Dependency of polarity on the drift of Brownian motion of a compact manifold

Jun Masamune

Division of Mathematics Research Center for Pure and Applied Mathematics Graduate School of Information Sciences, Tohoku University

CONTENTS

1.	Introduction	1
2.	Closed forms	1
3.	Capacity associated to \mathcal{E}_{α}	4
Re	Beferences	

1. INTRODUCTION

It is well-known that the Brownian motion on a Riemannian manifold M will not hit a subset Σ of M if and only if the capacity related to the Brownian motion of Σ is zero [2]. However, the situation is not clear for a Brownian motion with a drift; in particular, it would be interesting to know if the capacity of Σ associated to the Brownian motion with a drift being zero is independent of the drift. In this note, we will study this problem. A lower bounded non-symmetric semi Dirichlet form generates a non-symmetric Markov process [3, 5], and this relationship will be the foundation for our study. The main aim of this note is to answer the following two questions:

- Does the operator $\Delta + \langle F, \nabla \cdot \rangle + V$, where Δ is the sub-Laplacian, F is a one-form, and V is a non-negative continuous function, generate a lower bounded semi Dirichlet form?
- Find a characterisation of the capacity for a lower bounded semi Dirichlet form in terms of that for the Dirichlet integral.

The structure of the note is the following. Section 2 will be devoted for the first question and the second question will be studied in Section 3.

2. Closed forms

Let (M,g) be a compact smooth Riemannian manifold without boundary. Let $\sigma > 0$ be a positive continuous function on M. We consider the weighted space, $L^2 = L^2(M, dm)$, where $dm = \sigma dv_g$ and v_g is the Riemannian volume associated with the metric g. Let $F \in \Gamma(TM^*)$ be a smooth 1-form and $V \in C(M)$, the space of continuous functions on M, with $V \ge 0$. Suppose that TM admits a system of Hörmander vector fields $\{X_i\}$ and the $X_x \subset T_x M$ is the subspace spanned by $\{X_i\}$ at point $x \in M$. Let π be the orthogonal projection $T_x M \to X_x$. The sub-gradient ∇ is then defined pointwise as $\nabla u = \pi \circ \operatorname{grad}(u)$, where grad is the gradient operator associated to g. The energy form \mathcal{E} is

$$\mathcal{E}(u,v) = \int_M \left(g(\nabla u, \nabla v) + \langle F, \nabla u \rangle v + Vuv \right) dm, \quad u, v \in C^\infty(M)$$

where $\langle \cdot, \cdot \rangle$ is the pairing between cotangent and tangent vector spaces. We will denote $\mathcal{E}(u) = \mathcal{E}(u, u)$ and $\mathcal{E}_{\alpha}(u, v) = \mathcal{E}(u, v) + \alpha(u, v)$ for some $\alpha > 0$, where $(u, v) = \int_{M} uv \, dm$ and $||u|| = (u, u)^{1/2}$, for short. The symbol $|\cdot|$ stands for the pointwise norm. The weighted divergence, which is the negative of the formal joint of ∇ , will be denoted by div. We will employ $W^{1,2} =$

 $\{u \in L^2 \mid \nabla u \in L^2(TM, dm)\}$. Let us recall some basic definitions regarding with semi-Dirichlet forms stated in the current setting.

Definition 1 (closed forms). A quadratic form Q defined on a dense subspace $D(Q) \subset L^2$ will be called *closed* on L^2 provided the following three conditions:

(\mathcal{E} .1) Q is lower bounded: There exists $\alpha_0 \geq 0$ such that

$$Q_{\alpha_0}(u) \ge 0, \quad \forall u \in D(Q).$$

($\mathcal{E}.2$) Sector condition: There exists $K \ge 1$ such that

$$|Q(u,v)|^2 \leq KQ_{\alpha_0}(u)\mathcal{E}_{\alpha_0}(v), \quad \forall u,v \in D(Q).$$

 $(\mathcal{E}.3)$ D(Q) is a Hilbert space with respect to the inner product

$$Q_{\alpha}^{(s)}(u,v) = \frac{1}{2} \left(Q_{\alpha_0}(u,v) + Q_{\alpha_0}(v,u) \right), \quad \forall \alpha \ge \alpha_0.$$

Theorem 1. The form $(\mathcal{E}, W^{1,2})$ is a closed form.

