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1. INTRODUCTION

It is well-known that the Brownian motion on a Riemannian manifold M will not hit a subset
$\Sigma$ of M if and only if the capacity related to the Brownian motion of $\Sigma$ is zero [2]. However, the
situation is not clear for a Brownian motion with a drift; in particular, it would be interesting to

know if the capacity of $\Sigma$ associated to the Brownian motion with a drift being zero is independent
of the drift. In this note, we will study this problem. A lower bounded non-symmetric semi
Dirichlet form generates a non-symmetric Markov process [3, 5], and this relationship will be the
foundation for our study. The main aim of this note is to answer the following two questions:

$\bullet$ Does the operator $\Delta+\langle F,$ $\nabla\cdot\rangle+V$ , where $\triangle$ is the sub-Laplacian, F is a one-form, and $V$

is a non-negative continuous function, generate a lower bounded semi Dirichlet form?
$\bullet$ Find a characterisation of the capacity for a lower bounded semi Dirichlet form in terms
of that for the Dirichlet integral.

The structure of the note is the following. Section 2 will be devoted for the first question and
the second question will be studied in Section 3.

2. CLOSED FORMS

Let (M, g) be a compact smooth Riemannian manifold without boundary. Let $\sigma>$ 0 be a
positive continuous function on M. We consider the weighted space, $L^{2}=L^{2}(M,$ dm), where
dm $=\sigma dv_{g}$ and $v_{g}$ is the Riemannian volume associated with the metric g. Let F $\in\Gamma(TM^{*})$ be a
smooth 1-form and V $\in C(M)$ , the space of continuous functions on M, with V $\geq 0$ . Suppose that
TM admits a system of H\"ormander vector fields $\{X_{i}\}$ and the $X_{x}\subset T_{x}M$ is the subspace spanned
by $\{X_{i}\}$ at point x $\in M$ . Let $\pi$ be the orthogonal projection $T_{x}Marrow X_{x}$ . The sub-gradient $\nabla$ is
then defined pointwise as $\nabla u=\pi$ o $grad(u)$ , where grad is the gradient operator associated to g.
The energy form $\mathcal{E}$ is

$\mathcal{E}(u, v)=\int_{M}(g(\nabla u, \nabla v)+\langle F, \nabla u\rangle v+Vuv)$ dm, u, v $\in C^{\infty}(M)$

where ) is the pairing between cotangent and tangent vector spaces. We will denote $\mathcal{E}(u)=$

$\mathcal{E}(u, u)$ and $\mathcal{E}_{\alpha}(u, v)=\mathcal{E}(u, v)+\alpha(u, v)$ for some $\alpha>0$ , where $(u, v)= \int_{M}uvdm$ and $\Vert u\Vert=$

$(u, u)^{1/2}$ , for short. The symbol $|\cdot|$ stands for the pointwise norm. The weighted divergence,
which is the negative of the formal joint of $\nabla$ , will be denoted by $div$ . We will employ $W^{1,2}=$
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$\{u\in L^{2}|\nabla u\in L^{2}(TM, dm)\}$ . Let us recall some basic definitions regarding with semi-Dirichlet
forms stated in the current setting.

Definition 1 (closed forms). A quadratic form $Q$ defined on a dense subspace $D(Q)\subset L^{2}$ will
be called closed on $L^{2}$ provided the following three conditions:

$(\mathcal{E}.1)Q$ is lower bounded: There exists $\alpha_{0}\geq 0$ such that

$Q_{\alpha_{0}}(u)\geq 0, \forall u\in D(Q)$ .

$(\mathcal{E}.2)$ Sector condition: There exists $K\geq 1$ such that

$|Q(u, v)|^{2}\leq KQ_{\alpha_{0}}(u)\mathcal{E}_{\alpha_{O}}(v) , \forall u, v\in D(Q)$ .

$(\mathcal{E}.3)D(Q)$ is a Hilbert space with respect to the inner product

$Q_{\alpha}^{(s)}(u, v)= \frac{1}{2}(Q_{\alpha_{0}}(u, v)+Q_{\alpha_{0}}(v, u)) , \forall\alpha\geq\alpha_{0}.$

Theorem 1. The form $(\mathcal{E}, W^{1,2})$ is a closed form.

Proof. The proof follows from Propositions 1 and 2. $\square$

Proposition 1. The energy $(\mathcal{E}_{\alpha}, C^{\infty}(M))$ is closable in $L^{2}$ whenever

(1) $\alpha>\sup(\frac{1}{2}(divF)-V)$ .

