remark. We can treat the typical case of m-th order parabolic operator below.

(1) There exist positive constants ¢, C such that

(2.5) 0 < eA(€)™ < Re H(t,z,€) < CA(E)™.
(2) For any multi-indices ¢, 3, there exists a positive constant C, g such that
(2.6) D2 H(t,,8)| < Ca,pA(€)™Folel=AIAl,

Remark. Using the phase space path integrals with general functionals F(X,E) as
integrand, we can construct the fundamental solution of a little more general parabolic
operator Oy + H'(T,z, D,) (see Example 3.2).

Remark. Though the author use 0 < § < p < 1 for generality, the reader may regard
0 =46 < p =1 for simplicity.

§2.2. Piecewise constant paths
Let Arg = (T,Ty,...,T1,0) be any division of the interval [0, T given by
(2.7) AT,0:T=TJ+1>TJ>"'>T1>T0=O.

Set t; = Tj - T4 and |AT’0| = maXi<j<J+1tj. Set x741 = z. Let z; € R and
¢; € R™. We define the position path Xa,.,(t) = Xar,(t, Ts41,25,---,21,T0) by

(2‘8) XAT,O (O) =Zo, XAT,o(t) =Zj, 1}—1 <t< T? ’
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(Ty: ) T (T,z) (Tyi &) (T5;€5)
(T1;z1); ¢ (T §1)\
(o, xo# ‘ (0, €o)
0 T1 T2 TJ T= TJ+1 0 T1 T2 TJ T - TJ+1

Figure 2. The position path XA, , and the momentum path Ea,.,

and the momentum path Ea ., (t) = Eas ot €5, ..., €1,&0) by
(29) EAT,O (t) = 5.1'—1 ) ,I:f—l <t< T7

(see Figure 2).
Remark. Xa,(t) is piecewise constant and left-continuous, and Za,, , () is piecewise
constant and right-continuous.

Then ¢(Xaro,Eare)s F(XArorZEar,) are the function ¢ar o, Far, given by

(210) ¢(XAT,OE'AT,0) = ¢AT,0 (mJ+17§J,$J, oo ’glyx1,§0a -TO)

J+1 J+1
= Z/ EAT,O ’ dXAT,o (t) +1 Z / H(t; XAT,O’ EAT,o)dt

j=1 Y [Ti-1.T5) j=17T5-1,T3)

J+1 J+1

T;
= (@; — zj-1) &1 +ZZ/ H(t, z5,€5-1)dt,
j:l J=]_ Tj—l
(211) F(XAT,Q’EAT,()) = FAT,0($J+1a€J’ TJy... ,61,151,&0,1:0) .

§2.3. Time slicing approximation

Theorem 1 (Existence of phase space path integrals). For any F(X,E) € F, the
time slicing approximation

(2.12) / e XB (X, E)D(X,E)

. 1\™ (Xn = _ J
= |A11-1(I,I|1—>0 (ﬂ) \/];zm, e"-¢( A, AT,O)F(XAT,O, :'AT,o) H dfjd.’l?j ,
, P

converges uniformly on compact sets of (z,&o,xo), i.e., the phase space path integral is
well defined.
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Remark. Even when F(X,Z) = 1, each integral of the right hand side

. 1\™ i g 1) €y =0 (2 H(tyx,65-1)dt J
. (57;> /1;27;.16 e = T Hdéjd“’h

A 0
|[Ar,0l— j=1

of (2.12) does not always converges absolutely, i.e., [g2. dz;d§; = 0o. Furthermore, the
number J of integrals tends to oo, i.e., 00 X 00 X 0O X +++--- as J — oo. Therefore
we treat the multiple integral of (2.12) as an oscillatory integral (cf. H. Kumano-go [9,

§1.6]).

In Theorem 1, the definition of the class F is essential. However, for the sake of
simplicity, we will explain how to define the class F of functionals F(X,E) in the last
section (for the definition of F, see Definition 1 of §5).

§3. We Can Produce Many Functionals F(X,E) € F.