Proof. The proof follows from Propositions 1 and 2.

Proposition 1. The energy $(\mathcal{E}_{\alpha}, C^{\infty}(M))$ is closable in L^2 whenever

(1)
$$\alpha > \sup\left(\frac{1}{2}(divF) - V\right)$$

Proof. We must show:

(2)
$$\lim_{m,n\to\infty} \mathcal{E}_{\alpha}(u_n - u_m) = 0, \quad \lim_{n\to\infty} \|u_n\| = 0 \implies \lim_{n\to\infty} \mathcal{E}_{\alpha}(u_n) = 0.$$

Let use denote the sub-Dirichlet integral by $\mathcal{D}(u) = \|\nabla u\|^2$. By Green's formula,

$$\mathcal{E}_{\alpha}(u) = \mathcal{D}(u) + \int_{M} \frac{1}{2} \langle F, \nabla(u^{2}) \rangle + (\alpha + V)u^{2} dm = \mathcal{D}(u) + \int_{M} \left(-\frac{1}{2} (\operatorname{div} F) + \alpha + V \right) u^{2} dm.$$

Letting α so that $0 < \lambda_1 = \inf(-\frac{1}{2}(\operatorname{div} F) + \alpha + V)$, we get

(3)
$$\lambda_1 \mathcal{D}_1(u) \leq \mathcal{E}_{\alpha}(u) \leq \lambda_2 \mathcal{D}_1(u),$$

where $\lambda_2 = \sup(-\frac{1}{2}(\operatorname{div} F) + \alpha + V)$. The assertion will follow from the fact that \mathcal{D} is closable, which is well known and proved for the sake of completeness: As (∇u_n) is a Cauchy sequence in $L^2(TM, dm)$, we denote its limit by X. For any smooth vector field Y,

$$\int_{M} g(X,Y) \, dm = \lim_{n \to \infty} \int_{M} g(\nabla u_n, Y) \, dm = -\lim_{n \to \infty} \int_{M} u_n \mathrm{div} Y \, dm = 0.$$

Proposition 2. The energy $(\mathcal{E}_{\alpha}, C^{\infty}(M))$ satisfies the sector condition, that is, there exists a constant $K \geq 1$ such that

(4)
$$|\mathcal{E}(u,v)|^2 \leq K \mathcal{E}_{\alpha}(u) \mathcal{E}_{\alpha}(v), \quad \forall u,v \in C^{\infty}(M)$$

Proof. Let $u, v \in C^{\infty}(M)$. Denoting $C = \sup(|F| + |V|)$ and $C' = 2(1 + 2C^2)$,

$$\begin{split} |\mathcal{E}(u,v)|^{2} \\ &= \left| \int_{M} \left(g(\nabla u, \nabla v) + (\langle F, \nabla u \rangle + Vu) v \right) dm \right|^{2} \\ &\leq \left| \int_{M} \left(|\nabla u| |\nabla v| + (|F| |\nabla u| + |Vu|) |v| \right) dm \right|^{2} \\ &\leq \left| \int_{M} \left(|\nabla u| |\nabla v| + C(|\nabla u| + |u|) |v| \right) dm \right|^{2} \\ &\leq 2 \left(\left(\int_{M} |\nabla u| |\nabla v| dm \right)^{2} + \left(C \int_{M} (|\nabla u| + |u|) |v| dm \right)^{2} \right) \\ &\leq 2 \left(\left(\int_{M} |\nabla u| |\nabla v| dm \right)^{2} + 2 \left(C \int_{M} |\nabla u| |v| dm \right)^{2} + 2 \left(C \int_{M} |u| |v| dm \right)^{2} \right) \\ &\leq C' \left(\left(\int_{M} |\nabla u| |\nabla v| dm \right)^{2} + \left(\int_{M} |\nabla u| |v| dm \right)^{2} + \left(\int_{M} |u| |v| dm \right)^{2} \right). \end{split}$$

