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L,-estimates for a viscous compressible fluid in an infinite time interval
(model problems)

V.A.Solonnikov
9 okTsa6pa 2015 r.

Abstract. The paper contains analysis of model problems arising in the proof of maximal
regularity Lp-estimates for linearized free boundary problem governing the motion of two
viscous compressible fluids. The proof is based on convenient representation formulas for the
Fourier-Laplace transformation of solutions of model problems and on the Marcinkiewicz-
Mikhlin-Lizorkin theorem .

1 Construction of solutions of model problems.

The motion of two viscous compressible fluids contained in a bounded vessel and separated
by a free interface is governed by the evolution free boundary problem

( p('Ut + (U ’ V)’U) -V. T('D) + Vp(p) =0,,

pe+V-pr=0, z€QtuQ, t>0,

{ [v] =0, [-plon+T(v)n]=0, V,=v-n, zely, (1.1)
v(z,t) =0, z€S,

| v(z,0) = vo(z), 6(z,0)=6(z), z€QFUQy,

where v(z,t) = vi(x,t), p(z,t) = p*(x,t) for x € QF, QF and Q; are bounded domains
occupied by the fluids and separated by a free interface I'; = 9Q;f. It is given for ¢ = 0 and
should be found for ¢ > 0. The domain Q = Q} UT, U, is fixed; the surface S = 99 is-
bounded away from I'y. By T'(v) = T*(v) we mean the viscous part of the stress tensor:

TE(w) = ptS(w) + pf IV - v, zeQf,

S(v) = (Vo) + (V)T is the doubled rate-of-strain tensor, u = p*,u; = ui are positive
constants, p*(p®) are positive strictly increasing functions of positive arguments, n is the
normal to I'y exterior with respect to 2%, V;, is the velocity of evolution of I’y in the direction
n, [u] = u*t — u~ is the jump of the function u on I';.

By the rest state we mean the solution of (1.1) with v*(z,) = 0. Then the domains Q;E
are independent of ¢ and p*(z,t) = const = p* = M*/|Q.|, where M* are total masses of
the fluids and |2*| = mes*. The jump conditions on I'; reduce to

pt(E") =p"(p").

The rest state is stable, if solutions of (1.1) with small v(f, p(:)t close to 5+, Qf)t close to QF
are defined for ¢t > 0 and tend to (v = 0,p = 5%,0%) as t — oco. In the paper [1] this was



proved under the assumptions
pr=p =p=M/|Q, M=M"+M",

By passing to the Lagrangian coordinates {y} and linearizing (1.1) about the rest state
we arrive at the linear problem

(v =V - T(v) + 9 (p)VO = f(y,1),
0, +pV-v=h(y,t), yeQFuQy, t>0,
[v] =0, [~p'(p)fn+ T(v)n]=b(y,t), y € o (1.2)
’U_(y,t) =0, ye€ S,

[ v(9,0) =vo(y), 6(y,0) =6o(y), yeQFUQ,

where f, h, b, vy, 6y are some given functions. In the present paper we study model problems
arising in the analysis of (1.2), in particular, we obtain maximal regularity weighted L,-
estimates of solutions of these problems. In combination with the Schauder localization
method, our results enable us to estimate the higher order Sobolev norms of the solution
of (1.2) by the data and by the weighted L,- norms of v and 6.

Main attention is given to the problem

(Prwi — V- T*(w*) + p* (%) Vo* = f%,

OF + 55V - wE = hE, +y3 >0, t>0,

{ [w] =0, [Tos(w)]=bs oa=1,2, (1.3)
(-’ (P)9 + Tss(w)] = b3, ys =0,

(| w*(y,0) =0, ¥*(y,0)=0, =y3>0,

related to the estimates of the solution of (1.2) near the interface I'y.

Having in mind the application of the localization method, we assume that suppw and
suppd are contained in the closure of the domain Q = Q1 UQ~, where OFf = ' x I+,
Q' = {|z;| < do}, j = 1,2, I* = {£z3 € (0,dp)}. Moreover, we assume for a while that f =0
and h = 0.

We expand b;(y’,t) in the Fourier series in £2:

) =1 N iy’ (T T
b](y at) - (2d0)2 kezzz b](£7 t)e ’ € - (dokla dO k2)a

where b;(¢,1) = Joy €7%%'b;(y/, t)dy’ and make’the Fourier-Laplace transform

o0
@ (¢, 5,3) =/ e~tdt | wr(y,t)e Y dy = Fuw,
: > (1.4)

~ e ¢] ) ,
95 (€, 5,y3) =/ e_“dt/ 9 (y, e~V dy = Fo.
0 ’
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This converts problem (1.3) into

¢ o d ~ .
ﬁswa - ( Z ZfﬂTﬁa(w) + E@/—gTQ’O‘(w)) +pl(p)zga’¢9 = Oa o= ]-a 2»
B=1,2
d d ~
psis — () ibsTpa(w) + —Tas(w)) +p (P)a— =0,
B=1,2
d 1.5
Q s9+ p( Z iégwg + ay~w3) 0, +y3>0, (1.5)
B=12
[w] =0, [Tga(ﬁ))] =byy, a=1,2,
[—p'(P)0 + Tas(w)] = b3, y3=0,
{ 17),5—) 0, |ys} = oo,

where T% (%) = FTE(w*), S¥(wt) = FSt(wt), @ = wF, 9 = 9 for +y3 > 0.
Along with (1.3), (1.5), we study similar problems for the Lamé system:
prwf — V- TH(w*) = £, £y >0,
[w] =0, [Tis(w)] =b;, i=1,2,3, y3=0, (1.6)
wt(y,0) =0, +y3 > 0.

and
4
~ e B~ d ~ -
psia — (D i€pTha(®) + 5—Tsa(@)) =0, a=1,2,
fo12 Y3
_ o d o
<p3w3“(ﬁ;;éﬁTﬂa(w)‘*'d—ygTw(w))=0, +y3 > 0, (1.7)

[@] =0, [Tnu(®@)]=0b, i=1,23,
| @,9 -0, |ys| = co.

