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Abstract

In the present papar we generalize “quantum-classical correspon-
dence” for harmonic oscillators to the context of interacting Fock
spaces. Under a simple condition for Jacobi $sequences_{\}}$ it is shown
that the Arcsine law is the unique probability distribution correspond-
ing to the “Classical limits (large quantum number limits As a
corollary, we obtain that the squared n-th orthogonal polynomials for
a probability distribution corresponding to such kinds of interacting
Fock spaces, multiplied by the probability distribution and normal-
ized, weakly converge to the Arcsine law as $n$ tends to infinity.

1 Introduction

The distribution $\mu_{As}$ defined as

$\mu_{As}(dx)=\frac{1}{\pi}\frac{dx}{\sqrt{2-x^{2}}}(-\sqrt{2}<x<\sqrt{2})$ .

is called the Arcsine law, which plays lots of crucial roles both in pure and
applied probability theory. The n-th moment $M_{n}$ $:= \int_{\mathbb{R}}x^{n}\mu_{As}(dx)$ is given
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by

$M_{2m+1}=0, M_{2m}= \frac{1}{2^{m}}(\begin{array}{l}2mm\end{array}).$

The moment problem for the Arcsine law is determinate, that is, the moment
sequence $\{M_{n}\}$ characterizes $\mu_{As}$ . In [8] we have proved that the Arcsine law
appears as the “Classical limit distribution”’ of quantum harmonic oscillator,

in the framework of algebraic probability thoery (also known as ($\langle$noncom-
mutative probability theory”’ or “quantum probability theory

The purpose of this paper is to extend this “quantum-classical correspon-

dence”’ in general interacting Fock spaces [1]. It implies asymptotic behavior

of orthogonal polynomials for certain kind of symmetric probability measures.

2 Basic notions

2.1 Algebraic Probability Space

Let $\mathcal{A}$ be a $*$-algebra. We call a linear map $\varphi$ : $\mathcal{A}arrow \mathbb{C}$ a state on $\mathcal{A}$ if it
satisfies

$\varphi(1)=1, \varphi(a^{*}a)\geq 0.$

A pair $(\mathcal{A}, \varphi)$ of $a*$-algebra and a state on it is called an algebraic probability

space. An element of $\mathcal{A}$ is called an algebraic random variable. Here we
adopt a notation for a state $\varphi$ : $\mathcal{A}arrow \mathbb{C}$ , an element $X\in \mathcal{A}$ and a probability

distribution $\mu$ on $\mathbb{R}.$

Notation 2.1. We use the notation $X\sim_{\varphi}\mu$ when $\varphi(X^{m})=\int_{\mathbb{R}}x^{m}\mu(dx)$ for

all $m\in \mathbb{N}.$

Remark 2.2. Existence of $\mu$ for $X$ which satisfies $X\sim_{\varphi}\mu$ always holds.

2.2 Interacting Fock space

Definition 2.3 (Jacobi sequence). A sequence $\{\omega_{n}\}$ is called a Jacobi se-
quence if it satisfies one of the conditions below:

$\bullet$ (finite type) There exist a number $m$ such that $\omega_{n}>0$ for $n<m$ and
$\omega_{n}=0$ for $n\geq m$ ;

$\bullet$ (infinite type) $\omega_{n}>0$ for all $n.$

Definition 2.4 (Interacting Fock space). Let $\{\omega_{n}\}$ be a Jacobi sequence

and $\{\alpha_{n}\}$ be a real sequence. An interacting Fock space (IFS) $\Gamma_{\{\omega_{n}\},\{\alpha_{n}\}}$ is a
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quadruple $(\Gamma(\mathbb{C}), a, a^{*}, a^{o})$ where $\Gamma(\mathbb{C})$ is a Hilbert space $\Gamma(\mathbb{C})$ $:=\oplus_{n=0}^{\infty}\mathbb{C}\Phi_{n}$

with inner product given by $\langle\Phi_{n},$ $\Phi_{m}\rangle=\delta_{n,m}$ , and $a,$
$a^{*}$ are operators defined

as follows:
$a\Phi_{0}=0, a\Phi_{n}=\sqrt{\omega_{n}}\Phi_{n-1}(n\geq 1)$ ,

$a^{*}\Phi_{n}=\sqrt{\omega_{n+1}}\Phi_{n+1},$

$a^{o}\Phi_{n}=\alpha_{n+1}\Phi_{n}.$

Let $\mathcal{A}$ be the $*$-algebra generated by $\{a, a^{*}, a^{o}=(a^{o})^{*}\}$ , and $\varphi_{n}$ be the
state defined as $\varphi_{n}$

$:=\langle\Phi_{n},$ $(\cdot)\Phi_{n}\rangle$ . Then $(\mathcal{A}, \varphi_{n})$ is an algebraic probability
space.