By the Cauchy Schwarz inequality,

(5)
$$|\mathcal{E}(u,v)|^2 \le C' \left(\|\nabla u\|^2 \|\nabla v\|^2 + \left(\|\nabla u\|^2 + \|u\|^2 \right) \|v\|^2 \right)$$
On the other hand, for any $a > 0$

On the other hand, for any a > 0,

$$\begin{split} \mathcal{E}_{\alpha}(u) &= \|\nabla u\|^{2} + \int_{M} \frac{1}{2} \langle F, \nabla(u^{2}) \rangle + (\alpha + V)u^{2} \, dm \\ &\geq \|\nabla u\|^{2} - \int_{M} |F||u| |\nabla u| + (\alpha + V)u^{2} \, dm \\ &\geq \|\nabla u\|^{2} - 2\left(\frac{1}{a} \int_{M} |F|^{2} |u|^{2} \, dm + a \int_{M} |\nabla u|^{2} \, dm\right) + \int_{M} (\alpha + V)u^{2} \, dm \\ &= (1 - 2a) \|\nabla u\|^{2} + \int_{M} \left(-\frac{2}{a} |F|^{2} + \alpha + V\right) u^{2} \, dm \\ &= \frac{1}{2} \|\nabla u\|^{2} + \int_{M} \left(-8|F|^{2} + \alpha + V\right) u^{2} \, dm \end{split}$$

by letting a = 1/4. Setting $\beta \leq \sup(-8|F|^2 + \alpha + V)$, we have

$$egin{split} \mathcal{E}_lpha(u)\mathcal{E}_lpha(v) &\geq \left(rac{1}{2}\|
abla u\|^2+eta\int_M u^2\,dm
ight)\left(rac{1}{2}\|
abla v\|^2+eta\int_M v^2\,dm
ight)\ &\geq rac{1}{4}\|
abla u\|^2\|
abla v\|^2+eta\left(rac{1}{2}\|
abla u\|^2+eta\|u\|^2\,dm
ight)\|v\|^2. \end{split}$$

This together with (5), and by the fact that we may take β arbitrary large, we get the desired conclusion.

By a standard semigroup theory, Theorem 1 yields

Corollary 1. There exists a strongly semigroup $\{T_t\}_{t\geq 0}$ on L^2 such that $||T_t|| \leq e^{\alpha_0}$ whose resolvent $G_{\alpha}u = \int_0^{\infty} e^{-\alpha t}T_t u \, dt$ with $\alpha > \alpha_0$ satisfying

$$\mathcal{E}_{\alpha}(G_{\alpha}u,v) = (u,v), \quad \forall u \in L^2, \ v \in \mathcal{F}.$$

Definition 2 (Dirichlet forms). A closed form (Q, D(Q)) is called a lower-bounded semi-Dirichlet form if it satisfies

(6)
$$u \in D(Q), a \ge 0 \implies v = u \land a \in D(Q), Q(v, u - v) \ge 0.$$

Theorem 2. The form $(\mathcal{E}, \mathcal{F})$ is a lower-bounded semi-Dirichlet form.

Proof. We need to prove (6). The fact that $u \wedge a \in W^{1,2}$ whenever $u \in W^{1,2}$ and $a \in \mathbb{R}$ can be proved as in the Euclidean case (see, e.g., [2]). It suffices to prove the second statement only for $u \in C^{\infty}(M)$ by the density argument. Setting $D_{+} = \{u > a\}$ and $D_{-} = \{u < a\}$, we note: $u - u \wedge a = 0$ on D_{-} and $u \wedge a = a$ on D_{+} . Taking into account that the measures of the boundaries of these sets are 0,

$$\mathcal{E}(u \wedge a, u - u \wedge a) = \int_{M} g(\nabla(u \wedge a), \nabla(u - u \wedge a)) \, dm + \int_{M} \langle F, \nabla(u \wedge a) \rangle (u - u \wedge a) \, dm + \int_{M} V(u \wedge a) (u - u \wedge a) \, dm = \int_{D_{+}} Va(a - u) \, dm \ge 0.$$

An important consequence of Theorem 2 is

Corollary 2 (see, e.g., Theorem 3.3.4 [5]). There exists a Hunt process whose resolvent is a q.e. modification of G_{α} in L^{∞} .