We proceed with constructing the solution of problem (1.7) in the explicit form, assuming
for a while that |k| > 1, [£| > 7/do. We follow the same scheme as in [2,3], see also [4]. The
general form of the solution of (1.7) is

T+ 0 i§1
wt (¢, s,y3)=CF | 0 e 4 Cy|rt eV 4 CH | it e_'1+-"3, y3 > 0,
€1 €2 —rf
('—T—- 0 Zfl
W (§sys) =0y | 0 e W+ Oy | —rT [ B 4Oy [ g | e, g3 <O,
i€ €2 T
(1.8)
where r* = /& 4 |¢]2, rt = + €2, v* = pt /5t v = pf /et
vE 11 mf Y VT = QTP VT =
Cirt +i6Cf i€

W€, s,y3) = | CFrt +i6Cf | e R+ CH | it | (eI — eV, y3 >0, (1.9)
Ct-ri¥cs —rf
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—Cyr™ +i6Cy ity
B s,y3) = | —Cyr™ +i6C5 | e W+ CF | ity | (€7 — € ¥), y3 <0, (1.10)
C + rng Ty

where C* = i¢;CF + iEgC&E. Substituting (1.9) and (1.10) into the jump conditions in (1.7),
we obtain
pH(=r*2CY —ikar{ O3 +i€a(CY = r{ CY))
— T (—r72C; +ibari C5 +i€a(CT +717C5)) =ba, a =12,
@ut + ) (—rTCT + 1170 — (2u™ + u) (P CT +177CF)

1.11
+uf (CHrt = [€PCH) — pr (-Cr™ — [€1C5) = by, —
Clrt +i,Cf = —Cor™ +i€aCy, a=1,2,
Ct—riCf =C +r{Cy,
and, as a consequernce,
Ctrt — |§|2C'?;F =-C7r~ — |§]203",
W (=r 2Ot 4 ePrf ) - (—r T — i) (L12)

— (uF = p)ER(Cr = rfCP)) = Y ikshs = B.
B=1,2

At first we find C5. We replace C* with (C* —rf Cy) +rFCf, C~ with (C™+r{C5) —
r; Cy in (1.11), (1.12) and make use of the formulas

4 -t
e = e =L el = e
v Iz ‘ 207 +
+ ~+
+ 4 2 _ 44 o+ s T 8 _ 5N, S _ S pr_PSpt
rirt =G =TT - )+I/_£——rf:+7‘i(21/i+l/f: U:l:)+l/:i: - Vj:R - MiR ’
where N
Ri: 7’1“"" %iri :|:= I/:t ]
rf+rE ] 2wt + vt
This leads to the system
A(CY —rfCH) ~rfptsCH —rTpsCy = B,
Ay(Ct —rfCF) + pts(1 - 2RT)CY — p~s(1 —2R7)Cy = bs, (1.13)

Rt R __
A3(Cr —rfCf) + ﬁ+3u—+C§}' - ﬁ'Sch =0,

where
Ay =—pt P+ P+ (24 %), Ag=-2ptrt —2uTrT, Az=rt 4T
It follows that (p*sCy, p~sCy ) satisfy

L(p*sC,5sC5)T = (B, bs)" (1.14)
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with A; RY + Al R -
(B, L EE)
—RE 412t L& _(1-2R")
Hence ) 3
C;— = s [(Ag——-—-Ag(l—2R—))B (Al—— —A3’r‘1 )bs]
P o 5 k ) (1.15)
- _ _ + _ il
Cy = 5D [Ao— — A3(1 —2R™)B — (4 p + Asr)bs]
where

Do = Asdetl = (—p*(r** + [€[*) + 0~ (r*” + l&ﬁ)(—%(l —2R") + 5—1(1 —2R"))

+2(utrt + u‘r‘)( iR + Tl;—T) +(rt+r7)(rf (1 = 2R7) +r (1 — 2RY)).

Next, we find @o = Cirt +i€,Cf = —C5r™ + i€,Cy and &3 = C*+ — r7Cy. By ((111116;)
—ptrH(CIrt +i6,CF) — p~r (=C5r™ + i€, Cy)
+ bt = r)igaC +p7(r7 = 17)i6aC5 +iba(ut — p7)(CF = CF) = ba,
which implies

o ita .\
_ CHrt - ~Cy(r -

a(p — p7)ws (1.17)
prrt +pmr=

vt +vfrf ot
vt +uf rt 4

w3 = —

W vy r] +r
RYCH(rt - 7‘+ 171
3 ( )+ v 4t
Hence (1.9), (1.10) can be written in the form

RC5(r~ —rp).

o =oe Y 4 Cf (ri —r) (&1, ia, —r)Tef (w3), 33 >0, (118)
T =o€ B+ Oy (r] — ) (1,862, m7) el (y3), w3 <0,
with &; given in (1.17) and

1 ut 4+t R~
oot =1+ =~ 1

R- -
— — A3(1 - 2R~ B — (A1=— — A3r7)b ,
rt +7. 2ut +N ,U,+D0(( 2 3( )) ( lu_ 37'1)3)
R 1 p”+py R+ + Rt
- = A— Asz(l — 2R A—-——A b
Cy(ri —77) e D (( 2 3( )) — (A 37‘1)3)

