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1. QpEN BOOK FOLIATIONS

In this section we recall some terminologies in the open book foliation package that are
needed for this note. Open book foliations are defined by Ito and Kawamuro in [14]. The
idea of open book foliations came from Bennequin’s work [1] and Birman and Menasco’s
braid foliations studied in the series of papers [2, 3, 4, 5, 6, 7, 8, 9, 10]. Many terminologies
of open book foliations are taken from those of braid foliations,

Let $S=S_{g,r}$ be a compact oriented genus $g$ surface with $r(>0)$ boundary components.
Let $\phi$ : $Sarrow S$ be an orientation preserving diffeomorphism that fixes the boundary $\partial S$

point-wise. Let $M_{(S,\phi)}$ denote the 3-manifold given by the (abstract) open book $(S, \phi)$ .
That is $M_{(S,\phi)}$ is obtained from the mapping torus $M_{\phi}$ of $\phi$ with solid tori glued trivially
along all the boundary tori of $M_{\phi}$ . (See, for example, Etnyre’s survey article [12] for more
detail.) We denote the binding of the open book by $B$ and the pages by $S_{t}$ where $t\in[0$ , 1 $].$

Consider a compact oriented surface $F$ embedded in $M_{(S,\phi)}$ . The surface $F$ may or may
not have boundary. If $F$ has boundary we require that the boundary $\partial F$ is in a braid
position with respect to the open book $(S, \phi)$ . That is, $\partial F$ is transverse to the pages
positively, is never tangent to pages, and does not intersect the binding $B$ . Let $\mathcal{F}_{ob}(F)$

be a singular foliation on the surface $F$ given by the intersection of $F$ and the pages
$\{S_{t}|t\in[0$ , 1 We call $\mathcal{F}_{ob}(F)$ the open book foliation on $F$ with respect to the open
book $(S, \phi)$ .

Up to isotopy we may assume that all the singularities of $\mathcal{F}_{ob}(F)$ are elliptic or hyper-
bolic. In particular no local extrema exist. An elliptic point is a transverse intersection
of $F$ and the binding $B$ . A hyperbolic point is a saddle tangency of $F$ and a page $S_{t}$ . See
Figure 1.

Non-singular leaves of $\mathcal{F}_{ob}(F)$ are classified into three types: $a$-arcs, $b$-arcs, and $c$-circles.
See Figure 2. An a-arc is a clasp-intersection of $F$ and a page $S_{t}$ and it joins a point on
the binding $B$ and a point on the braid $\partial F$ . A $b$-arc is a ribbon-intersection of $F$ and a
page $S_{t}$ and it joins two points of $B$ . A $c$-circle is a simple closed curve where $F$ and $S_{t}$

intersect.

2. MAIN RESULT

The main result we focus in this note is the following:
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FIGURE 1. An elliptic point (left) and a hyperbolic point (right).

FIGURE 2. $a$-arc, $b$-arc, and $c$-circle.

Theorem 2.1. [15] Suppose that a surface $F\subset M_{(S,\phi)}$ is incompressible of an essential
sphere. One can find a surface $F’\subset M_{(S,\phi)}$ such that $F$ and $F’\# S^{2}\#\ldots\# S^{2}$ (the connect
sum of $F’$ and possibly empty essential spheres) are isotopic and:

$(*)$ : All the $b$-arcs of $\mathcal{F}_{ob}(F’)$ are essential arcs in each punctured page $S_{t}\backslash (S_{t}\cap\partial F’)$ .

If the above condition $(*)$ is satisfied we say that the open book foliation is essential.
See Figure 3.

This technical theorem has interesting applications to topology and geometry of the
open book manifold $M_{(S,\phi)}$ (cf. [15]), braids in open books (cf. [16]), and the contact
structure supported by $(S, \phi)$ (cf. [17]). We will discuss some of them in Section 3.

2.1. Sketch of the proof of Theorem 2.1. A detailed proof of Theorem 2.1 can be
found in [15]. Our proof consists of two steps.
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FIGURE 3. Thick black (resp. gray) arcs are essential (resp. non-essential) $b$-arcs.

(Step 1): We may assume that the surface $F$ admits an open book foliation $\mathcal{F}_{ob}(F)$

(we actually allow local extremal points at this moment).

If the foliation contains a non-essential $b$-arc in $S_{t}$ (i.e., a boundary parallel arc in
the punctured page $S_{t}\backslash (S_{t}\cap\partial F)$ then we push a neighborhood of the $b$-arc along the
cobounded disc with $B$ . See Figure 4. We apply this operation to all the non-essential
$b$-arcs.

FIGURE 4

As shown in Figure 5 the operation removes a pair of elliptic points from $\mathcal{F}_{ob}(F)$ but
introduces a pair of local minimum and maximum at the same time. In the following

$0\fbox{Error::0x0000}))$ $((0\fbox{Error::0x0000}$

FIGURE 5

we modify $F$ by isotopy away from the binding so that $\mathcal{F}_{ob}(F)$ has no local extrema and
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every tangency of $F$ and $S_{t}$ is a saddle point. That is, $\mathcal{F}_{ob}(F)$ becomes an essential open
book foliation. This concludes the theorem.

