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On SCT automorphism groups
of divisible designs
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In this talk we consider automorphism groups SCTs of divisible designs
acting regularly on the set of point classes and determine the relations among
SCTs, RDSs and A-planar functions.

§1 Divisible Designs and class regularity

A divisible design (m,u, k,A)-DD is an incidence structure (P, B), where

(i) Pis a set of mu points partitioned into m classes € (called point classes),
each of size u,

(ii) B is a collection of k-subsets of P (called blocks),

(iii) Any two distinct points in the same point class are incident with no blocks

and any two points in distinct point classes are incident with exactly A
blocks. '

We can show the following : |P| = mu, |B| = u?m(m — 1)\/k(k — 1)

An (m,u, k,A)-DD with k = m is called a transversal design and denoted by

TDa(k,u). A TDy(k,u) is called a symmetric transversal design and denoted
by STD)(k,u) with k = u if its dual is also a TDy(k,u). We note that an
(m,1,k,A)-DD is just a 2-(m, k, ) design.

Partial difference matrices

Definition. (Jungnickel [2]) Let U be a group of order u. An m X ¢t matrix
D = [d;;] with entries from U U {0} is called an (m,u, k, A)-partial difference
matriz (PDM) over U if the following conditions are satisfied :

(i) Each column of D has exactly k nonzero entries.
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1<j<t
and t = |B|/|G| = m(m — 1)ur/k(k — 1)).



113

An (m,u, k,\)-PDM with m = k over a group U of order u is called a
(u, k, A)-difference matriz (DM). Moreover, a (u, uX, A)-DM, denoted by GH(u, A),
is called a generalized Hadamard matriz.

Example. Set U = (a) ~ Z,.
1

01 1 1

1 1 a 0 a2 11 1 1 1 1 1 1 1
1 a 1 a®> 0 |, 11 a a a® a® |, 1 a a2
a 1 0 a2 a 1 1 a2 a2 a a 1 a® a
1 0 a2 1 a

(5,3,4,1)-PDM (3,3,2)-DM GH(3,1)

Class regularity

Following results are known.
Result. (D. Jungnickel [3]) The existence of an (m,u,k, A\)-DD admitting a
class regular automorphism group U

<= The existence of a (m,u, k, A)-partial difference matrix over U

Result. (D.A. Drake [2]) Assume U is a group of even order u and 2 A. If
a Sylow 2-subgroup of U is cyclic then there exists no (u, k,\)-DM over U for
k> 3.

We now consider the regular action of a subgroup G of Aut(D) on the set of
point classes € = {C; | i € I,,}, where I, = {1,2,--- ,m}. '

§2 SCT groups and SCT matrices

Let (P, B) be a (m, u, k,A\)-DD and G < Aut(P,B). We say G is an SCT(m,u, k,\)
group if G is semiregular on P U B and regular on the set of point classes
% ={C1,--- ,Cn}. (Note that |G| = m.)

Assume that G is an SCT(m, u, k, ) group of a (m, u, k, A)-DD D(= (P, B)).
Choose a point class C = {p1,-- ,py} € €. Then P = Uiz, pi€ and B =
Ujer, B;%, where s = |B|/|G].

A u x s matrix Mp = [D;;] (D;; C G) over G is defined by

' Dij:{gealpfg]EBJ’} (i € I, jely)

Theorem 1. The following holds.

_ FAMG-1) ifi=¢
> DDy Y = iG (@=1 .
ey (G-1) otherwise,
where p = (m — 1)ur/(k —1).
Y IDy| = k  Vjel,

i€l
Definition. Let G be a group of order m. Let u,s € N. For subsets D,;; C

Dll Dls
G (i €1,,5 € I) we call a u X s matrix an SCT(m,u, k, \)-

Dul e Dus
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matrix over G if it satisfies the following for some p € N.

- +AMG-1 ifi =14,
Y DyDy™Y = iG (1 ) herwn
ey (G-1) otherwise,
Y IDi;| = k  Vjel,

i€l,

Remark. (i) s = (m — 1)u?M\/k(k — 1), p=(m—1)ur/(k—1)
(ii) An SCT(m, 1, k, A)-matrix is just an (m, k, A)-difference family.
x An incidence structure D(P,B) defined by the following is an (m,u,k, A)-
DD admitting G as an SCT group under the action (i,w)g = (i,wg) for i €
{1,--- ,u} and w,g € G.
P={1,2,--- ,u} xG

B={Bj,|j€l, g€G}, where B;, = | ] (i, Di;g)

i€l

x (m,u,k,\)-DD with SCT-group <= SCT(m, u, k, A\)-matrix

Example. (i) The following is an SCT(9,2,9,9) matrix over G := (a,b) =~
Z3 X Zg :
(a) (b) G- (ab) G-—(ab®)
G—(a) G-(b) (ab) (ab?)