§3.1. Algebra on the class F

First we explain the property of the class F of functionals F(X, E).
Theorem 2 (Algebra on F). For any F(X,E) € F and G(X,E) € F, we have

(3.1) F(X,E) + G(X,5) € F, F(X,E)G(X,E) € F.

Remark. In other words, F is closed under addition and multiplication. If we apply
Theorem 2 to the examples of F(X,Z) € F in Example 3.1, we can produce many
functionals F(X,E) € F which are ‘phase space path integrable’.

§3.2. Examples of F(X,Z) e F

Next we explain typical examples of functionals F'(X,Z) belonging to F.
Example 3.1. Let 0<d<p<1,L>0and 0<T' <T"<T.

(1) Assume that for any multi-index o, DZB(t, ) is continuous and satisfies
(3-2) |DZB(t,z)| < Cafz)”
with a positive constant C,. Then the value at a fixed time t (0 <t < T),
(3.3) F(X)=B(t,X(t) € F.

In particular, F(X)=1€ F and F(X) = X(t) € F.
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(2) Assume that for any multi-indices «, 3, Dg‘&f B(t,z,£) is continuous and satisfies

(3.4) Df:agB(t,x,{)' < Cap ((z) + )\(g))L A(g)P1el=elél

with a positive constant C, 3. Then we have

(1]

(3.5) F(X,E) = /[T, ., BEXO. 50k e F.

(3) Assume that for any multi-indices «, 3, Dg‘@f B(t,z,€) is continuous and satisfies

(36) D20 B(t,,€)| < Cayp(§)"e-P1

with a positive constant Cy g. Then we have

(3.7) F(X,E) = elo/,on BEXOEW ¢ g,

(4) Assume that for any multi-index a, DZB(t, z) is continuous and satisfies
0 < c< ReB(t,z) < C{z)t, |D2B(t,z)/ReB(t,z)| < Cq
with some positive constants ¢, C, C,. Then we have

F(X) =e f[TI’TII) B(t,X(t))dt € f'

Example 3.2. Assume that for any multi-index o, DZa(t, z) is continuous and sat-
isfies 0 < ¢ < a(t,z) and |D%a(t, z)| < C, with some positive constants ¢/, C},. We
consider the parabolic operator

(3.8) dr + H'(T,z, D) = 8r + a(T, x)| D5 |?* + ||%

with non-negative integers k, I. Set H(t,z,£) = a(t,z)|€]** + 1, Bi(x) = —2 and
Bs(z) = |z|* + 1. Then we have

(3.9) H'(t,z,€) = H(¢,z,€) + Bi(z) + Ba2(2).

Let

mxas[,

By Example 3.1(3)(4), we get

B(t) - dX(t) + i /[0 a H(t, X(t),E(t))dt.

(3.10) F(X)=e Jon BrEME ¢ £ q(X) = ¢ Jom BaXW)t ¢ 1
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By Theorem 2, we have F(X)G(X) € F. Therefore we can write the symbol function
U'(T,0,xz,&) of the fundamental solution U’(T),0) for the parabolic equation such that

(3.11) (aT + H(T,z, Dm)) U'(T,0) =0, U'(0,0)=1I
in the path integral form

(3.12) eile—=0)oyy/(T, O,$,fo)=/€if[°’T) 204X O fio,ry B (6X(0),S@)dtp x =)

= / X5 F(X)G(X)D(X,E).

§4. Theorem of Fubini Type

Though the measure D(X, Z) of the phase space path integral (2.12) does not exist,
we can interchange the order of the phase space path integration and the integration
with respect to time.

Theorem 3 (Interchange of the order with the integral with respect to time).

Let L>0and 0 <T' <T" <T. Assume that for any multi-index o, DI B(t,z) is
continuous and satisfies
(4.1) |D3B(t, )| < Cala)”

with a positive constant C,. Then, for any F(X,E) € F including F(X,E) = 1, we

have
/ "X E) ( / B(t,X (t))dt) F(X,E)D(X,
[T/’TII)

(4.2) = /[T,,T”) ( / e ? X8 B(t, X (t))F(X,E)D(X, 5)) dt.

