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Abstract

Some aspects of Golden-Thompson type inequalities for a boson system with finite
degrees of freedom are reviewed. Then a general class of boson-fermion systems with
finite degrees of freedom, including supersymmetric ones, is considered. Functional
integral representations for the partition function as well as related objects of a boson-
fermion system are derived and applied to obtain Golden-Thompson type inequalities.
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1 Introduction: Some Backgrounds and Motivations

1.1 Partition function in quantum statistical mechanics and an abstract
Golden—Thompson inequality

As is well known, a fundamental object in quantum statistical mechanics is the partition
function
Z(B) = Tre™H,

where 3 > 0 is a parameter denoting the inverse temperature (i.e., §:= 1/kT with k > 0
and T' > 0 being respectively the Boltzmann constant and the absolute temperature), H
is the Hamiltonian of the quantum system under consideration (mathematically a self-
adjoint operator on a complex Hilbert space such that e ## is trace class) and Tr denotes
trace. One of the important physical quantities derived from the partition function is the
Helmholtz free-energy function

F(B) =~ 1og 2(6).

If there exists a constant By > 0 such that e 0 is trace class, then, for all 8 > o,

e PH ig trace class and
Jim F(§) = Eo(H) i= int o(H), (1.1)
—00

where o(H) denotes the spectrum of H. The number Eyz(H) is called the ground state
energy of H. Hence the Helmholtz free energy function approaches to the ground state
energy of the quantum system under consideration as the absolute temperature tends to
ZEero.

If there exists a constant Cg > 0 depending on 3 such that

then 1
F(B) 2 “EIOgCﬁ'



Hence a lower bound for the Helmholtz free-energy function is obtained from an up-
per bound for the partition function. Similarly one can obtain an upper bound for the
Helmholtz free-energy function from a lower bound for the partition function. Therefore to
estimate the partition function from both above and below has some physical importance.
This leads one to consider inequalities for Tre~#H . Historically one of such inequalities
from above was discovered independently by G. Golden [10] and C. J. Thompson [18] (cf.
also [17]) in the case where H is of the form H = Hy+ H; with Hy and H; being Hermi-
tian matrices. Since then, the inequality is called the Golden-Thompson (GT) inequality.
Nowadays a general form of it is established:

Theorem 1.1 Let Hy and Hiy be bounded below self-adjoint operators on a Hilbert space
such that H := Ho+ H, is essentially self-adjoint and e~ PHL/2g=BHo=BH1/2 45 troce class
for some B> 0. Then e PH is trace class, where H denotes the closure of H, and

TrePH < Tr (e_'@HOe_'BIﬂ) (1.2)
For a proof of this theorem, see, e.g., [13, p.320] and [15].
Remark 1.2 Under the assumption of Theorem 1.1, e #Hoe=BH1 is trace class and

Tr (e-ﬂH1/2e—ﬁHoe—ﬁH1/2) - Ty (e—ﬂﬂoe—ﬁH:L) .

Remark 1.3 If Hy and H; are strongly commuting (i.e., the spectral measure of Hop
commutes with that of H;), then the equality in (1.2) holds, because, in this case, e #H =
e PHoe=PH1 for all B > 0.

Remark 1.4 (An upper bound for F(3)) It is obvious that Z(8) > doe PEo(H) where
do = dimker(H — Ey(H)), the multiplicity of the eigenvalue Eo(H). Hence

F(B) < Eo(H) — %logdo.

1.2 A GT inequality for a Schrédinger operator

As a simple application of Theorem 1.1, we briefly discuss a Schrédinger operator and
point out some “defects” of the GT inequality in this case.
Let us consider the quantum system of a non-relativistic quantum particle with mass
m > 0 and without spin in the n-dimensional Euclidean vector space R™ (n € N) under
the influence of a Borel measurable scalar potential V' : R® — R. Then the Hamiltonian
of the system is given by the Schrodinger operator
h2
Hy  =——A+YV (1.3)
2m
acting in L2(R™), where % > 0 is a parameter denoting the Planck constant h divided by
2w (h:= h/27) and A is the generalized Laplacian acting in L?(R™).
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Suppose that V is in L2 _(R™),! bounded below and Jgn e PV @) dz < oo for some § > 0.
Then Hy is essentially self-adjoint on C§°(R™) [12, Theorem X.28] and bounded below.
Let

Then T = §*S with )
S = e_%Ae_ﬂTv.
We recall that, for all ¢ > 0, the bounded self-adjoint operator e!” is an integral
operator on L%(R™) with the integral kernel
1 —le—yi?/a

eey) =

R"™. 1.4
(@nt) 2 ) TYE (1.4)

For a proof of this fact, see, e.g., [12, p.59, Example 3].
It follows from (1.4) that S is an integral operator on L?(R") with the integral kernel

d/2 2 ‘
m mjr — - n
k(z,y) = (ﬂ'fﬂﬂ) exp (_ |n2ﬁyl ) e PV W)/2, z,y € R",

ie.,

Sf@) = [ K@nfwi, feX®), s R

d/2
2 _(_™ -8V (y)
/RanRn |k(z,y)|“dzdy (27r,3h2> /n e dy < oo.