Proof We must show:

(2) $\lim_{m,narrow\infty}\mathcal{E}_{\alpha}(u_{n}-u_{m})=0, \lim_{narrow\infty}\Vert u_{n}\Vert=0\Rightarrow\lim_{narrow\infty}\mathcal{E}_{\alpha}(u_{n})=0.$

Let use denote the sub-Dirichlet integral by $\mathcal{D}(u)=\Vert\nabla u\Vert^{2}$ . By Green’s formula,

$\mathcal{E}_{\alpha}(u)=\mathcal{D}(u)+\int_{M}\frac{1}{2}\langle F,$ $\nabla(u^{2})\rangle+(\alpha+V)u^{2}dm=\mathcal{D}(u)+\int_{M}(-\frac{1}{2}($divF) $+\alpha+V)u^{2}dm.$

Letting $\alpha$ so that $0< \lambda_{1}=\inf(-\frac{1}{2}($divF) $+\alpha+V)$ , we get

(3) $\lambda_{1}\mathcal{D}_{1}(u)\leq \mathcal{E}_{\alpha}(u)\leq\lambda_{2}\mathcal{D}_{1}(u)$ ,

where $\lambda_{2}=\sup(-\frac{1}{2}($divF) $+\alpha+V)$ . The assertion will follow from the fact that $\mathcal{D}$ is closable,
which is well known and proved for the sake of completeness: As $(\nabla u_{n})$ is a Cauchy sequence in
$L^{2}(TM, dm)$ , we denote its limit by $X$ . For any smooth vector field $Y,$

$\int_{M}g(X, Y)dm=\lim_{narrow\infty}\int_{M}g(\nabla u_{n}, Y)dm=-\lim_{narrow\infty}\int_{M}u_{n}$divY d$m=0.$

$\square$

Proposition 2. The energy $(\mathcal{E}_{\alpha}, C^{\infty}(M))$ satisfies the sector condition, that is, there exists a
constant $K\geq 1$ such that

(4) $|\mathcal{E}(u, v)|^{2}\leq K\mathcal{E}_{\alpha}(u)\mathcal{E}_{\alpha}(v) , \forall u, v\in C^{\infty}(M)$ .
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Proof. Let $u,$ $v\in C^{\infty}(M)$ . Denoting $C= \sup(|F|+|V|)$ and $C’=2(1+2C^{2})$ ,

$|\mathcal{E}(u, v)|^{2}$

$=| \int_{M}(g(\nabla u, \nabla v)+(\langle F, \nabla u\rangle+Vu)v)dm|^{2}$

$\leq|\int_{M}(|\nabla u||\nabla v|+(|F||\nabla u|+|Vu|)|v|)dm|^{2}$

$\leq|\int_{M}(|\nabla u||\nabla v|+C(|\nabla u|+|u|)|v|)dm|^{2}$

$\leq 2((\int_{M}|\nabla u||\nabla v|dm)^{2}+(C\int_{M}(|\nabla u|+|u|)|v|dm)^{2})$

$\leq 2((\int_{M}|\nabla u||\nabla v|dm)^{2}+2(C\int_{M}|\nabla u||v|dm)^{2}+2(C\int_{M}|u||v|dm)^{2})$

$\leq C’((\int_{M}|\nabla u||\nabla v|dm)^{2}+(\int_{M}|\nabla u||v|dm)^{2}+(\int_{M}|u||v|dm)^{2})$ .

By the Cauchy Schwarz inequality,

(5) $|\mathcal{E}(u, v)|^{2}\leq C’(\Vert\nabla u\Vert^{2}\Vert\nabla v\Vert^{2}+(\Vert\nabla u\Vert^{2}+\Vert u\Vert^{2})\Vert v\Vert^{2})$

On the other hand, for any $a>0,$

$\mathcal{E}_{\alpha}(u)=\Vert\nabla u\Vert^{2}+\int_{M}\frac{1}{2}\langle F, \nabla(u^{2})\rangle+(\alpha+V)u^{2}dm$

$\geq\Vert\nabla u\Vert^{2}-\int_{M}|F||u||\nabla u|+(\alpha+V)u^{2}dm$

$\geq\Vert\nabla u\Vert^{2}-2(\frac{1}{a}\int_{M}|F|^{2}|u|^{2}dm+a\int_{M}|\nabla u|^{2}dm)+\int_{M}(\alpha+V)u^{2}dm$