Remark. To avoid the uncertain principle, we do not treat B(t, X (t),E(t)), i.e., the
position X (¢) and the momentum =(¢) at the same time ¢.

(1

)

Remark. We can also interchange the order of the phase space path integration and
some limits (for the details, see [14, Theorem 5|). For example, assume that for any
multi-index a, DZB(t,z) is continuous and satisfies |DZB(t,z)| < C, with a positive
constant C,. Then we have the perturbation expansion formula

(4.3) / e 0 X B+ iz 2y BOX (DA p v =y

=Z/ dtk/ dtk_1-~/ dty
k—o v [TV, T") [T,tr) [T,t2)

x / X3 B(ty, X (t)) B(te—1, X (t—1)) - - - B(t1, X (t1))D(X, E) .

209
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§5. How to Define The Class F

§5.1. Process of proof for Theorems 1 and 2

We explain the process of the proof of Theorems 1 and 2 (for the details of the proof,
see [14]).

In order to prove the existence of the phase space path integral (2.12), i.e., the
convergence of the multiple oscillatory integral

1 nJ ) - _ J
(5.1) (ﬁ) /I;z ] ezd’(XAT,o,—-AT,o)F(XAT’O, :‘Ar,o) H d¢;dz;
n ]=1

= ¢i(@s+17%0)-Co 97,0 (Z+1,80, To)

as |At,0| — 0, we have only to add many assumptions to

(5.2) F(Xaro,Bare) = Faro(Tiv1,60,25,. .., €1, 71,80, %0) ,

and to define the class F of functionals F(X, Z) by these assumptions. Because we have
not given any assumption to F(X,Z) until this section, we need some assumption.
Do not consider other things. Then F will become larger as a set. If we are lucky,
F will contain at least one example F'(X,E) = 1.
The assumptions should be closed under addition and multiplication. Then F will
also be closed under addition and multiplication, i.e., Theorem 2 will hold.
Our proof consists of 3 steps.
1° We control the multiple integral of (5.1) by C” as J — oo with a positive constant
C (Estimate of H. Kumano-go-Taniguchi’s type, cf. [9, Lemma 2.2 of Chapter 7]).

2° We control the multiple integral of (5.1) by a positive constant C independent of
J — oo (Estimate of Fujiwara'’s type, cf. [6]).

3° We add assumptions so that the multiple integral (5.1) converges as |Arg| — 0.

Remark. When Fp,., is independent of zo (for example, F(X,Z) = 1), the sym-
bol function ga; o(Zs+1,&0,Z0) of (5.1) is also independent of zg, i.e., we can write

QAT,O(CL‘J+1,€0,$0) as QAT,O(-’BJH,EO)-

2. stimate of H. Kumano-go-Taniguchi’s type
§5.2. Estimate of H. K Taniguchi’s t

In order to control the multiple integral (5.1) by CY as J — oo with a positive
constant C, we assume that we can control Fa,. , by (B, ¢, )’ as follows.

Tentative Assumption 1. Let 0 < T < T. Let A and L be non-negative con-
stants. For any non-negative integers {1, {2, there exists a positive constant By, ¢, such
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that for any division Arp, any multi-indices o, B;-1 with |oj| < 41, |Bj=1] < £,
i=12,...,J,J+1,

J+1
(53) H D.:;a?:__ll FAT,O(J:J-l-lagJ,mJ,‘“7517‘731)507:”0)
j=1
J+1 J+1 L
VR DICHED BREESCYE I | PRVl
Jj=1 Jj=1 j=1

Remark. All functionals F(X,E) of Example 3.1 satisfy Tentative Assumption 1:
For example, we consider F(X) = B(t, X(t)) with |D2B(t,z)| < Ca{z)¥ of Example
3.1 (1). Using k such that Ty, < t < T, we can write
(5.4) Faz, (zk) = B(t, zx) -

Therefore we can show that Fa, , satisfies (5.3). Next we consider

F(X, E) = eflo,T) B(t,X (t),=(t))dt

with ngB?B(t,$;§)| < Co gA(€)%121=PIB] of Example 3.1 (3) with 0 =T < T” = T.
We can write

J+1
(5'5) FAT 0o = H ef(Tj“l'Ti) B(t,zs,8i-1)dt
=1

Therefore we can show that F,., satisfies (5.3).