(1.19)
The solution of problem (1.7) defined by (1.18) is unique in the class of functions decaying

to zero exponentially, as |y3] = co. Indeed, it is easily seen that the solution of a homogeneous
problem satisfies the energy relation

2
SIBI? + SIS @) + VA ity + d‘”a)n? (1.20)
=1
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where || - || is the norm in Lo(R), g = u®, p1 = uf, @ = @ for £y3 > 0. By the analog of
the Korn inequality

€] I!wHZHI II2 < cl|S(@)|?, (1.21)

we have i
~ ~ w

Res||” + c((&21@I2 + 13- I) <O,
Y3

which implies w = 0, if Res > —c|¢|? (in particular, Res can be also negative, if |£| > 0).
Let us prove that (1.21) holds if @ satisfies the homogeneous jump conditions in (1.7). We
have

(i1’ = i€ (111) = L5 (@),

(€)% = iy(ibaily + i€1a) — 1€1(i€2i02) = €203 (W) — %522(6»,

Ea; 4 di iy _ d g K (@
8w @ i — S13(w) — =—S33(w),
dy3 dy3(dy3 1) - él dys  dys 1s() 2 w ()
which implies
195 12 ey = / (> i - Fy(ys) + 90 Py (ys)dvs
dys ’ ] s |

R i-12

where Fj are linear combinations of gkm(ﬁJ), in particular, F3 = Sﬁg(fi)). Using the Cauchy

inequality, we obtain

don L+ lellanl < el Pl < cl5@)1

[

The function w9 is estimated in a similar way, in addition, we have
&1l < 11Sj()]| + II—JII <cIS@)l, =12,

and ﬁnally 1§33 (w). This completes the proof of (1.21).

If Res > 0 then the above arguments are true for arbitrary non-zero § € R2 in particular,
the solution (1.18) of the problem (1.7) is unique in the class of functions wE € W2(R®). It
follows that Dy is different from zero for arbitrary s with Res > 0 and & € R2. In the opposite
case the homogeneous system (1.14) and problem (1.7) would have non-zero solutions, which
is not possible. Since Dy is homogeneous, i.e., Dg(A¢, A2s) = A2Dg(¢, s), VA > 0, there holds

Do (€, )] > e(ls] + [€[%) (1.22)

with ¢ = inf|;| 1 |pj2=1, Reo>0 [Do(0,7)| > 0. Hence the same inequality (with another constant
¢) is satisfied, if [¢| > 7/dy and Res is a negative number, small in comparison with m/do.
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We pass to the analysis of a homogeneous problem (1.5). Elimination of 9 leads to

~ . d dw
(ﬁswa = ( Z i€pTpa(w) + d_T 3a(w)) + §a( Z ipwg + ——3 =0,
B=1,2 ys B=1,2
- . d ' (
psilis — (Y i€pTpa() + ETm(w)) " Z €51 =0,
p=1,2 ﬁ 1,2
{ £13>0, (1.23)

- dive, .. -~
[@] =0, [u<i+z£aw3)]:ba, a=1,2

d o' (P e~ ~
”“") % b+ 2O S g = b, 1a =0,

(21 + p1 +
dys ey

JI;,E—)O, lys| = oo,

[ —F
Clearly, (1.23) can be viewed as problem (1.7) with /rit replaced by ui(s) = pqi + 3@”—2
(and vif replaced by vi(s) = vi + Li_l) The expressions 1/(2v% + vif), rf(¢,s) =
ok o+
\/.9/(21/i +E) + €12, ef(y3) = 8;—12‘*5—1"3 go over into

+ +
s 52 eFriiys — eTr-ys
2 — .t + —
ats + b’ \/ais T bt + |€| = ’rll({’s)) e11(:‘/3) = ritl —rE
where
2

+_o, 4, + £ _ 4=+ + _ s 2
=wr+v, bT=p(p7)>0, rll—\/ai8+bi+|£|‘

We notice that all these expression are meaningful for negative Res = s1, if |¢] > 0.
We proceed with reducing (1.3) to a similar homogeneous problem (with f =0,k = 0).
We set _fi =0, h* = 0 for +y3 > doy and define fT and h¥ as extensions of f* and
h¥*, respectively, from Q* = Q' x Ry into @ = Q1 U Q™ with preservation of class. We set
ut = uf: + u2i, ot = ait + aét, where uf:, af‘ satisfy
pui; — V- T*(ui) + p'(p)Voi = f¥,
ob+pV-uf =hE, yeQ, t>0, (1.24)

ui(,0) =0, of(30)=0, yeq,
and u], 07 solve the problem

puz, ~ V -T(u3) +p'(p*)VoF =0,
o +9tV-uf =0, yeQ*t, t>0,
u;=—[u1], y3=0, t>0,

uf(y,0)=0, of(y,0)=0, yeQ,

(1.25)

whereas u; =0, o5 = 0.



Making the Fourier transform with respect to all the space variables (y1,y2,y3) and the
Laplace transform with respect to t,

m .
Fu=1u= / e—Stdt/ dyg/ u(y, t)e V€ ~Wslady’
0 R 2

we reduce (1.24) to the algebraic system

— ~ ~ !N ~E
{ P (s vEIEmEE + (R + e aD) o g =T 0
so1 +pE(i€ - ut) = hy, 6P =P + &
We always assume that &, = kqm/dp, ko = £1,£2,..., a =1,2.
Elimination of 55 leads to the system for %
- . 1 ~+  p(pr)ighE, _ .
(o + IR + (0* + e 5) = (P - P =5, )
the solution of which is given by
uy = HG/ (s + vIEP), (1.28)
where H?* is the matrix with the elements
+ 4 %
+ 117 (8))€58k &5k
HE =64 — v 1 L =01 — 1 . (1.29)
IO st @i @)ER T F (e HvIER) TP
We notice that
+ ~ i€-g* s i€-g*
FV - uf =ig-uf = = _ (1.30)

s+ (2v + viE(s))[€)2 ais+ bt W(S+Vilflz)+ 1€1%)°

To estimate the solution of (1.2) near the rigid wall S, we need to consider one more model
problem

pw; — V- T(w) +p'(p)VI = f,
$+pV-w=h ye@Qt, t>0,
w(y,t)=aly,t), v e, t>0
'w(y, O) =0, 19(3/7 0) =0, ye€ Q+
with =5, T(w) = T~ (w), under the assumption suppw, suppd C Q.
Let f = 0, h = 0. The Fourier-Laplace transform (1.4) with respect to yi,y2,t converts
(1.31) into