2.3 Interacting Fock Spaces and orthogonal polynomi-
als for probability measures

Theorems for interacting Fock spaces often have interesting interpreta-
tion in terms of orthogonal polynomials. To see this we review the relation
between interacting Fock spaces, probability measures and orthogonal poly-
nomials. Let $\mu$ be a probability measure on $\mathbb{R}$ having finite moments. (For
the rest of the present paper, we always assume that all the moments are
finite.) Then the space of polynomial functions is contained in the Hilbert
space $L^{2}(\mathbb{R}, \mu)$ . A Gram-Schmidt procedure provides orthogonal polynomials
which only depend on the moment sequence.

Let $\{p_{n}(x)\}_{n=0,1},\cdots$ be the monic orthogonal polynomials of $\mu$ such that
the degree of $p_{n}$ equals to $n$ . Then there exist sequences $\{\alpha_{n}\}_{n=0,1},\cdots$ and
Jacobi sequence $\{\omega_{n}\}_{n=1,2},\cdots$ such that

$xp_{n}(x)=p_{n+1}(x)+\alpha_{n+1}p_{n}(x)+\omega_{n}p_{n-1}(x) (p_{-1}(x)\equiv0)$ .

$\alpha_{n}\equiv 0$ if $\mu$ is symmetric, i.e., $\mu(-dx)=\mu(dx)$ . We call $\{\{\omega_{n}\}, \{\alpha_{n}\}\}$ Jacobi
sequences corresponding to $\mu.$

It is known that there exist an isometry $U$ : $\Gamma_{\{\omega_{n}\}}arrow L^{2}(\mathbb{R}, \mu)$ which
sends $X$ $:=a+a^{*}+a^{o}$ to the multiplication operator, and through which we
obtain

$X :=a+a^{*}+a^{o}\sim_{\varphi_{N}}|P_{N}(x)|^{2}\mu(dx)$

where $P_{n}$ denotes the normalized orthogonal polynomial of degree $n[1$ , 6$].$

In other words, through $U$ , we can (decompose” $a$ (measure theoretic/classical)
random variable into the sum of non-commutative algebraic random vari-
ables. (This crucial idea in algebraic probability theory is called “quantum
decomposition”’ [5, 6
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3 Quantum-Classical Correspondence for in-
teracting Fock spaces

3.1 Quantum-Classical Correspondence for Harmonic
Oscillator

The interacting Fock space corresponding to $\omega_{n}=n,$ $\alpha_{n}\equiv 0$ is called (Quan-

tum Harmonic Osillator(QHO)”’. For quantum harmonic oscillator, it is well
known that

$X :=a+a^{*}+a^{o}\equiv a+a^{*}$

represents the $(\langle position$
” and that

$X \sim_{\varphi 0}\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}x^{2}}dx.$

That is, in $n=0$ case, the distribution of position is Gaussian.
On the other hand, the asymptotic behavior of the distributions of posi-

tion as $n$ tends to infinity is nontrivial. In other words, what is the “Classical
limit”’ of quantum harmonic oscillator? This question, which is related to
fundamental problems in Quantum theory and asymptotic analysis [3], was
analyzed in [8] from the viewpoint of noncommutative algebraic probability
with quite a simple combinatorial argument. The answer for this question
is that the “Classical Limit”’ for quantum harmonic oscillator is nothing but
the Arcsine law.