Remark. Note that

y . _ I+ Y
(5.6) eibar0 — i 731 (@5 —75-1)€j-1,~ Lj1 f[Tj-—lyTj)H(t’mJ’fj_l)dt‘

In a view of pseudo-differential operators with multiple-symbol of [9, §2 of Chapter 7],
we treat

J+1
P Jirj_y oy Hb2s ,€j—1)thAT .

(6.7  p=p@ss1,€5,25,...,6,71,60,%0) =€
as a multiple symbol function.

Under Tentative Assumption 1, we can control ga,. o (41, 0, Zo) of (5.1) by (Ce, ¢,)”
as J — oo with a positive constant Cy, ¢, as follows.

Lemma 5.1. Let 0 < T < T. For any non-negative integers £y, ¢s, there exists a
positive constant Cy, ¢, such that

(58) | D285 aar, (T, €0, T0)| < A(Crey)” ((2) + M&0) + (o)™ A(&o) 1 —#1A!

for any division Ao and any multi-indices o, B with |a| < £1 and |G| < ;.

211
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§5.3. Estimate of Fujiwara’s type

In order to control the multiple integral (5.1) by a positive constant C independent
of J — o0, we add the term HJ+1 D 1 to Tentative Assumption 1 as follows.

Tentative Assumption 2. Let 0 < T < T. Let A and L be non-negative con-
stants. For any non-negative integers {1, {2, there exists a positive constant By, ¢, such
that for any division Arp, any multi-indices o, Bj-1 with |oj| < £y, |B;- 1] £ 4,
ji=12,...,J,J+1,

J+1
(59) (H Dajag 1) FATO((EJ+1,£J,‘BJ7 agl,thO,mO)
j=1
J+1

< A(Bfl,lz)J-H H (tj)min(lﬂj‘ll’l)
Jj=1

J+1 J+1 J+1
X (Z i) + ) AE-1) + zO) HA(& p)0lodl=plBs-al,
j=1 j=1

Remark. All functionals F(X,Z) of Example 3.1 satisfy Tentative Assumption 2:
For example, we consider F(X) = B(t, X (t)) with |D2B(t,z)| < Cy{z)L of Example
1 (1) Let Tj_1 <t < Tj. If I/Bj—l‘ >1, then we have

(5.10) O} Fag, =001 B(t,ox) =0 < t;.

Therefore we can show that Fa,. , satisfies (5.9). Next we consider

F(X, E) = eLO’T) B(t,X (t),2(t))dt

with | D29; B(t,7,€)| < Ca,pA(€)%1%1=71P! of Example 3.1 (3) with 0 = T" < T" = T.
For multi-index e with |e] =1 and 1 <k < J + 1, we can write

J+1

(5.11) agk‘lFATo H ef[TJ 1.Tj )B(t zj,§5-1)dt / (323)(15, $k’€k_1)dt,
j=1 [T—1,Tk)

Therefore we can show that Fa,., satisfies (5.9).
Remark. Using the figures of paths, we explain the cases of (5.9) with J =0,1,2.

o If J = 0 (see the ”one-piece” paths of Figure 3), Fro(z1,&0,Z0) can be controlled
by (Blhfz)l'

o If J = 1 (see the "two-piece” paths of Figure 4), Fr 1, o(z2,&1, 1,0, %0) can be
controlled by (B, ¢,)?.
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(T: 331)
(0,zop (0, &o)
0 T=T, 0 T=1T
Figure 3. The ”one-piece” paths X70(z1,zo) and Z7,0(£0)
(Ts :Ez)
(T1iéo)
(T 1)
(0,zop (0,&o)
0 T T=T, 0 T T=1T,