(1.31)

(_ e e d & - e T
ﬁswa - ( Z Z&gTﬁa(’UJ) + @;TSQ(w)) +pl(p)1£a'l9 = 07 o= 15 27
B=1,2

~ d ~ d ~
DSWs3 — 1€5Ta3(w) + —Ts3(w)) + p'(p)—9 =0,
) psi3 (ﬁ;:,2 §pTp3(w) " 33(w)) P(P)dy3

~ o d _
s?+ p( Z (t€gwg + T’LUS) =0, y3>0,
fo12 Y3

(1.32)

|w=a, y3=0, w—0, y3—>-+oo.
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We also consider the problem
(_ . e A~ d ~ ,~
pstia — (Y i€sTpa(®) + E@-/;Tga(w)) =0, a=1,2,
B=1,2

d ~
) pss ~ ( > itgTps(w) + d—T33(w)) 0, y3>0, (133)
=12

\w=a, y3=0, w—0, y3— +oo.

We assume that { = (7k1/do, mka/dp), k = £1,£2, .... The solution of (1.33) is given by
the formula similar to (1.9), i.e

hir +i&1hs 161 1Y — =73
w(¢,s,y3) = | hor +ifohs | e ™ + hg(ri—71) | & T r B >0, (1.34)
H - T1h3 -

where r = /s/u= + €%, 11 = \/s/(v" + 1) + €2, H = Y, ,i€ahs. (see [2]). The
boundary conditions imply
hor +i€ahs = aa» a=12,

2
Hr—&hg = A= itgi,

B=1
H - h37‘1 = 53,
hence
A —ras Z —ra3
hs = 2 H= a3 + 7'1 R
rr1 = ¢ - & (1.35)
ha(ry — 1) = (A —raz)(ri —r) _ A —ras S(—-gwl_,,l - __v+tn A-ras
s rry — €2 T+7] sR- wHviry+ar’
so (1.34) is equivalent to
- fl Zgl e~ T1Y3 _ o= TY3
w(.f, S.yg) =|ay|e ¥+ h3(7‘1 - 'f‘) i€a —_7‘1—_’/‘ ys3 > 0, (136)
a3 -1

with h3(r; — r) given in (1.35).
The solution of (1.32) is obtained by replacing v1 with v1(s) in (1.36), which yields

_ fl ~ 1261 e~T11Y3 _ o=TY3
w(E,sy3) = | a2 | e + h3(rin —7) | i T
a3 =T
_ 1.37
ha(r _r)__a1s+b A—ras sar(s) = I s2 e (1.37)
3V T as+b i+ (s)r . as +b’ U= Vas+ob &%

ar=v 4v;, a=2v"+vy, b=pp(p7).



To reduce (1.31) to a similar homogeneous problem, we introduce auxiliary functions u;
and o9 satisfying the relations analogous to (1.24):

puie =V - T(uf) +p'(p) Vo = §7,
o1t +pV - up = h*, (1.38)
ui(y,0) =0, o01(y,0)=0, y€Q.

with p = p~ and with f* and h* defined as the extensions of f and h into @ = ' x R with

preservation of class. By the Fourier-Laplace transform with respect to y1,y2, ¥3,t (we assume
that |¢'| > 7/dp) equations (1.38) reduce to

{ pls + Vg + (v + v1)E(€ - ) + 9 ()i = f7, (139)
so1+p(i6 ) =h*, €7 =1¢']" + &,
which implies
(s + P + (v +n(o)eE T =2 (F -T2y =5 (g
As above, we have
= HG/ (s + vIEP), (1.41)
where H = (Hjx)j k=123,
§5i€k
Hio =00 — . 1.42
= Ok T T+ e + e (142

Problems (1.5), (1.32) with £ = 0 are treated in Section 2.

2 Ly-estimates.

In this section, we prove L,-estimates for solutions of model problems studied in Section 1.
We obtain the following result.
Theorem 1. The functions w and ¥ with suppw, suppd C Q satisfying (1.3) with b(y',t)
and vanishing for t = 0 are subject to the inequality

D> (e wllyzr gz + €™ Olroqz) + le™Fullyzoge))

- Bt Bt Bt (21)
< C(Z:t:(lle f”Lp(Qf,ho) +le h”w,}vo(Qgg)) +le b”Wz}—l/vvlﬂ-l/?ﬁ(%))a

where Q% = 0% x (0,00), @, = Q' x (0,00), 8> 0.
By W2(€2 x (0,T)), 2 C R", we mean the space W2°(Q x (0,T)) N Wy (2 x (0,T)),
where

Wy %(Q2 x (0,T)) = Lp(0, T; Wi (),  Wp'(2 % (0,T)) = W, (0, T Ly(€1)).