This matrix gives a TDg(9,2), which is not obtained from any difference
matrix by Drake’s result.

(ii) The following is an SCT(12,5,11,2) matrix over Alt(4) = N x H, N =
{1,a,b,c} ~ E4, H={1,d,d?*} ~Zs :

00 a B v ¢ a = ad + cd?

g 5 g g g where p=d+bd +d +cd
Yy § 0 a§B y=b+c

5§ 0 a B ~ d=ad’+bd+a

From this we obtain a (12,5,11,2)-DD with the full automorphism group
isomorphic to Alt(5) (> Alt(4) ~ N x H). This DD is not class regular, hence
not obtained from any partial difference matrix.

Relations among SCT aut. , Class regular aut. and RDS

3 SCT aut. <= 3 SCT mat.
Y

Divisible design D Transversal design

) i)
3 class regular aut. <= 3 partial DM D DM D> GH mat.

3 SCT aut. & 3 class regular aut. <= 3 splitting relative difference set



Difference families and SCT matrices

A family of k-subsets {D,---,D,} of a group G of order v is called an
n-(v,k, A) difference family if ‘
DD,V 4.4 DD,V = kn + A(G - 1).
From an n-(v, k,A) difference family in a group G we obtain a 2-(v,k, )
design (P,B) : P=G, B ={D;z|i¢€ I,, z € G}. In the following we give a
relation between difference families and SCT matrices with u = 2.

Theorem 2. Let {Ds,---,Dsq} be a 4d-(m, k, d(4k‘— m)) difference family in
a group G of order m. Set C; = G — D; for i € I44. Then the following is an
SCT(m, 2, m,dm) matrix corresponding to a TD g, (m, 2).

Mo| Pt o D Cupr - Cu
Ci -+ Cads D2gt1 -+ Duqg

o G0 Y = DD Y 4 (m - 2k)G

D;C;"Y = ;DY = kG — D; D,V

Some theorems on difference families
The foliowing results on difference families are known.

Result. (Leung-Ma-Schmidt [4]) Let ¢ be a prime power and d > 0 an integer.
Suppose, either (i) ¢ = 2d — 1 (mod 4d) and 2 { d or (ii) ¢ =4d — 1 (mod 84d).
Then there exists a 4d-(¢2, (¢>—q) /2, dg*> —2dq) difference family in (GF(¢?), +).

Result. (Q. Xiang [6]) Let ¢ be a power of a prime and b, ¢ positive integers
such that ¢ +1 = 2 and ¢ > 2 with 2 { b. Then there exists a 2°-(¢2, (¢% —
q)/2,2°72(q% — 2q)) difference family in (GF(q?),+).

Remark. Set d = 2°72 in the above result. Then 2°-(¢2, (¢2—q)/2,2°2(¢%>—2q))
is identical with 4d-(¢?, (¢% — q)/2,dq* — 2dq).

~ We now apply Theorem 2 to the above results for m = ¢%,k = (¢> — q)/2.

TD,,2(¢%,2)s admitting SCT groups

Proposition. Let ¢ be a power of a prime and d a positive integer satisfying
one of the following : '
(i) g=2d—1 (mod 4d).
(ii) g =4d — 1 (mod 8d).
(iii) 4d | ¢ +1,8d 1 g + 1 with d a power of 2. ; ,
Then, there exists an SCT(¢?,2, ¢?,dg?) matrix over (GF(q¢?),+) and the
resulting TD,2(¢?,2) admits an SCT automorphism group of order ¢2.

Remark. If 2 { dg, then no TDy,2(g?,2)s are obtained from difference matrices
by Drake’s result.
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§3 Direct product RDSs and SCTs

Let G be a group of order um and U its (not necessarily normal) subgroup
of order u. A k-subset D of G is called an (m, u, k, \)-relative difference set (or,
RDS for short) relative to U if DD~V =k + X\(G — U). Usually U is called the
forbidden subgroup. '

An (m,u, k, A)-divisible design D = (P, B) is obtained from (m, u, k, A)-RDS
in the following way : the set P of points are elements of G and the set of blocks
B are subsets Dz(z € G). We note that the set of point classes are {Ug | g € G}.

We say G is splitting (over U) if there exists a subgroup G of G of order m
such that G = GU and GNU = 1. In this case G is an SCT(m, u, k, \) group
of D.

From now on we consider an SCT matrix obtained from a splitting abelian

RDS;G=GxU.