One may think that Thurston’s general position theorem [18] can be applied for our pur-
pose. However we cannot directly apply Thurston’s argument. Let us compare Thurston’s
theorem and our setting.

Theorem 2.2 (Thurston’s general position theorem). [18, 11] Assume that $\mathcal{F}$ is a taut

foliation on a compact oriented 3-manifold $M$ and transverse to $\partial M$ . Let $F\mapsto M$ be
an admissible surface ($i.e_{f}F$ is an incompressible surface or an essential sphere). Then,
through admissible imbeddings, $F$ is isotopic to a leaf of $\mathcal{F}$ or is isotopic to a surface all

of whose tangencies with $\mathcal{F}$ are saddles.

See [11, Definition 9.5.2] for the precise definition of “admissible”

In our case the family of the pages $\{$ Int $(S_{t})|t\in[0$ , 1] $\}$ gives a taut foliation on
$M\backslash B$ . We assume that $F\subset M$ is incompressible or an essential sphere, which does not
immediately guarantee that $(F\backslash (F\cap B))\subset(M\backslash B)$ is incompressible. Therefore we
cannot directly apply Thurston’s result to our case.

(Step 2): In this step we remove all the local minima of $\mathcal{F}_{ob}(F)$ by isotopy and de-
summing essential spheres. Our method will not introduce new non-essential $b$-arcs.

Local minima can be classified into the following three types: Let $p$ be alocal minimum.
As the time parameter $t$ increases we see a smooth family of $c$-circles arising from $p$ until
it forms a saddle point $q_{1}$ . Each $c$-circle bounds a disc which we denote by $X=X_{t}(\subset S_{t})$ .

Type I: If a describing arc of the saddle point $q_{1}$ joins a point of the $c$-circle $\partial X$

and another leaf then we say that $p$ is a Type I local minimum and $q_{1}$ is a Type I
saddle. See Figure 6.

Type II: If a describing arc of the saddle point $q_{1}$ joins two points of $\partial X$ and is
embedded in the complement of $X$ then we say that $p$ is a Type II local minimum
and $q_{1}$ is a Type II saddle.

Type III: If a describing arc of the saddle point $q_{1}$ is an embedded arc in the region
$X$ then we say that $p$ is a Type III local minimum and $q_{1}$ is a Type III saddle.

Suppose that $q_{i}$ is a Type II saddle point arising from alocal minimum $p$ . Let $\{X_{t}\}$ be the
family of connected regions bounded by the $c$-circles that arise from $p$ . The next saddle
point $q_{i+1}$ is called

$\bullet$ Type I if a describing arc for $q_{i+1}$ joins a point of $\partial X$ and another leaf,
$\bullet$ Type II if a describing arc for $q_{i+1}$ joins two points of $\partial X$ and is embedded in the
complement of $X,$

$\bullet$ Type III if a describing arc for $q_{i+1}$ is embedded in the region $X.$

For each local minimum $p$ we get a family of connected regions $\{X_{t}\}$ arising from $p$ and
ending at a region containing a Type I or Type III saddle. We say that $p$ is innermost if
the family {Int $(X_{t})$ } contains no local minimum other than $p.$
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FIGURE 6. Movie presentations of Type I, II, III local minima $p$ and saddles $q_{1}.$

Shaded regions represent $X=X_{t}$ . Dashed arcs are describing arcs of the saddle
points.

We start with an innermost local minimum $p$ . (The case where $p$ is not innermost is
discussed in [15]). We have three cases to study.

(Case A): If $p$ is of Type I, by isotopy, we flatten the bump that reduces the number
of local minima by one.

FIGURE 7. Case $A$

(Case B): If $p$ is of Type III we compress the surface along the vertical disc (shaded in
Figure 8). Since our surface is incompressible this gives a connected sum $F=F’\# S^{2}$ of
an incompressible surface (or an essential sphere), $F’$ , and an essential sphere $S^{2}$ . Though
$F$ and $F’$ have the same number of local minima we note that the number of saddles of
$F’$ is smaller than that of $F$ . Thus $F’$ has less complexity than $F.$
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FIGURE 8. Case $B$

(Case C): Now we assume that $p$ is of Type II and followed by a sequence of Type II
saddles, $q_{1}$ , . . . , $q_{k-1}$ , and ended with a Type I or III saddle, $q_{k}$ . We have two observations:

(1) The order of consecutive Type II and Type I saddles (eg. $q_{k-1}$ and $q_{k}$ ) can be
changed by a local isotopy.

(2) If $q_{k}$ is of Type III then, with a local isotopy, $p$ becomes Type III. In other words,
we can find a new sequence of saddles $q_{1}’$ , . . . , $q_{k}’$ such that $q_{1}’$ is of Type III and
$q_{2)}’\ldots,$ $q_{k}’$ are of Type II. Figure 9 gives such an example.

as
$\downarrow$

$\downarrow$

FIGURE 9. 0bservation (2)
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The observation (1) holds because describing arcs of consecutive Type II and Type I
saddles (strictly speaking, projected onto a same page) are disjoint.

