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Variational formulae and estimates for
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1 Introduction

O’Hara proposed the shape optimization problem of knots in [8]: What is the
canonical configuration of knot in its knot type ? To this problem he introduced

the so-called O’Hara’s energy

1 1 P
Fenlf)= //(R/c2>2 (nf<s1> ~FelE @<f<s1>,f<32>>a> dorden

where f is a knots, i.e., a closed curve without self-intersection in R3. L is total
length of the closed curve, s;’s are arc-length parameters, and 2 is the distance
along the curve. The exponents o and p are positive constants.

The energy has scaling invariance if and only of ap = 2. Therefore in considering
the variational problem for ap # 2, we have to deal with it under length constrain.
O’Hara showed in [9] that minimizers of £4p) (With the constraints when ap # 2)
exists in every knot types if and only if ap > 2. In this sense the case ap = 2 is

critical.

Freedman-He-Wang [2] considered one of the critical cases (a,p) = (2,1), and
showed that the energy £,1) has not only scaling invariance but also the invariance
under the Mébius transformations. For this the energy £ 1) is called the Mabius
energy. Furthermore they proved that there exists a minimizer in every prime knot
type by using the Mdbius invariance skillfully. Kusner-Sulliban [7] conjectured that
there does not exists in every composite knot type, and it is still an open problem.

In this article the Mébius energy is dealt with, and we denote it simply by £.
The energy can be defined for a closed curve in R™:

Ef) = //(R/LZ)Z (Ilf(sl) —1f(82)||]%n - 9<f<sl>1, f(Sz))2) dordsz




Needless to say, for the study of variational problem, we must determine the proper
class of functions where we work, and derive the variational formulae on it. Blatt
[1] showed that £(f) < oo if and only if f belongs to H?(R/LZ) N Wl (R/LZ)
and has bi-Lipschitz continuity. It is known that the energy of this class of curves
can be decomposed into three parts ([4]):

E(f)=&(f)+&(fF) +4,

where

&= ff )i

 Ir(s) = 7(s5)| 2
) = o7 ~FColk
7 Gs1) = F(s2) %
o T(s1) - T(52) (F(s1) = f(s2)) - T(s1)
 det ( (f(s1) = F(s2)) - 7(s2) (£ (s1) = £(s2)lffn ) ’

and 7 is the unit tangent vector field along the curve. The first decomposed energy
& is an analogue of the Gagliardo semi-norm of 7 = f’ in the fractional Sobolev
space H/2. This implies the natural domain of £ is H3/2N H1*, which was shown
by Blatt [1]. The integrand .# of the second one has the determinant structure,
which implies a cancellation of integrand. Note that each term in the density of £
is not integrable.

The inveriance of £ under the Mobius transformations implies that of & + &,.
In [4] the M&bius invariance of each & has been proved.

We are interested in the first and second variational formulae of decomposed
energies &. The variational formulae for the Mobius energy were obtained by
several authors, for example by He [3], in the integration of Caucy’s principal

value:
lim // v d51d82.
e—+0 ,31_32l§5

In this article we study the absolute integrability of the first and second varia-
tional formulae in the proper domain of £. Direct calculation produces a lot of
terms which are not integrable even in the sense of Cauchy’s principal value. By
combining several terms appropriately, the integrability recovers, however, it is a
quite hard job. Using the decomposition which was given above, we can calculate
the variational formulae which have absolutely integrable integrands relatively eas-
ily and systematically. One can find their explicit expressions, and can show the
estimates. Furthermore we derive the explicit expression of L?-gradient of each

Mo (f)
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decomposed energy. Since the only sketch of proof is given here, see joint papers
[5, 6] with Aya Ishizeki of Saitama University for details.

2 The explicit expressions of variational formu-
lae and estimates

Let Z(f) be a geometric quantity determined by the closed curve f, and let ¢
and 1) be functions from R/LZ to R™. We use § and 42 to mean

d
6F(Hlel = ZF(f+ed)|
e=0
62
S Z (), ¥ = 351352‘?(1: + €10 + €2v) -

The first variation ¢; and the second variation %, are given by
Y;(f)[@] ds1dsz = 6(Ai(f) ds1ds2) (@],
HE(F) @, ] dsidsy = 6°(M;(f) dsids2)[9, ).

