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1. INTRODUCTION

It is well-known that the Brownian motion on a Riemannian manifold M will not hit a subset
¥ of M if and only if the capacity related to the Brownian motion of ¥ is zero [2]. However, the
situation is not clear for a Brownian motion with a drift; in particular, it would be interesting to
know if the capacity of ¥ associated to the Brownian motion with a drift being zero is independent
of the drift. In this note, we will study this problem. A lower bounded non-symmetric semi
Dirichlet form generates a non-symmetric Markov process [3, 5], and this relationship will be the
foundation for our study. The main aim of this note is to answer the following two questions:

o Does the operator A + (F,V-) +V, where A is the sub-Laplacian, F' is a one-form, and V'
is a non-negative continuous function, generate a lower bounded semi Dirichlet form?

e Find a characterisation of the capacity for a lower bounded semi Dirichlet form in terms
of that for the Dirichlet integral.

The structure of the note is the following. Section 2 will be devoted for the first question and
the second question will be studied in Section 3.

2. CLOSED FORMS

Let (M,g) be a compact smooth Riemannian manifold without boundary. Let ¢ > 0 be a
positive continuous function on M. We consider the weighted space, L? = L?(M,dm), where
dm = odvg and v, is the Riemannian volume associated with the metric g. Let F € I'(TM*) be a
smooth 1-form and V' € C(M), the space of continuous functions on M, with V' > 0. Suppose that
TM admits a system of Hormander vector fields {X;} and the X, C T, M is the subspace spanned
by {X;} at point z € M. Let 7 be the orthogonal projection T, M — X,. The sub-gradient V is
then defined pointwise as Vu = 7 o grad(u), where grad is the gradient operator associated to g.
The energy form £ is

E(u,v) = /M (9(Vu, Vo) + (F,Vu)v + Vuv)dm, wu,v € C®(M)

where (-,-) is the pairing between cotangent and tangent vector spaces. We will denote £(u) =
E(u,u) and Eu(u,v) = E(u,v) + a(u,v) for some o > 0, where (u,v) = [, uvdm and |ju| =
(u,u)'/2, for short. The symbol | - | stands for the pointwise norm. The weighted divergence,
which is the negative of the formal joint of V, will be denoted by div. We will employ W12 =
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{u € L? | Vu € L3(TM,dm)}. Let us recall some basic definitions regarding with semi-Dirichlet
forms stated in the current setting.

Definition 1 (closed forms). A quadratic form @ defined on a dense subspace D(Q) C L? will
be called closed on L? provided the following three conditions:

(£.1) Q is lower bounded: There exists ag > 0 such that
Qao(u) 20, Yue D(Q).
(£.2) Sector condition: There exists K > 1 such that
1Q(w, v)* < KQuaq () (v), Vu,v € D(Q).

(£.3) D(Q) is a Hilbert space with respect to the inner product

1
Qc()zS) (u’ ’U) = _2' (an (U,’U) + an (?),u)), Vo > ap.
Theorem 1. The form (£, W1?) is a closed form.

Proof. The proof follows from Propositions 1 and 2. a

Proposition 1. The energy (€4, C®°(M)) is closable in L? whenever

(1) a > sup (%(divF) - V) .
Proof. We must show:

(2) lim &y (un — um) =0, nl_l_{]gQ lunll =0 = nl'l.ngo Ealu,) =0.

m,n—o00

Let use denote the sub-Dirichlet integral by D(u) = |Vu||2. By Green’s formula,

£a(u) = D(u) + / %(F, V() + (@ + V)u? dm = D(u) + /
M M

(—%(divF) +a+ V) u® dm.
Letting o so that 0 < A; = inf(—3(divF) + a + V), we get
(3) /\1D1 (u) < f,'a(u) < /\le (u),

where Ay = sup(—31(divF) + a + V). The assertion will follow from the fact that D is closable,
which is well known and proved for the sake of completeness: As (Vu,) is a Cauchy sequence in
L%(TM,dm), we denote its limit by X. For any smooth vector field Y,

/ 9(X,Y)dm = lim / 9(Vu,,Y)dm = — lim u,divY dm = 0.
M n—oo Jy

n-~+00 M

a

Proposition 2. The energy (£4,C™(M)) satisfies the sector condition, that is, there exists a
constant K > 1 such that

(4) IE(u, v)|? < KEa(w)Eal(v), Yu,v € C(M).
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Proof. Let u,v € C®°(M). Denoting C = sup(|F| + |V]) and C’ = 2(1 + 2C?),

€ (u, v)[?
2
= /M (9(Vu, Vo) + ((F, Vu) + Vu)v) dm

2
< / (VullVo] + (FlIVal + [Vul) o) dm
M

2

<| [ (1vull Tl +C(Val + fuplol) dm
M

<2 (( /M |Vu||Vv|dm>2+ (c /M (IVu|+|u|)lU|dm)2> |
<2 ((/M |Vu||Vv|dm>2-|—2(C/M|Vul|v|dm>2+2<C/M lu[['uzldm) )
505(</M |Vu||\7v|dm>2+ (/M qu]|v|dm)2+ (/M Iul[uldm) )

By the Cauchy Schwarz inequality,
(5) € (w, 0)|* < O (IVul®|Voll® + (IVull® + llul®) [0]1%)
On the other hand, for any a > 0,

Ealu) = |Vul]? + /M (B V(W) + (o + Vo dm

> [Vulf = [ |FIIVul+ (a+ V)t dm
M
> ||vu1|2—2(1/ |F|2|u|2dm+a/ |Vu|2dm) +/ (a+ V)u2dm
a Jypm M M