$=(1-2a) \Vert\nabla u\Vert^{2}+\int_{M}(-\frac{2}{a}|F|^{2}+\alpha+V)u^{2}dm$

$= \frac{1}{2}\Vert\nabla u\Vert^{2}+\int_{M}(-8|F|^{2}+\alpha+V)u^{2}dm$

by letting $a=1/4$ . Setting $\beta\leq\sup(-8|F|^{2}+\alpha+V)$ , we have

$\mathcal{E}_{\alpha}(u)\mathcal{E}_{\alpha}(v)\geq(\frac{1}{2}\Vert\nabla u\Vert^{2}+\beta\int_{M}u^{2}dm)(\frac{1}{2}\Vert\nabla v\Vert^{2}+\beta\int_{M}v^{2}dm)$

$\geq\frac{1}{4}\Vert\nabla u\Vert^{2}\Vert\nabla v\Vert^{2}+\beta(\frac{1}{2}\Vert\nabla u\Vert^{2}+\beta\Vert u\Vert^{2}dm)\Vert v\Vert^{2}.$

This together with (5), and by the fact that we may take $\beta$ arbitrary large, we get the desired
conclusion. $\square$

By a standard semigroup theory, Theorem 1 yields

Corollary 1. There exists a strongly semigroup $\{T_{t}\}_{t\geq 0}$ on $L^{2}$ such that $\Vert T_{t}\Vert\leq e^{\alpha_{0}}$ whose
resolvent $G_{\alpha}u= \int_{0}^{\infty}e^{-\alpha t}T_{t}udt$ with $\alpha>\alpha_{0}$ satisfying

$\mathcal{E}_{\alpha}(G_{\alpha}u, v)=(u, v) , \forall u\in L^{2}, v\in \mathcal{F}.$

Definition 2 (Dirichlet forms). A closed form $(Q, D(Q))$ is called a lower-bounded semi-Dirichlet
form if it satisfies

(6) $u\in D(Q) , a\geq 0\Rightarrow v=u\wedge a\in D(Q) , Q(v, u-v)\geq 0.$

Theorem 2. The form $(\mathcal{E}, \mathcal{F})$ is a lower-bounded semi-Dirichlet form.
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Proof. We need to prove (6). The fact that $u\wedge a\in W^{1,2}$ whenever $u\in W^{1,2}$ and $a\in \mathbb{R}$ can
be proved as in the Euclidean case (see, e.g., [2]). It suffices to prove the second statement only
for $u\in C^{\infty}(M)$ by the density argument. Setting $D_{+}=\{u>a\}$ and $D_{-}=\{u<a\}$ , we note:
$u-u\wedge a=0$ on $D$ -and $u\wedge a=a$ on $D+\cdot$ Taking into account that the measures of the boundaries
of these sets are $0,$

$\mathcal{E}(u\wedge a, u-u\wedge a)$

$= \int_{M}g(\nabla(u\wedge a), \nabla(u-u\wedge a))dm$

$+ \int_{M}\langle F,$ $\nabla(u\wedge a)\rangle(u-u\wedge a)dm+\int_{M}V(u\wedge a)(u-u\wedge a)dm=\int_{D_{+}}Va(a-u)dm\geq 0.$

$\square$

An important consequence of Theorem 2 is

Corollary 2 (see, e.g., Theorem 3.3.4 [5]). There exists a Hunt process whose resolvent is a $q.e.$

modification of $G_{\alpha}$ in $L^{\infty}.$

Remark 1. I. Shigekawa [6] obtained a condition for $F$ so that the operator $\Delta+\langle F,$ $\nabla\cdot\rangle$ without
the sector condition generates a Markovian semigroup on a complete Riemannian manifold. $We$

will need the sector condition for the existence of equilibrium potential in the next section.

3. CAPACITY ASSOCIATED TO $\mathcal{E}_{\alpha}$

Hereafter, $\alpha_{0}>0$ is the constant which was specified in the previous section and $\alpha>\alpha_{0}$ . For
an open set $A\subset M$ , set a subset $\mathcal{L}_{A}\subset \mathcal{F}$ by

$\mathcal{L}_{A}=\{u\in \mathcal{F}|u|_{A}\geq 1 m- a.e.\}.$

Clearly, $\mathcal{L}_{A}$ is a non-empty closed convex set. For arbitrary fixed $u\in \mathcal{F}$ , set:

$J(w)=\mathcal{E}_{\alpha}(u, w) , w\in \mathcal{F}.$

Since $J$ is a continuous linear functional on $\mathcal{F}$ , we may apply Stampaccia’s theorem and find a
unique $v\in \mathcal{F}$ such that

$\mathcal{E}_{\alpha}(v, w-v)\geq J(w-v) , \forall w\in \mathcal{F}.$

This determines a projection $\pi$ : $\mathcal{F}arrow \mathcal{L}_{A}$ by $\pi(u)=v$ . The element $\pi(O)$ is called the equilibrium
potential of $A$ denoted by $e_{A}$ . It follows that