Then we have the explicit expressions of variations. To give the statement, we
introduce several notations. For a function v on R/LZ, we put

v; =v(s), Av=v—vs.
The operations Q, Q;, S and S; are defined as
Qu=Av, Qw=(-1)""2{v;— Rf-T;)Rv},

|As|Av - 1,, ,
T e R = —
Rv TAflmBs’ v 2('01 + v5),

Sv,w)=7 - Qw+ Qu- Rw, Si(v,w)= Rv + Q;w + Qv - Rw,

Proposition 2.1 We have
_QF-Qp  24()Af-Ad

Y (f)le] = |lA~f||%n~ JlAf”f{n ’
G g - DS Q0+ 0ot % 2M(DAS - B
| 28T e IA7T.
and
H(Pp ) = 229 _ SF.4)5(F,¥)

18713 ~ TAfTR
_M(NIGAL Ay BOWIAS AP 244(H)AG - Dy
1AFTE 1AF T ISP




_Q1¢ - Qo + Qa0 - Q19p

+ gl(.fa ¢)52(f7¢) + 5’2(.f7 d))gl(f)d))
2
2/|Af||zn
_2(DBIASF Ay 2%(NWIAL A 26(F)AG - Ay
IAS (& IAFIzn IAflR-
This is proven as follows. Put
()
‘M = b
D) = 1a7R

then it is easy to see

H(F) = 50F - Qf, M(f) = ~3Guf - Qaf.

Therefore to obtain the expressions of 4, and J#, we need those of variations of
N, |Af||&n, and ds;ds,. Firstly we begin with the variations of basic quantities.

Lemma 2.1 The following first variational formulae hold.
1. ot[p|=¢' — (- ¢')T.
2. O||AT||gn[@] = 247 - AP’ — || AT[[Rn (71 - ¢ + T2 - ).

1 2AF - A
3. 8 (o | 18] = — =2,
(llAfll%’a) ?= A

4. 6(d83)[¢] = Tj . ¢; de.
Since the proof is not difficult, we omit it. As a consequence of this lemma we
obtain
SM(F)P]l = QF - Qb — (T1- 1 + T2 - ¢5)M(S),
SHE)B) = = 5(@f - Qo+ Qaf - Qr) — (r1 - 6+ 72 BH)A().

From Lemma 2.1,

Y(f) (@] dsidsy = 6.4;(f)[p] dsidsy + M;(f) 6(ds1dss) (@]
= {0M,(F)[P] + A(f)(T1- &) + T2 - ¢3)} dsids,,

i.e.,

Y] = 6.M:(F)[@] + A (f)(T1- ¢ + T2 D).
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Now we are in the position to calculate &;. Using Lemma 2.1 again, we have

ot 9191 = I+ ()6 (i) @
_SHM(f)e] _ 24(f)AF - A
IAF IR~ IAF .

Inserting the expressions of d.4;, we obtain Proposition 2.1.
Similarly we can obtain the expressions of J%. See [5]. O

We can show estimates of variational formulae in several function spaces.

Theorem 2.1 We put X = H3(R/LZ) N WY*(R/LZ), and Y = Hi(R/LZ) N
L*(R/LZ). Assume that there ezists a positive constant A such that [|Af|rs 2
AHD(£(51), F(s52))]-

1L If f, ¢, and ¥ € X, then #(f), 4(F)Y], and H#(f)[p, 1] belong to
LY((R/LZ)?). Furthermore there exists a positive constant C depending on

|f Iy and X such that
| A (f)| 21 (w/czy2) S C,

1%:(F) (D)l (=/c2)2) S Clld|ly,
|26(F)[@, Ylllovw/czyr < Clld'llylI¥ ||y

2.If f, ¢, and ¥ € CV(R/LZ), then A(f), 4(f)[W¥], and H(£)|$, 9]
belong to L®((R/LZ)?). Furthermore there exists a positive constant C de-

pending on || f'l|corw/cry, A and L such that
| (F)]| oo/ 2)2) < C,

1%:(£) [@]l| L ((r/c2)2) S Cll@ |00 R/CR),
|58(F) (@, %]l Lo (w/cz)2) S Cll@ || cormyery Y| cor v/ cr)-