Figure 4. The ”two-piece” paths X1 1, o(z2,%1,20) and E7,1,0(€1, o)
o If J = 2 (see the ”three-piece” paths of Figure 5), Fr,z, 1, 0(3, &2, %2, &1, %1, €0, To)
can be controlled by (B, ¢,)3.
Furthermore, we note the following lemma.
Lemma 5.2. If x; = z2 and & = &y, then we have
Fr, 7 0(Z2, 0, T2, 0, To) = Fr,,0(x2, &0, To)
Proof. When z; = z2 and & = & (see Figure 6), we have

Fr, 1, 0(z2, &0, %2, &0, 0) = F (X1, 11 0(Z2, T2, T0), E13,131,0(£0, €0))
= F (X, 0(%2,%0), E1,,0(&0)) = Fry,0(x2, 0, Zo) -

a

Let N be a positive integer with 2m — (p — §)N < 0. We repeating the asymptotic
expansion formula

1
(5.12) | z|<:Na(angng)(mz,ﬁo,ﬂUz,ﬁo) + (22, 40)
25}
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(T, 23) (Thi&1)

(Tl‘ z1) (T2;&2)

(Oa xO)' (0’ EO/
0 Ty T T=1T; 0 T T T="1T;,

Figure 5. The "three-piece” paths qr,1, 11 0(3, Z2, 1, Z0) and pr1, 11 ,0(82,€1,60)

(Tajz2) (T2, z2)

(T1;%0)

(0,0} (0, Eo)T
0 Ty T, 0 Ty T

Figure 6. The paths XTg,Tl,O(m2,$2,-730) and ETz,Tl,o(fo,go)

for the pseudo-differential operator with the double symbol p(zs,&1,21,&0) (see [9, §3
of Chapter 2]), we change the paths of the main terms into simpler paths over and over
again. Then the many remainder terms terms appear. However the many remainder
terms can be controlled by the many terms t; of (5.9). Using the many terms ¢;, we
control the sum of the many remainder terms with Zj:ll tj =T and TeT < TeT < CT.

Remark. For the pseudo-differential operators with the multiple-symbol

J+1 L £
— e_ Zj:l f[Tj—lvTj) H(taxa )&J—l)th

b 7,00
we treat
1 oy o a2 Ma2 @ Mo T1==x2 To=I3 TJ=LJ4+1
> = (o pe - (oo oz ).
Yiei lajl<N Hi=1707 §2=6o £r=£o

as the main term of the asymptotic expansion.
Using Fro(z, o, o) = F(Xr,0,E1,0), We set

(513) qT,0($) €0> wO) =e flO’T) H(t’z’fo)thT’o(iE, §0, .'1)0) .
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Under Tentative Assumption 2, we can control ga,. (% s+1, &0, o) of (5.1) by a positive
constant Cy, ¢, independent of J — oo as follows.

Lemma 5.3. Let 0 < T < T. For any non-negative integers {1, {2, there exist
positive constants Ce, 4,, Cp, 4, such that

(514) | D26Egarna(2, €0, 0)| < ACk 0 ((®) + A(Eo) + (20 Ao) 1o ~7141,
and
(5.15) D23 (qar, (2, €0, 30) — ar,0(z, &0, wo))’

< AC;, 4, T ((z) + Méo) + (z0)) " A(&o)? ™+l =elAl

for any division Aro and any multi-indices o, B with |a| < £ and |B| < £a.

§5.4. The class F of functionals F(X,E)

We add (5.17) to Tentative Assumption 2 as follows so that the multiple integral
(5.1) converges as |Ar,o| — oo.