The norm in isotropic space Wzﬂ(ﬂ) is given by

ol = /Q \Diu(z)Pdz,

lil<t
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if [ is an integer, and

Diu(z) — Diu(y)P
|u”Wz(Q Z //I I:(Ex-)-ylnﬂ’)‘(y)' dz,

l31=(1

if Il =[]+ A, 0 <A < 1. On the manifolds, the above spaces are defined in a standard way,
i.e., with the help of the partition of unity and local maps.

The proof of Theorem 1 occupies the major part of the section. We start with estimates
of u; and o; satisfying (1.26), (1.27). We assume that

17 FElLp@u) < clle” FElL 02y ™A lwrogy S cle®hlyrogs),  (22)

where Qoo = Q% U Q7. The estimate of u; is carried out on the basis of the Marcinkiewicz-
Mikhlin-Lizorkin theorem:
Theorem 2 [5,6,7). Assume that & = Fu, v = Fv and

v =m(¢, s)u

where F is the Fourier-Laplace transformation Fu(€,s) = [;° e™*dt [z, e"%2u(z, t)dz If

Mp(m) = sup sup |[Mm|<c (2.3)
Res=g; (eR"
where
|m §s '+z Z |§k1 §k,” |
3§ ey - 85
J=1 ki#k;
(2.4)
+ ISH——I + sl€ky ks |l 57715
;kgﬁ-‘; v ds a§ ky- 86’0,
then

le®*vllL,mnxry) < cMp(m)|l€PullL, mnxr,), B = —Res.

The function m with these properties is referred to as L, Fourier multiplier; the set of the L,-
multipliers is denoted by 97.

The Marcinkiewicz-Mikhlin-Lizorkin theorem applies also to the Fourier series, if the
Fourier coefficients are defined for all real values of £ (see [8]). By repeating the arguments in
[7] it is easy to show that the condition (2.3) should be replaced in our case with

0 )
Mol = 5B, g2, (&) |+Zi€a |+Z'§J§k T

m 2 8*m(¢, s)
et o o) * 2 115 oo | @3

83m(§,s) *m 9 9
+§;Isllﬁgll§kll 558,08, | T 1ol61ba g g l) < oo, et = I+ €.

for m = ij.
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Let us consider the expression

)12 4 k2 +
n B S 12 o sa™|s|®4bFs SU 9 9
PE(6 ) = g o+ ) + 6P = T+ e e

Since l%¢ﬁ| is bounded by a constant independent of sy, there holds |P| > c(|s + |¢|?),
if dp is small. Moreover,

IMPY < c|PY,  Mp(&&Pt) + My(sPh) < c.
We represent (%1,51) as the sum
UE =Wy + W, OF =1+ b,
where @;, $; satisfy (1.26) with hE = 0 and ﬁt = 0, respectively. Hence w; is given by the
~t ~ . .
formula (1.28) with lp_lf f. instead of g. Applying Theorem 2, we obtain
1A, T
e il gy < NP HF iy 0w < elle® £, 2 (26)

moreover, from the system of equations (1.26) for w; and 51, we deduce

”eﬂt¢1t”WI},°(Qm) + HeﬁthSlHWz},o(Qoo)

< C(“eﬁtwllleyl(Qm) + ”eﬁtf#:!:”LP(Qoo)) < c”emfiHLp(ng).

Since fQ, gldy' = 0, the function $1 satisfies the same estimate.
We pass to estimates of (wg, ¢2). By (1.30),

P (p%) |€|%Rs

PE(ats +65) e (o + R HIER) ~

i€ Wy =

and, by Theorem 2,
+
”eﬁtX”Wl}vo(Qoo) + “eﬂtXt”W,}:O(Qoo) < C“eﬂtthW;’O(Qw) < c”eﬁth’ ”Wz}vo(ng)'
The functions (wg and 52) can be viewed as a solution of the transformed Stokes system:
{ P+ IEPBE + 0 (P)iEde = —(vF +vDiER,
i€ -wi=%.
It can be easily solved; the solution is given by

1 _ =+ s—{—ui 2 ~
wy = _|—'5_|§X’ P2 = *p-——i,(ﬁi)((vi+1/1:l:)x+—p ( e €l DX)

From these formulas and from 352 =h— pEX we deduce

”eﬁt'w2“W3‘1(Qoo) + ”emvﬁbQ“WI}’U(Qw) + 'Jf‘“eﬂtvqb?t”W’}'O(Qoo)
< C(”eﬁtX”WZ},O(QOO) + “eﬂtXt“w;vo(Qw) + “eﬁthi“Wz}’O(Qi))) < dleﬁthillw;vo(@gg)-
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Collecting estimates, we arrive at

+ +
;(”emuﬂwﬁ'l(czi) + e o lwpos) + I otillwioqs,))

2.7
+ +
< (1708 + HM o))
The problem (1.25) is treated below; we show that
HeﬁtU2“W3J(Q;) + ||€'Bt02i”W,}'°(Qg) + ||eﬁta§bt|]W;.o(ng))
(2.8)

< c”eﬂt[ul]”W’f—l/p,l—l/?p(ng) < CZ ”eﬁtuitllwgvl(Qg:o)'
+

Hence . . N
DUl uFlyzagz) + 1”0 iz gz + €70 Ipogz,)
< CZ(HG fl“L,,(Qfo) + |le”*h ”W,}'O(Qgi,))'
+

The differences w = v — u, ¥ = 6 — o solve the homogeneous problem (1.3) (with f =
0,h =0).