5. If £, ¢, and ¥ € CA(R/LZ), then Mi(F), ()], H(f)lp, ] can be
extended on the diagonal set {(s1,s2)|s1 = s (mod LZ)} such that these
functions are continuous everywhere. The limits of sum vanish on the diag-
onal set:

im  (A(f) + #(f)) =0,

(31,32)—)(5,3)

lim )(%(f)[cb] +%(f)[¢]) =0,

(s1,82)—(s,s
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lim )(ﬁﬁ(f)[d% Y]+ H4(f)@,4]) =0.

(s1,52)—(s,s

Furthermore there ezists a positive constant C' depending on || f'||c1(r JLR); A
and L such that
|A:(F)|lco(w/czyr) < C,

1%:(F)[@llco(w/czy2y S Cll@|lorvycr)s
174, Ylllcoqr/czy?) S Clld lcrwycr) ¥ lor v/ cw)-

Estimates in Theorem 2.1 follows from next lemma.

Lemma 2.2 1. For v € X, the following estimate holds:

H 7(f (S?)t,)f(Sz))

< Jv'lly-
L2((R/LZ)?)

2. For v € CYY(R/LZ), the following estimate holds:

” 2(f (S;Q)?f (s2))

< V' |lcorr/cz)-
L~ ((R/LZ)?)

3. Assume v € C*(R/LZ). If we set Qu| = v", then Qv is continuous

everywhere and

s=81=82

“ 2(f (8%?1‘(82))

< ”v,”Cﬂ(R/EZ)-
CO((R/LZ)?)

4. Assume that f € X and that ||[Af|rn 2 A" YH2(F(s1), f(s2))|. Then there
exists a positive constant C depending on || f'|ly and X\ such that

in-
P(f(s1), F(s2))

s Cfv'lly
L2((R/£2)?)

holds for all v € X.

5. Assume that f € CYY(R/LZ) and that ||Af|re = A7YD(F(s1), F(s2))]-
Then there exists a positive constant C' depending on || f'||cosw/cz), A, and
L such that

in
D(f(s1), f(s2))

§ C“v,“COvl(R/EZ)

L=((R/LZ)?)

holds for all v € CHY(R/LZ).
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6. Assume that f € C*(R/LZ) and that f has no self-intersections. For v €
C*(R/LZ), Qv is continuous everywhere by setting Qv =" If
8=81=82

we further assume that ||Af||re 2 X"HD(f(s1), f(s2))|, then there erists a
positive constant C' depending on || f'||crw/cz), A, and L such that

< C”v,”CI(R/EZ)
CO((R/£Z)?)

Qi"-’
D(f(s1), f(s2))

holds for all v € C*(R/LZ).

Proof. Without loss of generality, we may assume that |s; — sp| < %, and we use
|As| instead of D(f(s1), f(s2)) for simplicity. The assetion for Qu is almost the
definition of norms. Indeed, we immediately have

Qv , ,
= ]y ez < I
‘ A || L2/ czy) HER/CZ)
Qu
|z = luip < I llcos ey
L>((R/LZ)?)

If v e C*(R/LZ), then it is easy to see

. Qu "
lim ~— = U (s),
(s1,82)—(s,8) As ( )
and
Qu L [”
‘ = = max v'(s)ds|| = |[Vcrw/cz)-
Slloow/czyzy 188157 11517 82 s, R"

To show the assetion for Q;v, we decompose #in = v, — (Rf-7;)Rv into

v,— (Rf-1;))Rv = (v;—%%) +(—i—:—Rv)+(1-—Rf-‘l‘i)Rv=V1+V2+V},.