= (1 - 2a)||Vu|? +/ (—§|Fl2 +a+ V) u? dm
M

= 5IVul+ [ (-8FP+a+V)udn

by letting a = 1/4. Setting 8 < sup(—8|F|? + a + V), we have
1
EawEal®) 2 (517ul? 45 [ w?am) (F1veiP+5 [ oam)
1 1
> {IVulPITol? + 8 (FITulP + Blulf dm) o
This together with (5), and by the fact that we may take @ arbitrary large, we get the desired
conclusion. O

By a standard semigroup theory, Theorem 1 yields

Corollary 1. There exists a strongly semigroup {T;}i>0 on L? such that ||T;|| < e* whose
resolvent Gou = f0°° e~ Tyudt with o > ag satisfying

Ea(Gau,v) = (u,v), YueL? veF.
Definition 2 (Dirichlet forms). A closed form (Q, D(Q)) is called a lower-bounded semi-Dirichlet
form if it satisfies
(6) veDQ), a>0 = v=uAa€ D), Qlv,u—v)>0

Theorem 2. The form (€, F) is a lower-bounded semi-Dirichlet form.
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Proof. We need to prove (6). The fact that u A @ € W12 whenever u € W2 and a € R can
be proved as in the Euclidean case (see, e.g., [2]). It suffices to prove the second statement only
for u € C®°(M) by the density argument. Setting D, = {u > a} and D_ = {u < a}, we note:
u—uAa=0onD_ and uAa = a on D,. Taking into account that the measures of the boundaries
of these sets are 0,

E(uha,u—uAa)
:/ 9(V(uAa),V(u—-uAa))dm
M

+/ (F,V(u/\a))(u—u/\a)dm+/ ViuAa)(u —uAa)dm = Va(a —u)dm > 0.
M M D,

An important consequence of Theorem 2 is

Corollary 2 (see, e.g., Theorem 3.3.4 [5]). There exists a Hunt process whose resolvent is a g.e.
modification of G, in L.

Remark 1. 1. Shigekawa [6] obtained a condition for F so that the operator A + (F,V-) without
the sector condition generates a Markovian semigroup on a complete Riemannian manifold. We
will need the sector condition for the existence of equilibrium potential in the next section.

3. CAPACITY ASSOCIATED TO &,

Hereafter, ap > 0 is the constant which was specified in the previous section and o > ag. For
an open set A C M, set a subset L4 C F by

Lao={ueF|ulsg>1mae}.
Clearly, L4 is a non-empty closed convex set. For arbitrary fixed u € F, set:
J(w) = Eu(u,w), weF.

Since J is a continuous linear functional on F, we may apply Stampaccia’s theorem and find a
unique v € F such that

Ea(vyw—v) > J(w—-v), VweF.
This determines a projection 7 : 7 — L4 by 7(u) = v. The element 7(0) is called the equilibrium
potential of A denoted by e4. It follows that

(7 Ex(ea) < Eqlea,w) < KEqo(ea) 26, (w)Y2, Ywe F.

Changing J to J , where J (w) = Ex(w, u), we find the co-equilibrium potential of A in £4 denoted
by €4 and satisfying
Ea(éa) < K%6E4(w), Yw € F.

Moreover, (see, e.g., Lemma 2.1.1 in [5]),
eala =1, m-a.e.
and for u € F such that u|4 =1 m-a.e.,
Ealea,u) = Eq(ea), Ea(u,é4) =Eq(ea,éa)
The (a-)capacity of A is defined as
Cap(A) = Ex(ea,€4).
By (3) and (7),
(8) MDl(ea) < Ex(ea) < Cap(A) < K2E,(ea) < K?X3D(e4).
The capacity of an arbitrary set B C M is defined as
Cap(B) = gxéf;l{Cap(A) | A is open an set in M}.

Now we answer the second question in
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Theorem 3. For any set B C M,
Cap(B) =0 <= Capp(B)=0,
where Capp(B) is the capacity of B associated to D.

Proof. First, let us suppose that Cap(B) = 0. Then (8) implies that
0 < Capp(B) < liminf D(ea,) < A\ liminf £,(ea,) < A;' lim Cap(4,) =0,
n—00 n—0oo n—oo

where (A,,) is a sequence of open sets in M approximating Cap(B).
Next, let us suppose that Capp(B) = 0 and let (A,,) be its approximation sequence. Denoting
by nn, € L4, the equilibrium potential of A,, associated with D,

0 < Cap(B) < liminf Cap(4,)
=liminf £,(é4,) < liminf £, (n,) < A2 lim D(n,) = A2Capp(B) = 0.
n—oo n—oo =00
Therefore, we have the assertion. a

Remark 2. In closing this note, let us mention two related questions to our study.

o As we have studied in this note, it turned out that the capacity of a closed set of a compact
manifold being 0 is independent of drifts. Clearly, the situation will be different for a non-
compact Riemannian manifold. In particular, it would be interesting to extend the theory
of Cauchy boundary and polity of a singular set of a singular manifold (see, e.g., [4]) to
non-symmetric case.

e [t is known that a capacity of a symmetric Dirichlet form is related with a quantum mechan-
ical tunnelling phenomena [1]. Can one formulate a non-symmetric quantum mechanical
tunnelling, and if yes, how is it related with the capacity of a non-symmetric Dirichlet
form?
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