We go back to (1.7). The solution of this problem is expressed by (1.18). We again make
use of the Marcinkiewicz-Mikhlin-Lizorkin theorem for functions given in {y/ € ', ¢ > 0},
vanishing for ¢ < 0 and periodic with respect to y'. In this case the condition (2.3) should be
taken in the form

My(m)= sup sup |Mm|<c, (2.10)
Res=s1 |¢|>m/do

Mm = |m 51 |+Z Z |£k1 gk,ag & |
=t ket o (2.11)

oIt
+Is——|+z D Isti -ty el ";&l n=2

J=1 k;#k;

Moreover, we make use of the following proposition.
Proposition 1. Assume that Py(&,s)/rT € M, Pi(€,5)/rT% € M (this means that m =
Po/r*, Pirt? are subject to (2.10)). Then the functions wg (z,t) = F~'Pye " ¥ Fd} and

Fus ot
wi (z,t) = F~1Pef (y3)Fd}, where ef = —ly_i;e—i and d;(z',0) = 0 (in the case p > 3),

satisfy
”eﬂtw?_“LP(QgLo) < C[leﬁtdi”WI}-]./]J,I/Z—I/(ZP)(Q,OO), 1=0,1. (2.12)

Proof. Following Volevich [9], we represent w; as follows:
~4+ * d —r+(z3+ys) 7+ oo —rt(e3+ys), .+ J+
U)O - _\/0 P0(€7S)d_y—3(e 3TYs d() (E,S, y3))dy3 = 2‘/0‘ POe 3TYs T dO (&? S, y3)dy3)

o0 ~ 00 ~
wi = 2/0 ef (z3 +y3)Pirtdf (&, s, y3)dys +/0 P @) dE (¢, s, ys)dys,



where _ _
4 (€, 5,y3) = df (€, 8)e™"%°.
Since Res = s; < 0 and dj |;=0 = 0, there holds
e F=trtdf L, on < C||emd:r||W;—1/p,1/z—1/2(%)-
Now we use the inequalities

.|Mpr+e“T+t] + |M,,r+2ef(t)| < %, t>0,

obtained in [10] ( or by direct calculation) and get

00 ~ d
Bt, + < Ptp—lp gt . LE
le™wg Iz, < ¢ /0 le™ ™ Podg @) o

dys
3+ Y3

o0 ~
e w0 2,0 < C/O e F= Py /r*df (11, u,)

From our assumptions concerning Py and P; and the continuity of the Hilbert transform,
it follows

€7 F ™ Podoll g < elle™F a5, ) < clle™df lly-vmaniiaqy

-1p ¥ 4 4 (2.13)
leftF 1P1df||LP(ng)‘ < c||eftF 1r+d'1"‘|Lp(ng) < C||eﬂtd-1'_||wl}—1/m1/2—1/2

(Qe)’
q.e.d. The functions wy (z,t) = F~'Pye” ¥Fdy and wi (z,t) = F~1Pie] (y3)Fd; satisfy

similar inequalities.
Using Proposition 1, formula (1.18), inequality (1.22), the relations

et et
and
M|+ [ Mry| < cfrl, (Ml + [Mrct < el
M) <o, MDY < lrl 2 219
we obtain the desired estimate for the solution of a homogeneous problem (1.3):
2N g gy < el bllypvimare-svmgy (2.15)

Now, we turn to the problem (1.3), (1.7), (1.23). The solution of (1.23) is also given
by (1.18), but with z/li(s) and ri':l instead of 1/1:t and rfc, respectively. We show that the
assumptions of Proposition 1 still hold.

We consider r1; = 4/ ajib +|¢|? and Ry = Tt (s)r (omitting indices %), where s(s) =

Vs ri1+r
Pyt We have

2 4 p(s? — g2 2 op
o _ s1als|® +b(s 52)+i82@|3| + 2081

2
= las + b2 |as + b|2 + 1€l
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2

Since s—la—E}Z—ﬁg—-ﬁ—_ﬁl and a‘;z_ﬁbsl are uniformly bounded by constants independent of s,
there hold
ci(ls| + €1%) < Irf1] < ea(ls| + €1%)

and
c3(]s] + [€1)Y2 < Reryy < |ru| < ca(]s] + [€%)2, (2.16)

if dg is small. Moreover, easy calculations show that

\Mri| < efr] < o(ls] + €)%,
rf — il c cs < clr|
|re +711] = (as+b)(r1 +7111) ~ |as+ b
|se1(s) — 2| < ¢, kK1

< olr, (2.17)

|11 — 71| =

if |s| > h (6§ — 0, if A grows without limits; we choose h in an appropriate way). This implies
|Ri — R| <cd, c5<|Ri| <o (2.18)

The function Dy goes over into

9 Ry Rf -
Dy = (=t (r?* +1€P) + p~ (7 + P (==L (1 - 2Rf) + —-(1 - 2Ry))
rfiRT  r Ry ’ g (2.19)
+2(ptrt + pmr)( 1;_1 + 1/1#1 )+ (rt +r7)(rh (1 = 2Ry) + 1, (1 — 2R})).
Making use of (2.16) - (2.19) we obtain
|D1 = Do| < 6Ir?, I <|D1| < €'Ir?
and
IMDy| < ¢|Dyf, |MD7Y <Dy, (2.20)

provided |s| > h. If |s| < h and dj is small, then |s] < §;]¢|? with a small &;. In this case (2.20)
can be proved by comparing D (€, s) with Dj(¢,0). It is easily seen that RE(€,0) = 1/2 and
Di(€,0) = [ (u* +u7)(Jr + 55), hence |Di(€,s) — Di(€,0)| < cbil€, |Di(€, 8)| > clr?, if
41 is small. This shows that (2.20) hold also for |s| < h.