We must show L2, L™ and C° estimates for each V;/As. Since these are rather

complicated, see readers should refer [5]. O

We now give the proof of Theorem 2.1. Let Q be Q or Q;. Then we have
Qf Qf
D(f(s1), f(s2)) D(f(s1), F(s2))

2
() S 5

)
R" R™



for both ¢ = 1,2. Similarly, from Proposition 2.1, it derived that

| ; Of Qe
%(F)lell = A D(f(s1), F(s2) |lgn | D(F(s1), £ (52)) |Ign

+ 22144 f>'“ ¢f(82)) Re

of Q¢

DY

D(f(s1), F(s2)) R™ D(f(s1), f(s2)) R®

+ 214 F) | @ llLip-

Let R be R or R, and let S be S or S;. Then the definition of these operations
yields

(v,w)
St ]
_ Quw Qu
e S oy W oo
Qw
5 2 (It | g7 oy Rn+”@<f<sl>,f<S2>> o lle).

Therefore, Proposition 2.1 implies

EAICRY]
— N2(F(s1), £(52)) llwn | Z(F (51), F(52)) lIen
e (nen 00 of |
+ A (Hf”LIP @(f(81),_f(32 “_@ 51) f(Sg)) ”¢”Llp>
| Qv
< (1100 | 57007 77 |+ | T R e )

+ 2X°1%() ]l |19 lluip + 2/\2|54(f)[ Yllllolluip
+ 20 A ()|l 9 lip-

Consequently, the estimates in Theorem 2.1 are easily derived from Lemma 2.2.
If f e C*R/LZ), then Lemma 2.2 yields

lim  (A6(F) + Aa(£)) = 315 (5) e = 51 77(5) n = 0.

(s1,82)—(s,8)

Similarly, we can show that both the limits of 4 (f) + %(f) and J4(f) + 54(F)

vanish. O
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3 The L’-gradient

Theorem 2.1 shows that 6&;(f)[] is a linear form on the space X = H3(R/LZ)N
Wh>(R/LZ). If f € H}(R/LZ), it seems that the first variation can be expanded
into L>(R/LZ) as a linear form by integration by parts formally.

Indeed, the principal term of §&;(f) is

/ / (F(s1) = £(s2)) - (B'(s1) = ¢(s2) o
(R/LZ)?

1 £ (s1) = £ (s2)lIz~

By bi-Lipschitz continuity we replace the denominator with 2(f(s;), f(s2))? and

then
// (f'(o1) = £'(52)) - (@(s1) = F(s2)) o
(R/LZ)? (f(31) f(s2))? ’

= o / (AN f - (~A)igl ds.
(R/LZ)

Here A, = 82 is the Laplace operator with respecto to s, not As = s; — ss.
Integrating by parts formally, we obtain

2 —A)E f - @ds.
w/mw( - pds

It seems to be meaningful for f € H3(R/LZ) and ¢ € L?>(R/LZ). Indeed we can
justify this not only for the principal term but also all terms, including §&,.
Here we define a new operation T in order to describe the L2-gradient of 6&; as

o { |As] )'“Af_ |
Ty '_(IlAfllmn As T TE

Theorem 3.1 Let f € H® and be bi-Lipschitz. Then for ¢ € L?, it holds that

0&(F)[@] = (Lif + Ni(f), @) L2,

where
ork [® 8
Lif = 2m(=A)3f — 43 | =| si(kml)(f, on)z2on + 5 Au(F = F),
keZ
3 8 ok [°
Lof = = 5n(=A)5f +2 3|22 sillknl)(f, e)
kez

128
+ a5 - F),
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si(t) = -/t°° Sil)l\)\ dX, er(s) = —i—exp (2772'165) , }'(s) = f(s+ %),

Nifo) = 2 [ { s (@if mar - »//l(f)m}d32

r/cz | (As)?
_4/11«/52 [//i;if)T2f {//zl(f) - %unl”;}ﬁ] dss,

Na(f)(s1) = —4 /R /LZW{TJ F)TOF + (T2f - 72)T0F ) ds,

_ 1 4 0 0 4
4/11&/1:2 (As)3 [(T frr)Lf+(Gf )L

+2{(TYf - 72) + 1} (T2 f - T1)T{ f] dsy

—4/ L [T"f T — T24f-'rz
R/LZ(

As)3
+2{(Tf - 7o) + 1} (T2f - 71) + TOF - 7
2
- (Ag) ||""1||J%zn} T1ds;
_ 4/MZ [“”iif)Tff + Z1; {//lg(f) + %umnén} ﬁ] ds,.