The observation (2) needs more care. A parallel statement to (1) does not hold in
general. That is, there is an example (like the one in Figure 9) where the order of $q_{k-1}$

and $q_{k}$ is not changeable.

The observations (1) and (2) imply that each Type II local minimum can become Type
I or Type III by isotopy. Hence (Case C) is reduced to (Case A) or (Case B).

3. APPLICATIONS OF THEOREM 2.1

Among the above mentioned applications of Theorem 2.1, here we give two corollaries.
Let $c(\phi, C)$ denote the fractional Dehn twist coefficient (FDTC) of a diffeomorphism
$\phi$ : $Sarrow S$ with respect to the boundary component $C\subset\partial S$ . See [13] for the definition
of FDTC.

Corollary 3.1. [15] Let $\phi$ : $Sarrow S$ be a diffeomorphism that is freely isotopic to a periodic
or pseudo-Anosov homeomorphism. If

(1) $|c(\phi, C)|>4$ for all the boundary components $C\subset\partial S$ , or
(2) the boundary $\partial S$ is connected and $|c(\phi, \partial S)|>1$

then the manifold $M_{(S,\phi)}$ is irreducible and atoroidal.

The next is a corollary of Corollary 3.1.

Corollary 3.2. [15] Supposed that $\phi$ : $Sarrow S$ satisfies the conditions (1) and (2) in
Corollary 3.1. Then we have the following:

$\bullet$ $M_{(S,\phi)}$ is toroidal if and only if $\phi$ is reducible.
$\bullet$ $M_{(S,\phi)}$ is hyperbolic if and only if $\phi$ is freely isotopic to a pseudo-Anosov homeo-
morphism.

$\bullet$ $M_{(S,\phi)}$ is a Seifert fibered space if and only if $\phi$ is freely isotopic to a periodic
homeomorphism.

Without the conditions (1) and (2) this corollary does not hold. For example, if $\phi=id_{S}$

(i.e., periodic) and $\partial S$ is connected then $c(\phi, \partial S)=0$ and $M_{(S,\phi)}=\# 2g(S^{1}\cross S^{2})$ , which is
not Seifert fibered.

3.1. Proof of Corollary 3.1. Here is a lemma for Corollary 3.1.

Lemma 3.3. [15] Let $F\subset M_{(S,\phi)}$ be a closed, genus 9 surface satisfying the condition $(*)$

of Theorem 2.1 and intersecting the binding $B$ in $2n(>0)$ points.

$\bullet$ Suppose that $S$ has connected boundary. Then

$|c(\phi, \partial S)|\leq\{\begin{array}{ll}1 if_{9}=1g if g>1.\end{array}$
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$\bullet$ Suppose that $|\partial S|>1$ . Then there exists a component $C\subset\partial S$ such that

$|c(\phi, C)|\leq\{\begin{array}{ll}3 if g=14+\lfloor^{\underline{4}g}\frac{-4}{n}\rfloor if g>1.\end{array}$

Proof of Corollary 3.1. We first show irreducibility of $M_{(S,\phi)}$ . Assume that there exists an
essential sphere $F\subset M_{(S,\phi)}$ . By Theorem 2.1 the condition $(*)$ is satisfied. Assumptions
(1) and (2) of Corollary 3.1 and Lemma 3.3 imply $n=$ O. The Euler characteristic
satisfies $2=\chi(F)=e-h$ , where $e(\geq 0)$ (resp. $h(\geq 0)$ ) is the number of elliptic
(resp. hyperbolic) points in the open book foliation $\overline{ノ^{}-}_{ob}(F)$ . Recall that elliptic points
are exactly the intersection of $F$ and $B$ . Thus $2n=e=2+h>0$ . This contradicts the
above fact that $n=0$ . Therefore $M_{(S,\phi)}$ contains no essential spheres.

Next we show atoroidality of $M_{(S,\phi)}$ . Assume that there exists an incompressible torus
$F\subset M_{(S,\phi)}$ . By Theorem 2.1 the condition $(*)$ is satisfied. Assumptions (1) and (2)
of Corollary 3.1 and Lemma 3.3 imply that $n=$ O. The Euler characteristic satisfies
$0=\chi(F)=e-h$ , that is $h=e=2n=$ O. This means that the open book foliation
$\mathcal{F}_{ob}(F)$ has no singularities and all the leaves are $c$-circles. Since we identify the page $S_{0}$

FIGURE 10. A torus foliated only by $c$-circles. A half line represents a page.

with $S_{1}$ under $\phi$ we have an equation: $F\cap S_{0}=\phi(F\cap S_{1})$ . On the other hand, the sets
$F\cap S_{1}$ and $F\cap S_{0}$ are isotopic through the smooth family $\{F\cap F_{t}|t\in[0$ , 1 Thus we
have $\phi(F\cap S_{1})=F\cap S_{1}$ and $\phi$ preserves the set of $c$-circles $F\cap S_{1}$ . That is, $\phi$ is reducible.
This contradicts the assumption that $\phi$ is periodic or pseudo-Anosov. Therefore $M_{(S,\phi)}$

contains no incompressible tori. $\square$
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