Theorem 3.1 ([8]). Let $\Gamma_{\{\omega_{n}=n\},\{\alpha_{\mathfrak{n}}\equiv 0\}}:=(\Gamma(\mathbb{C}), a, a^{*}, a^{o}\equiv 0)$ be the Quan-
tum harmonic oscillator, $X:=a+a^{*}$ and $\mu_{N}$ be a probability distribution on

$\mathbb{R}$ such that
$\frac{X}{\sqrt{2N-1}}\sim_{\varphi_{N}}\mu_{N}.$

Then $\mu_{N}$ weakly converges to $\mu_{As}.$

Here $\sqrt{2N-1}$ is the normalization factor to make the variance of $\mu_{N}$

to be equal to 1. Since it is easy to see that th Arcsine law gives “time-
averaged behavior”’ of classical harmonic oscillator, the result can be viewed
as “Quantum-Classical Correspondence”’ for harmonic oscillators!

3.2 The notion of Classical limit distribution of IFS

As the case for QHO, we define the notion of classical limit distribution for
IFS. It is a distribution to which the distribution for $X$ under $\varphi_{N}$ , after
normalization, converges in moment.
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Definition 3.2 (Classical Limit distribution). Let $\Gamma_{\{\omega_{n}\},\{\alpha_{n}\}}$ $:=(\Gamma(\mathbb{C}), a, a^{*}, a^{o})$

be an interacting Fock space, $X$ $:=a+a^{*}+a^{o}$ and $\mu_{N}$ be a probability dis-
tribution on $\mathbb{R}$ such that

$\frac{X-\alpha_{N+1}}{\sqrt{\omega_{N}+\omega_{N-1}}}\sim_{\varphi_{N}}\mu_{N}.$

A probability distribution $\mu$ on $\mathbb{R}$ is called a classical limit distribution if $\mu_{N}$

converge $\mu$ in moment.

By normalization, $\mu_{N}$ has mean $0$ and variance 1.

Remark 3.3. The uniqueness of classical limit distribution depends on the
moment problem. Note that convergence in moment implies weak conver-
gence in case the limit distribution is the solution of a determinate moment
problem [2, 4].

3.3 The Arcsine law as classical limit distribution

The Arcsine law is the classical limit distribution for certain kinds of IFSs.

Theorem 3.4. Let $\Gamma_{\{\omega_{n}\},\{\alpha_{n}\}}:=(\Gamma(\mathbb{C}), a, a^{*}, a^{o})$ be an interacting Fock space
satisfying

$\lim_{narrow\infty}\frac{\omega_{n+1}}{\omega_{n}}=1, \lim_{narrow\infty}\frac{\alpha_{n}-\alpha_{n+1}}{\sqrt{\omega_{n}+\omega_{n+1}}}=0.$

Then the classical limit distribution is the Arcsine law $\mu_{As}.$

Proof. We will show that $\varphi_{N}((\frac{X-\alpha_{N+1}}{\sqrt{\omega N+\omega_{N-1}}})^{n})=\varphi_{N}((\frac{a+a^{*}+a^{o}-\alpha_{N+1}}{\sqrt{\omega_{N}+\omega_{N-1}}})^{n})$ converge
to m-th moment of the Arcsine law. It is easy to show that

$\frac{\omega_{N+k}}{\omega_{N}}arrow 1 (Narrow\infty)$ ,

and the effect of $\frac{a^{o}-\alpha_{N+1}}{\sqrt{\omega_{N}+\omega_{N-1}}}$ tends to O. Hence it suffices to calculate $\varphi_{N}((\frac{a+a^{*}}{\sqrt{\omega_{N}+\omega_{N-1}}})^{n})$ .
First, it is clear that

$\varphi_{N}((\frac{a+a^{*}}{\sqrt{\omega_{N}+\omega_{N-1}}})^{2m+1})=\langle\Phi_{N}, (\frac{a+a^{*}}{\sqrt{\omega_{N}+\omega_{N-1}}})^{2m+1}\Phi_{N}\rangle=0$

since $\langle\Phi_{N},$ $\Phi_{M}\rangle=0$ when $N\neq M$ . To consider the moments of even degrees,
we introduce the following notations:

$\bullet$

$\Lambda^{2m}$

$:=$ {maps from $\{$ 1, 2, $2m\}$ to $\{1,$ $*$

$\bullet\Lambda_{m}^{2m}:=\{\lambda\in\Lambda^{2m};|\lambda^{-1}(1)|=|\lambda^{-1}(*)|=m\}.$
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Note that the cardinality $|\Lambda$ $|$ equals to $(_{m}^{2m}$) because the choice of $\lambda$ is
equivalent to the choice of $m$ elements which consist the subset $\lambda^{-1}(1)$ from
$2m$ elements in $\{$ 1, 2, $2m\}.$

It is clear that for any $\lambda\not\in\Lambda_{m}^{2m}$

$\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle=0$

since $\langle\Phi_{N},$ $\Phi_{M}\rangle=0$ when $N\neq M$ . On the other hand, for any $\lambda\in\Lambda_{m}^{2m}$

$\frac{1}{\omega_{N}^{m}}\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\ranglearrow 1 (Narrow\infty)$

holds since $\langle\Phi_{N},$ $a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle$ becomes the product of $2m$ terms having
the form $\sqrt{\omega_{N+k}}$ ( $k$ is an integer and $-m+1\leq k\leq m$ ) and

$\frac{\omega_{N+k}}{\omega_{N}}arrow 1 (Narrow\infty)$

as we have mentioned. Hence,

$\varphi_{N}((\frac{a+a^{*}}{\sqrt{\omega_{N}+\omega_{N-1}}})^{2m})=\langle\Phi_{N}, (\frac{a+a^{*}}{\sqrt{(1+\frac{\omega_{N-1}}{\omega N})\omega_{N}}})^{2m}\Phi_{N}\rangle$

$= \frac{1}{(1+\frac{N-1}{\omega_{N}})^{m}}\sum_{\lambda\in\Lambda^{2m}}\frac{1}{\omega_{N}^{m}}\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle$

$= \frac{1}{(1+\frac{N-1}{\omega N})^{m}}\sum_{\lambda\in\Lambda_{m}^{2m}}\frac{1}{\omega_{N}^{m}}\langle\Phi_{N}, a^{\lambda_{1}}a^{\lambda_{2}}\cdots a^{\lambda_{2m}}\Phi_{N}\rangle$

$arrow\frac{1}{2^{m}}|\Lambda_{m}^{2m}|=\frac{1}{2^{m}}(\begin{array}{l}2mm\end{array}) (Narrow\infty)$ .

$\square$

Remark 3.5. It is quite interesting to compare Kerov’s theorem on his
“Arcsine Law which is different from our $\mu_{As}$ but closely related to it [7].

Remark 3.6. Since the Arcsine law is the solution of a determinate moment
problem, moment convergence implies weak convergence.

The theorem means that $\mu_{As}$ is turned out to be the Classical limit dis-
tribution of many kinds of IFS. For example, IFSs corresponding to uni-
form distribution, exponential distribution or $q$-Gaussians”’ $(-1<q\leq 1,$

$\omega_{n}=[n]_{q}:=1+q+q^{2}+\cdots+q^{n-1},$ $\alpha_{n}\equiv 0.$ $q=1$ is Gaussian and $q=0$ is
Wigner Semicircle Law) satisfy the condition above.
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3.4 An asymptotic behavior of orthogonal polynomials

The theorem above implies description of an asymptotic behavior of orthog-
onal polinomials:

Corollary 3.7. Let $\mu$ be a prabablity measure such that the corresponting
Jacobi sequences $\{\omega_{n}\},$ $\{\alpha_{n}\}$ satisfies the conditions above,

Then the measure $\mu_{n}$ defined as $\mu_{n}(dx)$ $:=|P_{n}(\sqrt{\omega_{N}+\omega_{N-1}}x)|^{2}\mu(\sqrt{\omega_{N}+\omega_{N-1}}dx)$

weakly converge to $\mu_{As}.$

Many kinds of orthogonal polynomials such as Jacobi polynomials(e.g.
Legendre polynomials), Laguerre polynomials or $q$-Hermite polynomials $(-1<$
$q\leq 1)$ satisfy the condition above.

4 Open questions

Here we have two fundamental questions:
Ql How can we characterize the family of classical limit distri-

butions?
Q2 When the classical limit distributions are solutions of deter-

minate moment problem?
These questions will be discussed in [9].
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