Furthermore it holds for o € (0, 1) that
IN:(F)llzz = Calll Fllzs-2).

Our strategy for proving the above theorem is as follows. Since C*(R/LZ) is
dense both in H3(R/LZ) and L*(R/LZ), we may assume f and ¢ are sufficiently
smooth. According to the previous section, the first variation 6&;(-)[-] can be

expressed as

¢ / ¢] dsidsy
(R//.‘,Z)2

—Z//(/ y Gii(f, d)(s1, 52) ds1dsz,
R/LZ

where
_ Quf - Qud+Quf - Qued
2U,(F)AF - A
Gz2(f:¢):— I(li)f”.%in ¢a

Qu=Qu=0Q, Qyv= 2{'02; ~ (Rf - T;)Rv}.



We decompose these operations Q;; as Qi;v = Q;;v + Q;;v, where

Qu=Q;y=Q, Qi;=0, Q2j0=2<v—£)

~ Av
(@25v = 2{As

and then we have

zlf:

Gm(.f, 4’) =
G’ilZ(.fa ) =

213 (f ¢)

As
|As|

(rf-m)Ro} ~2{1- (Rf -7

Z Gllk f’

Qilf Qi + Qi f - Qud
2(As)? ’
}‘-///(f)(Qilf - Qi + Qiaf - Qzld’)

Qzlf Q'L2¢ + Qzlf Q12¢ + Qzlf Qz2¢
2| AF|§n

IAS g~

Qz?f Qzld’ + QzZ.f Qzl¢ + Qz2f Qzl¢

2| Af Iz

Av
As’

92

Gi11 is linear with respect to f, however, G;12, Gs13 and G;o are not. Then we

// Gm(f, ¢) dsidsy = (Lz'f, ¢>L2,
(R/LZ)?

would like to write

// (Gaa(F, @) + Gas(F, @) + Gio(F, @)) dsidsy = (N(f), @) 12
(R/LZ)2

where L; and N are linear and nonlinear operations from H?® to.L? and to estimate

them.

For the linear parts L; we use the Fourier expansion

F=) oo, ¢=) wiby

keZ keZ

where {¢} is a complete orthogonal basis of L?(R/LZ). Using

e = T nls) and ulo+ ) = exo (20 ) ),
we have
F(s1)— fl(ss+h)= keZZ 2727‘3 {1 —exp (27rzkh> } r(s1)ak,
¢'(s1) — @' (s1+h) =) 2mik {1 — exp (%Zkh) } i (s1)br



Consequentlty the orthogonality implies

/ / Gui(f, @) dsids,
(R/LZ)?
— / /% (f'(s1) — f'(s1+ h)) - (@'(s1) — @'(s1 + h)) dhds,
R/LZ J - |

h2
amk\? [ % 1—cos (322)
% (%) {/ oy derlan b
keZ Y 2
onk|® el 1 — cos A
= 22 T ([Wlk’ —AT— d\ <ak-,bk>(c.
kE€Z

Similarly we have

// Goni(f, @) dsids,
(R/LZ)?
B Z 8 [/’lel 4{\?cos A — 2Asin A + 2(1 — cos \) }

4
keZ 7|k| A

2k
L

Thus we arrive at

ork | i
Lif = Z A / Zz()‘) dA (f, ‘Pk)L?(R/LZ)SOk,
kez —mlk|
where
2(1 —cos A 4{)\%cos A — 2Asin A + 2(1 — cos \)
A =202 0= X 5 L