The above arguments prove that the assumptions of proposition 1 are satisfied also for
D} Dfw(y,t), where w is a solution of (1.23). Hence w satisfies (2.15). The estimate of  is
deduced from the equations

pve —V - T(v) +p'(p) V8 =0,
0, +pV-v=0, yeRIUR

and as a result we obtain

Dl wlyzr gz + e Ollwpoigs) + ™ Bullypongs) < clle®bllyi-s/mara-syamgy ),

+
(2.21)
where 0 = QF x (0,00), O = 9F x (0, 00).
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To complete the estimate of the solution of (1.3), we need to analyze the case £ = 0 in
(1.7), (1.26), i.e., to estimate the zero mode of the solution. If ¢ = 0, then (1.3) is decomposed
in two one-dimensional problems

dw
(ﬁwat‘ﬂd—ga :fla(y:}yt)a Y3 eli)
Y3
dw
{ [wa] =0, [u—= °‘] =ba(t), y3=0, (2.22)
wa'ys=ido = O’
\ wa't:O =0
with @ = 1,2, I* = {y3 € (0,dp)} and
(_ d?ws N
pwst — (2,u + Nl)d—yg +P,(P)d—y3 = f3(y37t)a
_dw
9 + P = h(ys,t), ys€I*,

dys dg (2.23)
[ws} =0, [P PP+ (2u+ Ml)@;] =b3(t), y3=0,

w3'ya=ido =0,
\ w3|t=0 = O) ﬁlt():() =0

(we recall that by our initial assumptions, w and 6 vanish for |y3| > dop.) The parabolic
problem (2.22) is easily studied, and we restrict ourselves with the analysis of (2.23). We
make the Laplace transform, eliminate ¥ and replace Vit with z/f(s). This leads to

~i /(sEY JBE
1 = pp)dh +
sWE 2wt + v (s = — i————————, e I™,
3 ( 1 ( )) 3 pi (fs s dys ) Y3
@) =0, [(2u-+ m(s))——d@f‘] =B+ (227, 4=0
: ’ dyg s ’ ’
T (+d) = 0,
which is equivalent to
d2oE 1 Sfi / (~i ) dhE
A 3 T 3 _ P — It
= (s)ws dy3 Vi (ais +bE ais + bF dys =05 welh
. dws s~ (pi)~ (2.24)
= A—]= ———— b3 — [—L 2p] = =
[Ws] =0, [ dyg] P b0b3 [aos n bo e, y3=0,
Wi (£dy) = 0,
where Lo + .
o +
RE(s) = 5 S oaE =% %
(s aOIs + bg: P aos + bo

and ag, by are some fixed positive numbers, for instance, ag = maz(at,a™), by = maz(b*,b™).



We introduce %E as the solution of

9~t
d“uj
dy?

R*iy — =g*, wel*, =0, y3=0,%do.
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To estimate %, we expand g% in the Fourier series in sin %gﬁ, k =1,2,..., Then the Fourier

coefficients @ of Uy are defined by

~t _ fq‘i(f,s) _ _
uy (€, 8) = ———Ri(s) TR E=knm/dy, k=1,2...

If dy is small, then, by the Marcinkiewicz theorem,

”eﬂtﬂfuwjlugo) < C”eﬁtgi”[,p(jggp I;to =I* x Ry.

The difference uy = w3 — U satisfies

d*ut
+~5 . +
REuF — dy§ =0, ysel?,
- dio duy ~
ug] =0, [A=——]=—-[A—] = A(s), =0,
[t2] [ s [ dys] (5), w3

U =0, y==d
We need to compute the solution of this problem. It is given by

ug (ys) = CH (e (B — e~ domwa)y gy € I,
uz (y3) = C (e [B+w8) — e~ (dotua)y - yg ¢ [,

where
+ S

Al R
VaEs + bE

From the jump conditions on the interface y3 = 0 it follows that
D(C*,Cc)" = (4,07,
where

D - ( —A+r+(e’+d° + e—r+d°) AT (e" % 4 g7 o) )

ed0r+ _ e—dor+ __(edor‘ _ e—dor")

so that

D =detD = Atrt (e’ 4 =% )(edor™ — g=dorT) 4 xTp~ (e 4 g% (g%t —

Hence _ _
A - - A
Cct = _B(edor — g dor ), C = _B(edor+ _ e—d0T+)_
We also compute -
gt = $

_ + vt rEd —rd
= s Iyazo_q:r C*(e™ % 4 e %).

(2.25)

(2.26)

(2.27)

g dor™ )-



These functions are connected with A by

~ tA - -
U+(s) — TD (ed07’+ +e—dor+)(edor _e—dor )
+A =2dorty\(1 _ o~2dor~ ~
_ } +r A(l+e i (1—e ) _ = W),
)\+7-+(]_ + e—2dor )(1 — e—2dor ) + A~'I‘“(1 + e—2dor )(1 — e—2dor )
. —Z 1 —2dgr™ 1— —2dort ~
T(s) = - LAl e ) — =W ).
MErH(1 4 e 2dor™)(1 — e=2d0r™ ) A=~ (1 4 e~ 2dor7 ) (1 — e~ 2dor™)
(2.28)
It is easily verified that the expressions W™ (s) are Ly-multipliers, hence
”eﬁtUi”Wz}m—uzp(R” < C”eﬁtA||W;/2—1/2p(R+). (2.29)
Now we consider (2.27) as the union of two problems
d*uE
R*uy — —2Z =0, yzel*
Uqy dyg Y3 3
diiy T (2.30)
dy3 y3=0 ’
Uy =0, y==d.
+

The solution of (2.30) can be estimated in the same way as u; above. We have u; =
VE 4+ W=, where

dv+ oL ~
‘d‘?;;|y3=0 = Ui, Vi|y3=0 = Vi‘y3=ido =0,
“eﬂtviuwﬁ’l(ffo) < C||6’3tA||W;/2_1/2p(R+), Ig:o = Ii X (Oa OO), (231)
~, dW* ~, dVE -
R:i: W:l: _ — _pt + — Fﬂ: € I:i:,
W=

_dﬁj;lys:() =0, Wi|y3=do =0.