Remark 1. I. Shigekawa [6] obtained a condition for F so that the operator $\Delta + \langle F, \nabla \cdot \rangle$ without the sector condition generates a Markovian semigroup on a complete Riemannian manifold. We will need the sector condition for the existence of equilibrium potential in the next section.

3. Capacity associated to \mathcal{E}_{α}

Hereafter, $\alpha_0 > 0$ is the constant which was specified in the previous section and $\alpha > \alpha_0$. For an open set $A \subset M$, set a subset $\mathcal{L}_A \subset \mathcal{F}$ by

$$\mathcal{L}_A = \{ u \in \mathcal{F} \mid u|_A \ge 1 \text{ m-a.e.} \}.$$

Clearly, \mathcal{L}_A is a non-empty closed convex set. For arbitrary fixed $u \in \mathcal{F}$, set:

$$J(w) = \mathcal{E}_{\alpha}(u, w), \quad w \in \mathcal{F}.$$

Since J is a continuous linear functional on \mathcal{F} , we may apply Stampaccia's theorem and find a unique $v \in \mathcal{F}$ such that

$$\mathcal{E}_{lpha}(v,w-v)\geq J(w-v), \hspace{1em} orall w\in \mathcal{F}$$

This determines a projection $\pi : \mathcal{F} \to \mathcal{L}_A$ by $\pi(u) = v$. The element $\pi(0)$ is called the equilibrium potential of A denoted by e_A . It follows that

(7)
$$\mathcal{E}_{\alpha}(e_A) \leq \mathcal{E}_{\alpha}(e_A, w) \leq K \mathcal{E}_{\alpha}(e_A)^{1/2} \mathcal{E}_{\alpha}(w)^{1/2}, \quad \forall w \in \mathcal{F}.$$

Changing J to \hat{J} , where $\hat{J}(w) = \mathcal{E}_{\alpha}(w, u)$, we find the co-equilibrium potential of A in \mathcal{L}_A denoted by \hat{e}_A and satisfying

$$\mathcal{E}_{lpha}(\hat{e}_A) \leq K^2 \mathcal{E}_{lpha}(w), \quad orall w \in \mathcal{F}.$$

Moreover, (see, e.g., Lemma 2.1.1 in [5]),

$$e_A|_A = 1, m-a.e.$$

and for $u \in \mathcal{F}$ such that $u|_A = 1$ *m*-a.e.,

$$\mathcal{E}_{\alpha}(e_A, u) = \mathcal{E}_{\alpha}(e_A), \quad \mathcal{E}_{\alpha}(u, \hat{e}_A) = \mathcal{E}_{\alpha}(e_A, \hat{e}_A)$$

The $(\alpha$ -)capacity of A is defined as

$$\operatorname{Cap}(A) = \mathcal{E}_{\alpha}(e_A, \hat{e}_A).$$

By (3) and (7),

(8)
$$\lambda_1 \mathcal{D}(e_A) \leq \mathcal{E}_{\alpha}(e_A) \leq \operatorname{Cap}(A) \leq K^2 \mathcal{E}_{\alpha}(e_A) \leq K^2 \lambda_2 \mathcal{D}(e_A).$$

The capacity of an arbitrary set $B \subset M$ is defined as

$$\operatorname{Cap}(B) = \inf_{B \subset A} \{ \operatorname{Cap}(A) \mid A \text{ is open an set in } M \}.$$

Now we answer the second question in

Theorem 3. For any set $B \subset M$,

 $\operatorname{Cap}(B) = 0 \quad \Longleftrightarrow \quad \operatorname{Cap}_{\mathcal{D}}(B) = 0,$

where $\operatorname{Cap}_{\mathcal{D}}(B)$ is the capacity of B associated to \mathcal{D} .