It is not difficult to see

k|
/ (V) d\ = a; (0 + 2si([kn])) + 263l |2 (o),

—7|k|

where
=2, by=—-1, aa=—=, b= —3

From the definition of z; it follows

_ 2{1 —cos(jkm|)} _ 2{1 - (-1)¥}

rfs () = 20l 2 LN,
Ve 25(|for|) = 4[—|kr|? cos(|km|) + 2|k7r||ks71:|1§|k7r|) — 2{1 — cos(|k~|)}]

_ ==Lk — 21~ (~1)}}]
PZE |

d)\:l (a,k, bk>C

93



94

Combining these with
Z(f, Pr) 2w/ czypr = f,

keZ
ok |?

2T

kEZ
Z(—l)k(f» Solc)L?(lR/CZ)(Pk = }',
kez
ok |?
L

(f, o) 2@®/czyor = — Asf,

(—1)5f, ox)r2w/czyor = — AF

2

keZ

we obtain the expressions of linear parts L; as in Theorem 3.1.
Since the derivation of nonlinear parts IN; is much more complicated, we give
only the sketch. For detail, see [6).

We use G(f, @) as one of Gi1x(f, @) (k = 2, 3) or Gio(f, ¢) and they have in
the form

G(f,8) =G,(f) A" +G,(f) - Ad + G (f) - ¢'(s1) + G, (f) - ¢ (s2)-

The following is obtained from an easy calculation.

Lemma 3.1 The following relations hold.

1.
// 5 81,82 ,(81)d81d82
/ (C(5,5+¢) = C(5,5 &) - B(s) ds
R/LZ
- //Isl—szlge (,%1 (81,82) - (1) ds1ds;
2.
//l 5 C(s1,82) - @' (s2) dsydsy
[ lsres) = cls—es) - o) ds
R/LZ
—_ //,‘gl—szlge 8152((81,82) . ¢(.S‘2) d81d82
3.

// ¢(s1,82) - Apdsidsy
[s1—s2|2€

B //|s1 oal2e (€(51,82) = €(52,51)) - B(s1) ds1ds2



//l > C(s1,82) - A’ dsidsy

N /HQ/LZ(C(S’S+8) ~((s+eg,8)—¢(s,s—¢)+C(s—¢,5)) - ¢(s)ds

et o gl
|s1—s2|2e OS1

From Lemma 3.1, we obtain

// G(f,¢) d81d82
(R/LZ)?
=81_if£0/41 . G(f, 9) ds1ds,
= lim - A¢'dsid +// - A¢pdsid
e—+0 (//|;1 S2|>5 d) 1052 s1— S2|>5 @ dsidsy
// C(f 81)d81d82
|s1—s2|2e
wff L Gals) @) dnas)

=i { [ @t -G, +e
“Gu(f)(03= 0= Gylf)o =10 900
] g Calfon ) - G (), 50) - B

//I el (G B(f)(81,$2) G (f)(SZ,Sl))'¢(S1)d81d52
+/ (Gc(f)(S S+€) c(f)(5>5_5))'¢(8)d8
R/LZ

//I ~52]2 531 Go(F)(s1,52) - ps1) dsids,
—I-_[REZ(GD(f)(S—f—s 8)—G,(f)(s—¢€,9)) @d(s)ds

//lsl—-sng 882 81’ 82) ) ¢(32) dsldsz}
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Here we shall prove that if f € H3, then

0= [[ {75 Eem) - C) o)

+G5(F)(s1,52) — G5(F) (52, 51)

0 0

- Gl F)on52) = G50 - Bs) s

=)

holds. Furthermore, we shall check that

N = [

R/LZ

{5 GuDE5) = G(A)sa )
+GB(f)(87 32) - GB(f)(S27 3)
0 0
- 35 Gelf)(o152) = 2 Go(f)(on,5) | i

is well-defined at #*-a.e. s € R/LZ in order to use Fubini’s theorem which induces
0= [ NI 9(e)ds = (N(), raasear

We also shall show that IN(f) is a lower order term whose order is less than 3
and

IN(H)llzz £ CIFlls-«, A).