We extend F* as an even function of y3 into a symmetric interval /T and apply the
Laplace transform. It is clear that W¥ is expressed by the formula similar to (2.25):

W*(¢, s) = %. (2.32)

Applying the Marcinkiewicz theorem and making use of (2.31), we obtain
~+
; letaz3 Iz z) < Czi: ||€ﬂtVi||Wg:1(1§) < ClleﬁtAHW;/z—l/zp(R”,

which completes the proof of

S wallza sz + e Plgorsgy + e Oelugz)
(2.33)

< C(;(“eﬁtf””mli) + €% Rl 1) + le™bllya2-1/m g )
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(the estimates of ¥ are obtained from the equations (2.23)).

The solution of (1.24) satisfies similar inequalities.

Combining (2.33) with (2.9) and (2.21) we obtain inequality (2.1).

Next, we turn to the problem (1.31) with f =0, h = 0 and with a vanishing for t = 0 (if
p > 3/2). Assuming as above that |£| > 7 /do, we write (1.37) as

a1 &1

~ ~ 1 . e_rlly3 — 6—7”1/3
'ID(f, S.yg) = Ta2 r e_T'yB + h3(7‘11 - ’l‘) 1/62 ———El_—r—'— Y3 > 0,
Td3 —T11 (2.34)
ais+b A—ras Vs

»#(s) =

hs(rin —r) =

as+b ri1 + x#(s)r’ as+b

It is easily seen that the assumptions of Proposition 1 are satisfied in the formula for F DﬁDf'w
2|7| + k < 2, the role of d; being played by ra;. Hence there holds

||€ﬂtw”wg’1(Qg:°) = c||emF"1r&l|W;_l/,,,l/z_l/z,,(%) < cl\e‘“aI|W3-1/p.1-/zp(%)- (2.35)
We notice that this inequality justifies (2.7).
As for the non-homogeneous problem (1.31), it reduces to a homogeneous one exactly as

(1.3); detail are omitted. For the solution of (1.31) we obtain the estimate

”eﬁtw”W:,l(Qg-o) + ||eﬁto't“Wg,o(Q§°) + “eﬂtC’”W;"’(Q;)

< ellle™allyz-1/pa-r2s gy + 1™ Flli g + 1 hllwioggy,)): (250
If £ = 0, then (1.32) reduces to two one-dimensional problems
~ d2 ~
poiva — ot = Faltat), melt, -

Wo lys=0 = Gas 'waly3=do =0,

a=1,2, and

d2i; § -
ﬁstt_(2ﬂ+ﬂl) dy +p( )d_ f(y3’t)7

divs 2.38
O + p—— dgy — M v el i 239
w3|y3=0 - a37 a3|y3=d0 = O'

They are treated as (2.24), even much easier.
Finally, we mention the interior estimates of the solution of (1.3). The corresponding model
problem is completely analogous to (1.24):

pw:— V- -T(w) +p(@)Vd = f,
Ut +pV - w =h, (ya t) € Qoo; (239)
w(y,0)=0, ¥y, 0)=0, yeQ.



Repeating the above arguments, we obtain

Heﬂtw”WZJ(Qw) + ”eﬁt'g”W;}’O(Qm) + ”eﬁtﬁt”W,}’o(Qm)

2.40
< cle® Fly(@u) + ¥ hllyop0_s)- (240

We have considered model problems only with zero initial data. This does not restrict
generality, because problem (1.1) can be reduced to the problem with homogeneous initial data

by constructing, after passage to the Lagrangian coordinates, auxiliary functions U* (y, t), 0%(y, t)

such that N N N N
U (ys 0) = UO (y)v @ (y,O) = 00 (y)a [U”yEFO = 07

U(y,t)=0, O(y,t)=0 for t>2,
Zﬁ; ”Uﬂ:“Wg'l(ng(Oﬂ)) < Cg ”u(ﬂ):”W:—i’/p(Qg), (241)

+ + +
“@ ”W,}’O(Qoix(o,m) + “@t ”W,}’O(Qoix(oﬂ)) < C”90 “Wl}(ngﬁ)-

The existence of U with these properties follows from the trace theorem for the anisotropic
Sobolev spaces, and ©F can be taken in the form ©%(y,t) = Hf)t(y)g(t), where ((t) is a smooth
function vanishing for ¢ > 2 and equal to one for small ¢.

Inequalities (2.2), (2.37), (2.39) in combination with localization procedure yield the
following estimate for the linear problem (1.2):

¢+ t ot ¢t ,
; le”*v w21 (@ x (0,000 T+ I o @ x 0,000 + lle”*6; w200 x (0,00))

< C(;(“eﬁtfi“Lp(Qg:x(O,oo)) 17 h* o1 @t 0,00y T 195 w2102 + 165 lwroasy)
+ 11”12, (o (0,00)) T 11€°°011 1, (20 x (0,00)))
(2.42)

The estimate of weighted L,-norms of v and # can be obtained on the basis of the resolvent
estimate of the operator corresponding to the problem (1.2) and of the standard results of the
semi-group theory; this goes beyond the frames of the present paper.

Remark. We have studied model problems (1.3) and (1.31) in the class of functions
decaying exponentially as ¢ — oco. Most often, such problems are treated by applying the
integral Fourier-Laplace transformation. It is easily seen that the above arguments are applicable
also in this case, but the exponential weight will be with 8 < 0, which suffices for estimating
solutions of (1.2) in a finite time interval.
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