(7) $\mathcal{E}_{\alpha}(e_{A})\leq \mathcal{E}_{\alpha}(e_{A}, w)\leq K\mathcal{E}_{\alpha}(e_{A})^{1/2}\mathcal{E}_{\alpha}(w)^{1/2}, \forall w\in \mathcal{F}.$

Changing $J$ to $\hat{J}$ , where $\hat{J}(w)=\mathcal{E}_{\alpha}(w, u)$ , we find the co-equilibrium potential of $A$ in $\mathcal{L}_{A}$ denoted
by $\hat{e}_{A}$ and satisfying

$\mathcal{E}_{\alpha}(\hat{e}_{A})\leq K^{2}\mathcal{E}_{\alpha}(w) , \forall w\in \mathcal{F}.$

Moreover, (see, e.g., Lemma 2.1.1 in [5]),

$e_{A}|_{A}=1$ , m-a.e.

and for $u\in \mathcal{F}$ such that $u|_{A}=1$ m-a.e.,

$\mathcal{E}_{\alpha}(e_{A}, u)=\mathcal{E}_{\alpha}(e_{A}) , \mathcal{E}_{\alpha}(u,\hat{e}_{A})=\mathcal{E}_{\alpha}(e_{A},\hat{e}_{A})$

The $(\alpha$- $)$ capacity of $A$ is defined as

Cap $(A)=\mathcal{E}_{\alpha}(e_{A},\hat{e}_{A})$ .
By (3) and (7),

(8) $\lambda_{1}\mathcal{D}(e_{A})\leq \mathcal{E}_{\alpha}(e_{A})\leq Cap(A)\leq K^{2}\mathcal{E}_{\alpha}(e_{A})\leq K^{2}\lambda_{2}\mathcal{D}(e_{A})$ .

The capacity of an arbitrary set $B\subset M$ is defined as

Cap $(B)= \inf_{B\subset A}$ {$Cap(A)|$ $A$ is open an set in $M$ }.

Now we answer the second question in
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Theorem 3. For any set $B\subset M,$

Cap$(B)=0$ $\Leftrightarrow$ $Cap_{\mathcal{D}}(B)=0,$

where $Cap_{\mathcal{D}}(B)$ is the capacity of $B$ associated to $\mathcal{D}.$

Proof. First, let us suppose that Cap$(B)=0$ . Then (8) implies that

$0 \leq Cap_{\mathcal{D}}(B)\leq\lim_{narrow}\inf_{\infty}\mathcal{D}(e_{A_{\mathfrak{n}}})\leq\lambda_{1}^{-1}\lim_{narrow}\inf_{\infty}\mathcal{E}_{\alpha}(e_{A_{\mathfrak{n}}})\leq\lambda_{1}^{-1}\lim_{narrow\infty}$ Cap$(A_{n})=0,$

where $(A_{n})$ is a sequence of open sets in $M$ approximating Cap(B) .
Next, let us suppose that $Cap_{\mathcal{D}}(B)=0$ and let $(A_{n})$ be its approximation sequence. Denoting

by $\eta_{n}\in \mathcal{L}_{A_{\mathfrak{n}}}$ the equilibrium potential of $A_{n}$ associated with $\mathcal{D},$

$0 \leq Cap(B)\leq\lim_{narrow}\inf_{\infty}Cap(A_{n})$

$= \lim_{narrow}\inf_{\infty}\mathcal{E}_{\alpha}(\hat{e}_{A_{\mathfrak{n}}})\leq\lim_{narrow}\inf_{\infty}\mathcal{E}_{\alpha}(\eta_{n})\leq\lambda_{2}\lim_{narrow\infty}\mathcal{D}(\eta_{n})=\lambda_{2}Cap_{\mathcal{D}}(B)=0.$

Therefore, we have the assertion. $\square$

Remark 2. In closing this note, let us mention two related questions to our study.
$\bullet$ As we have studied in this note, it turned out that the capacity of a closed set of $a$ compact

manifold being $0$ is independent of drifts. Clearly, the situation will be different for a non-
compact Riemannian manifold. In particular, it would be interesting to extend the theory

of Cauchy boundary and polity of a singular set of a singular manifold $(see, e.g., [4])$ to
non-symmetric case.

$\bullet$ It is known that a capacity of a symmetric Dirichlet form is related with a quantum mechan-
ical tunnelling phenomena [1]. Can one formulate a non-symmetric quantum mechanical
tunnelling, and if yes, how is it related with the capacity of a non-symmetric Dirichlet
$form^{Q}$
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