We use N, or N, as counterparts of N when G = Gj1x or Gjo, respectively.
Here we give a detail for N1;5 only. For this we need the following facts. We
omit their proofs.

Lemma 3.2 Let & € L*®. It holds that

T'f = O(As), TPf-7(s;) = O(As)?, TOf- %{ = O(As)?.
Suppose that f is bi-Lipschitz and kK € L*. Fork 2 1,
THF = 0(8s), THF-7(s)=0bs) ThF- 2T = 0(asy

holds.
Lemma 3.3 It holds that

0 _2(=1)
a_sj (f)— (AS)3T']'f'T(s]')'
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It is easy to see

Gua(f, ¢) = g112(f) - A¢,

where

9112(F)(s1,82) = A (F)AS'.

In what follows, we denote g1,5(f)(s1, 52) by g115(s1, 52) in short.

Lemma 3.4 Leta € (0,3). If f € H>*(R/LZ),

// an(f, ¢)(31, 82) ds dsy = <N112(f)a ¢>L2
(R/LR)?

follows, where

Nua(F)(s1) = 2 /R /LZ{ (T Tle)ar - J/{(f)n(sl)}dSQ,

[N 12(F)llze = O £ || o).

Proof. Using Lemma 3.1, we have

// > Guz f, )d81d82
|s1—s2|2e

// 9112(f) - A@' dsids,
|s1—s2|2€

=/ (g112(5,5+€) — g112(s +¢€,5)
R/LZ
— G112(8,8 =€) + g112(s — €,8)) - P(s) ds
0
- // 5‘(9112(51’ 82) = G112(52,51)) - @(s1) dsids;
|s1—s2|2e OS1
= (*).
Remarking that
g112(51,82) = M(F)AS = M (f)AT = O(As),
we show
9112(8, 8+ &) — g11a(s + ¢, $) = G112(8,5 — €) + g112(s — €, s)=0() (e—0).

O(e) is uniform with regard to s € R/LZ, and in what follows, we use this notation
in this meaning. Since

9112(51,82) — 9112(82, 81) = 2-///(f)AT
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holds, we use Lemmas 3.2-3.3 and then we have

0
g{gnz(sla s2) = a2, 81)}

(a/;/(f)A +%(f)3A;r)

(- s B (o)AT + (D))

(AS -—3+2+1+0( )
O(1) as As—0

which insists ———-{9112(51,52) — g115(82,51)} € L®((R/LZ)?). Therefore it is ab-

solutely mtegrable and then we use Fubini’s theorem in order to get

)= — /(/ { A)a(T“f T(s1)) AT +.H(f )n(sl)}-¢<s1>dsldsZ

= /IE;/CZ {2 /R/LZ { (A2.9)3(T14'f - 1(81))AT — //{(f)n(sl)} dszJ, - ¢(s1) dsy
= (N112(f), ) 2

by tending € — 40 in (*). Since
[kllzee = | F |z = Call £l mo-«

for a € (0, %), the bound of the integrand of N follows from Lemma 3.2. Thus

we have

IN112(F)llz2 = C|| f || m3-a-
O

Though the proof is complicated, a similar result holds for Gg12. Since G113 = 0,
we have nothing to do. We must deal with Gq;3 very carefully. It is decomposed

as

G213(f, ¢) = GzlaB(f) A + G2130(f) ’ ¢’(31) + G213D(f) : ¢I(82),



where

Gasp(f) = m {(Tff -7 (s1)) (Tof + if)

+ (T3 7)) (1854 5L ~

+2<Tff-r(sﬁ)(T;f-r(sz))i—f},

Gasc(f) = _H—A_;E(Tgf : 7(32))%,
> Af
G213D(f) HAf”Q (T I T(Sl))As

Since calculations of Ga135, Gai3c, Gaisp are not closed in each term to recover
the absolute integrability, we have to combine them appropriately. We need a
simiar treatment for G, but the stuation is less serious than that of Gg3. For
details, see [6]. O
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