Hypothesis 3. Let G = {91, ,9m} and U = {ws, -+ ,wy} be abelian
groups of order m and u, respectively. Suppose D is an (m, u, k, A\)-RDS in the
group G = G x U relative to U. Set P = G = {w;g; |+ € I,,j € I} and
B = {Dwg; | i € I,,j € I,}. Then Dpg := (P,B) is a (m,u, k,A)-DD with
the set € :={Ug1, - ,Ugm} of point classes.

We now consider the action of G on (P,B) as an SCT group.

{w;G | i € I,} : the set of G-orbits on P,
{Dw;G | i € I,} : the set of G-orbits on B,
D=Gyw1U-- UGy, wy 3Gy, Gy, CG).

We choose a point class C = {wy, -+ ,w, }(€ €) as a set of representatives of
- G-orbits on P and {Dws, - - , Dw, }(C B) as a set of representatives of G-orbits
on B.

Direct product RDSs and SCTs

Under Hypothesis 3, the corresponding u x 4 SCT matrix [D;;] is given by
Di; = {9 € G| (w;)g € Dw;} = G N Dwj 'w;.
As D=GuwiU--- UGy, wy (Guy, -+, Gu, CG),
we have [D;;] = [Gwiwj—l], which we call an SCT matriz of standard form with
respect to {D,G x U}.
Similarly, if we choose a point class C = {w1g, - ,w,g9} € € (9 € G) and

{Dwign,,- - ,Dwygn,} C B (n1, -+ ,ny € Ip) as sets of representatives of
G-orbits on P and B, respectively, then we have the following.

Lemma 4. Under Hypothesis 3, set D = G, w1 U -+ U Gy, w,, Where
Guyy -+ ,Guw, CG. Then a u x u matrix [G,, 197" gn,] is an SCT(m,u, k, X)
W

matrix.



Let notations be as in Lemma 4. Then we have the following.

Proposition 5. Set M = |G, -1], the SCT matrix of standard form with
L)
respect to {D, G x U}. Then,

(i) any SCT matrix is obtained from M by multiplication of any column by
an element of G and any permutation of rows and columns;

(i) M is circulant if u is a prime and w; = w*~! for i € I, where U = (w).

§4 Spreads and SCTs

Theorem 6. Let ¢ = p® be a power of a prime p and let G be an elementary
abelian p-group of order ¢®. Let {H1,---,Hg41} be a spread of G (i.e. |H;| =
¢, [HiN Hj| =1, Yi # j). Set go = ¢/p™ (= p*~™) and

A= HfQo+1 + H';]o-l-2 +eoot H(*i'f"rl)QO 0=i<p™-2),

Apm“l = HZ‘P’"‘-U%-H + Ha’m—l)%-{‘? +eot H;m'QO + H;m'(10+1 +1
Let L = [n;;] be a Latin square of order p™ with entries from {0,1,.-. ,p™ —
1}. Then the following is an SCT(p?¢, p™, p%¢, p**~™) matrix, which gives an
STDgz2/pm (%€, p™).

An1,1 Anl,z e Anl,pm
An2,1 Anz,z T N2, pm
A"p'",l o A"p"‘,p"‘—l A”p’",p’"

Sketch of proof : (1) Z’iEIpm AiAg—l) =q¢%>+gqo(G — 1) (Vi € Iym).
(2) If {ni1, -+ ,nipm} = {ne1, -+, ngm} = Iym and
N4 1 # Ng1y **y Ngpm # Ngpm., then
AnAn Y+ 4 Aipm Appm ™" = qog(G — 1)

An equivalence class in Latin squares of order n

We show that some of the STDs obtained in Theorem 6 admit no class
regular automorphism groups. This implies that these STDs are never obtained
from generalized Hadamard matrices. In order to prove this we need a lemma
on the set of Latin squares.

Definition. Let e; = (1,0,0,---,0),es = (0,1,0,---,0),--- be vectors of
V(n,C). For a permutation o = ( 'r11 T22 o ::1 ) of Q := {1,2,--- ,n}, a
permutation matrix P, is defined by e; P, = e, for each i € I,,. Let N be the
group of permutation matrices of order n and .# the set of Latin squares on (.
We say Latin squares Ly and Lg in Z are equivalent if Ly = PL;Q for some
P,Q € N. Let H := N x N be the direct product and define the action of H
on £ by L(P,Q) = PTLQ for L € # . Then H is a permutation group on .%.
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The number of Latin squares of order n

Let .%, be the set of Latin squares of order n on {1,--- ,n}.
By Theorem I11.1.19 of [1],

| %] > f(n) = ()2 /0" for n > 1.