Proof. First, let us suppose that Cap(B) = 0. Then (8) implies that

$$0 \leq \operatorname{Cap}_{\mathcal{D}}(B) \leq \liminf_{n \to \infty} \mathcal{D}(e_{A_n}) \leq \lambda_1^{-1} \liminf_{n \to \infty} \mathcal{E}_{\alpha}(e_{A_n}) \leq \lambda_1^{-1} \lim_{n \to \infty} \operatorname{Cap}(A_n) = 0,$$

where (A_n) is a sequence of open sets in M approximating Cap(B).

Next, let us suppose that $\operatorname{Cap}_{\mathcal{D}}(B) = 0$ and let (A_n) be its approximation sequence. Denoting by $\eta_n \in \mathcal{L}_{A_n}$ the equilibrium potential of A_n associated with \mathcal{D} ,

$$0 \leq \operatorname{Cap}(B) \leq \liminf_{n \to \infty} \operatorname{Cap}(A_n)$$

=
$$\liminf_{n \to \infty} \mathcal{E}_{\alpha}(\hat{e}_{A_n}) \leq \liminf_{n \to \infty} \mathcal{E}_{\alpha}(\eta_n) \leq \lambda_2 \lim_{n \to \infty} \mathcal{D}(\eta_n) = \lambda_2 \operatorname{Cap}_{\mathcal{D}}(B) = 0.$$

Therefore, we have the assertion.

Remark 2. In closing this note, let us mention two related questions to our study.

- As we have studied in this note, it turned out that the capacity of a closed set of a compact manifold being 0 is independent of drifts. Clearly, the situation will be different for a non-compact Riemannian manifold. In particular, it would be interesting to extend the theory of Cauchy boundary and polity of a singular set of a singular manifold (see, e.g., [4]) to non-symmetric case.
- It is known that a capacity of a symmetric Dirichlet form is related with a quantum mechanical tunnelling phenomena [1]. Can one formulate a non-symmetric quantum mechanical tunnelling, and if yes, how is it related with the capacity of a non-symmetric Dirichlet form?

Acknowledgements. I wish to show my gratitude toward Professor Kawashita for having invited the author to his stimulating workshop at Research Institute for Mathematical Sciences, Kyoto.

References

- S. Albeverio, M. Fukushima, W. Karwowski, L. Streit, Capacity and quantum mechanical tunnelling, Comm. Math. Phys. 81, 501-513 (1981).
- [2] M. Fukushima, Y. Oshima, M.Takeda, "Dirichlet forms and symmetric Markov processes". Second revised and extended edition. de Gruyter Studies in Mathematics, 19. Walter de Gruyter & Co., Berlin, 2011.
- [3] Z. Ma, M. Röckner, "Introduction to the theory of (non-symmetric) Dirichlet forms", Springer-Verlag, 1992
 [4] J. Masamune, Analysis of the Laplacian of an incomplete manifold with almost polar boundary. Rend. Mat.
- Appl. (7) 25 (2005), no. 1, 109-126.
 [5] Y. Oshima, "Semi-Dirichlet forms and Markov processes". de Gruyter Studies in Mathematics, 48. Walter de
- Gruyter & Co., Berlin, 2011. [6] I. Shigekawa, Non-symmetric diffusions on a Riemannian manifold, in Probabilistic Approach to Geometry,

Adv. Stud. Pure Math. 57, Math. Soc. Japan, Tokyo, 2010, 437-461.

[7] R.S. Strichartz, Sub-Riemannian geometry. J. Differential Geometry 24: 221-263 (1986).

E-mail address: jmasamune@m.tohoku.ac.jp

 $\mathbf{49}$