Assumption 3. Let 0 < T < T. Let A and L be non-negative constants. Let x be
a positive bounded Borel measure on [0, T]. For any non-negative integers /1, {3, there
exists a positive constant By, ¢, such that for any division Az, any multi-indices o,
,Bj——l with |O¢jl < 61, I/Bj—ll _<_ 122, ] = 1,2, vy J,J+ 1,

J+1
(516) H D:;a?:__ll FAT,o(xJ+1’£J,-TJa“- ,51,111,50,1?0)
i=1
J+1
< A(Bo )" [T @)™
i=1
L
J+1 J+1 J+1
X Z(%‘) + Z A(§j-1) + (o) H A(gj—1)?1os|=PIPs 1l
and, for any integer s with 1 < s < J+1, if |a,| > 0,
J+1
(517) H ngag]_—ll FAT,0($J+17§J7:EJ)'",§I7m17£0)$0)
j=1
J+1 )
< A(Bll,lz)J+lll'((T A H (tj)mm(lﬂj_ll’l)
Jj=1, j#s
L
J+1 J+1 J+1

x Z(%‘) + Z A(€j-1) + (zo) H A(gj1)Plesl=rlBs-al
Jj=1 j=1

=1
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where p((Ts—1,Ts)) is the measure p of the interval (Ts_1,Ts).

Remark. All functionals F(X, E) of Example 3.1 satisfy Assumption 3: For example,
we consider F(X) = B(t, X(t)) with |D2B(t,z)| < Cqa(z)L of Example 3.1 (1). Let
Ti—1 < t < Ti. For any multi-index a, there exists a positive constant C, such that

|ngFAT,o(xk)| < Oa<$k)L .

Set x(1) =0(0<7<t),=10¢<7<T)and p((Tj-1,Tj]) = f(Tj_l,Tj] dx(r). Then
we have p((Tj-1,Tj]) = 0 (j # k), = 1 (j = k). Therefore we can show that Fa,,
satisfies (5.17). Next we consider

F(X,E) = elon BEX®)EM)dt

with | D28f B(t,z,£)| < Ca,pA(€)%1*=#8l of Example 3.1 (3) with 0 =T’ < T" =T.
For multi-index e with |e| = 1, we can write

J+1

(5.18) D;"FAT’O — H e‘f[TJ_.1|TJ)B(t)z.7’£J"‘1)dt x / (D;B)(t, xs,és_l)dt‘
j=1 [TB—I?TS)

Set u((Ts—1,Ts]) = f(T,_l,T,] dt =t < p((0,T)) = f(o,T] dt = T < oo. Then we can
show that Fa,., satisfies (5.17).

Roughly speaking, the measure theory considers the base. However the integra-
tion theory considers the area, i.e., the product of the base and the height. We as-
sume (5.17) to the height. (5.17) implies that if the difference of two paths is small,
the difference Dy, Fa., of the two heights can be controlled by u((Ts-1,Ts]) with
Y721 w(Ty-1,T3]) < p((0,T)) < oo.

Under this Assumption 3, we can show that ga,,(z,&o,Z0) of (5.1) converges as
|Az,0| — 0 as follows.

Lemma 5.4. Let 0 < T < T. For any non-negative integers {1, {2, there exist
positive constants Cy, ¢,, Cy, 4, and a function (T, 0;z, o, o) such that

(5.19)  |Dgdgdar, (2o, :vo)l < ACy, 4, (=) + M&o) + (o))" M(&)°1I=A1Al,
and
(5.20) D33 (9ar0(x, o, x0) — 9(T, 0;03,50,330))’

< ACY, 4| A0l (T + p((0,T1)) (=) + A(60) + (mo))” A(&o)*mHolel=rlAl,

for any division At and any multi-indices a, B with |a| < ¢; and |B| < £o.
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At last, we define the class F of functionals F'(X,E) by this Assumption 3.

Definition 1 (Class F of functionals). Let F'(X,Z) be a functional of X, ,(t) and
Earo(t) in (2.8) and (2.9). We say that F(X,E) € F if Fa,, = F(Xaro,Ear,)
satisfies (5.16) and (5.17) of Assumption 3.
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