%] = (2 -1)12! > [£(2)] =1,

|25 = (3= 1)13! > [f(3)] =2,

L] = 4(4 — )14 > [£(4)] = 25,

15| = 56(5 — 1)15! = 161280 > [£(5)] = 2077

Latin squares equivalent to a circulant one

Z = the set of Latin squares on Q := {1,2,--- ,n}
N = the group of permutation matrices of order n
N x N = the permutation group on .# defined by L(P,Q) = PTLQ

Lemma. Let C be a circulant matrix of order n whose first row is (a1, a2, - - ,an)
with {a1,a92, - ,a,} = Q. Let T € N be a circulant permutation matrix whose
first row is (0,1,0,---,0). If Q,R € N and QC = CRthen Q@ = Rand Q € (T).

Lemma 7. Assume C € .¥ and C is circulant. Then,
(i) The number of Latin squares in . equivalent to C is (n!)?/n;

(ii) If n > 4, then there exists a Latin square of £ not equivalent to circulant
one.

By Theorem I11.1.19 of [1], |-Z,| > (n!)2"/n™’.
As (n)2* /0™ > (n— DI(n!)%/n, (n > 4), the lemma holds.

Non class regular STDs

Theorem. Let p > 3 be a prime and Ay the SCT(p?*~1, p%®,p, p?®) matrix
defined in Theorem 6. Then the STDpz.-1 (p?¢, p) obtained from Ay, is not class
regular.

Proof. By Lemma. 7, there exists a Latin square L not equivalent to a circulant
one. Let (P,B) be the STD,z.—1(p%¢,p) obtained from A and let G be the
SCT(p?*~1, p?¢, p, p*¢) automorphism group of order p?¢. Suppose false and let
U be a class regular automorphism group of (P,B). Then, as G normalizes
U and |[U| = p, G centralizes U. The direct product G := G x U contains a
(p%, p, p?¢, p*¢~1)-RDS corresponding to (P,B). By Proposition 5, L must be
equivalent to a circulant Latin square, a contradiction.
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§5 RDS and A-planar functions

In this section we define a A-planar function as a generalization of planar func-
tions. :

Theorem. Let G = GU be a group of order mu and G,U its subgroups with
|G| = m,|U| =uand G>U. Let D be a (m,u,k,\)-RDS in G relative to U.
Then there exists a k-subset C of G and a function f : C — U satisfying the
following.

(i) D={zf(z)]|zeC}

(ii) #{w eC | a¢ € C, f(aa:)“f(a;)—l _ b} - @

for any a € G\ {1} and b e U.

Proposition. Let G, U be groups of order m, u, respectively. Let ¢ be a homo-
morphism from G to Aut(U) and f a function form C to U for a k-subset C of
G. Assume that for any a € G\ {1} and b€ U

(x) #{ze€eC|azxeC, flax)? @ f(x)~! =b} =\
Then D = {zf(z) | € C} is a (m,u, k,\)-RDS in a semi-direct product
G = GU of G by U with respect to ¢.

Definition. Let G and U be groups. Let C be a subset of G and ¢ €

Hom(G, Aut(U)). We call a function f : C — U a A-planar function
relative to (C,U, p) if f satisfies (x). If ¢ is a trivial homomorphism, we say
f is a A-planar function relative to (C,U). We note that a 1-planar function
relative to (G, U) is just a planar function in the usual sense (see Pott [5]).

Example. Let ¢ = p® be a power of a prime p and set G = F = (GF(q¢?),+) D
U =K = (GF(q),+). Then a function
f(z) = 27t from G to U is a g-planar function relative to (G, U).

" Let 0 #a € Gand be U. Then,
fla+z)—fz)=b < (a?+2%)(a+z) 29T =b
< az?+alr = b— at! (5k).
As az? + a%z = az? + (ax?)? = Trp/x (ax?), (**) has exactly
g solutions in G. Thus f is a g-planar function relative to (G, U).
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A-planar functions, SCTs, and RDSs

Theorem 8. Let G be a group of order m and U a group of order u. Let D,
be subsets of G for each y € U. If a u X u matrix D = [D,,-1]y .cv over Z[G]
is an SCT(m, u, k, A) matrix, then the following holds.

(i) Set C = Uycy Dy(C G). Then |C| = k,G = (C) and a function f :
C — U defined by f(D,) =y (y € U) is a A-planar function relative to
(C,U).

(i) Set D = {(z, f(z) | = € C}. Then D is an (m,u,k,\)-RDS in G x U
relative to 1 x U.

Remark. A (ul,u,u), A)-RDS is called semiregular. It is conjectured that any
forbidden subgroup of a semiregular RDS is a p-group for a prime p. Concerning
this we can show the following as an application of Theorems 6 and 8.

Theorem. Any p-group can be a forbidden subgroup of a semiregular RDS.

As a corollary we have the following, which gives another proof of de Launey’s
result on generalized Hadamard matrices (cf. [1], Theorem 5.9).

Corollary There exists a GH(p™,p?*~™) matrix over any group of oder p™
whenever e > m.
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