Hence S is Hilbert—Schmidt. Therefore T is trace class and

d/2
m —
ke, Pdody = (575 ) [ e Oay,

where || - ||2 denotes Hilbert-Schmidt norm. Thus one can apply Theorem 1.1 to the case
where Hy = —h%2A/2m and H; = V to obtain

_ d/2
Tre PHv < ( 27:2712) / ne_ﬂv(y)dy. (1.5)

Hence

TeT = |IS|3 = /
R

Note that the right hand side is written as follows:
d/2
_m_ V@) gy = L / —BHY (=)
(5m) o= Gt forne dadp,

2
H{}(z,p) = 2p—m +V(z), (z,p) €R"xR",

where

ILP

loc

(R™) := {f : R® — CU {£o0}, Borel measurable |VR > 0, flw|<R |f(z)|Pdz < oo} (p > 0).
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is the corresponding classical Hamiltonian. The classical partition function Zf}(ﬂ) is de-
fined by
1 cl
ek [ e,
)= G e

Tre v < Z3(9). (1.6)
This is sometimes called the GT inequality of the Schrodinger operator Hy .

Thus we arrive at

Remark 1.5 Inequality (1.6) can be derived also by using functional integral methods
and extended to a more general class of V' (see, e.g., [6, Chapter 4] and [14, Theorem 9.2]).

Now it would be natural to ask when the equality holds in (1.6) or equivalently in
(1.5). In the case V = 0, the equality in (1.5) holds with the both sides being infinite, but
this is meaningless.

From a quantum mechanical point of view, the case where

" mw?
V(m)zVos(x)::Z 23 ?, r=(x1,...,2,) € R,
j=1

an n-dimensional harmonic oscillator potential with w; > 0 (j = 1,...,n) being a constant,
should be examined if it gives the equality in (1.6).

Example 1.6 Let
e— — J 2
Hy := Hy,, =3 A+ zj. (1.7)

It is well known that H is self-adjoint and

n

0(Hos) = 0p(Hos) = Z (k + )hw ’kl, .. kn € {0}UN 5,
j=1

counting multiplicities, where, for a linear operator A on a Hilbert space, o,(A) denotes
the point spectrum (the set of eigenvalues) of A. Hence it follows that, for all 8 > 0,
e~PHos ig trace class and

n n
1
Tre P = ] —0ob =[] ———
jIZIl 1 — e=Phe; H 2sinh 24

On the other hand,

) - ( >d/2n/ —Bmww/2dx.=ﬁ 1 =H 1
2 2mBh2 T B g Bhw; *

Since sinh y > x for all x > 0, it follows that
Tre #Hes < 78 ().
Thus the equality in (1.6) does not hold in the case V = V.
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It would be desirable to have a GT type inequality which attains the equality in the
case where V = V. Indeed, this can be done if we take the unperturbed Hamiltonian to
be the Hamiltonian of a quantum harmonic oscillator:

HOS(V) = HOS + V = HVOS+V' (1.8)

We will come back to this point later (see Section 2).

Another “defect” in (1.5) or (1.6) is that it is not of a form which indicates an infinite
dimensional version (heuristically the case n = 00), since there is no infinite dimensional
Lebesgue measure.

We remark, however, that, as for Schrédinger operator cases, a unified general formu-
lation including both finite and infinite dimensional cases and overcoming the “defects”
mentioned above was given in [3], where functional integral representations are established
for the trace of objects related to e #H with H being a self-adjoint operator on the boson
Fock space over a Hilbert space 3, which, in the case dim H = oo, may be regarded as
an infinite dimensional Schrédinger operator, and GT type inequalities are derived. In
these GT type inequalities, the equality is attained in the case where H is a free field
Hamiltonian (a harmonic oscillator Hamiltonian in the case dimH < oo) as desired.

1.3 Supersymmetric GT inequalities

In a paper [11], Klimek and Lesniewski considered a model in supersymmetric quantum
mechanics (SQM) and, using a functional integral representation for the partition function
of the model, derived a GT type inequality. This is an extension of (1.5) to the case where
Hy is replaced by a supersymmetric Hamiltonian. For the reader’s convenience, we briefly
review the supersymmetric GT inequality by Klimek and Lesniewski.?

Let n,r € N. The Hilbert space of a boson—fermion system is given by

Fnr = L*(R™) ® A(CT), (1.9)
with A(C") being the fermion Fock space over C":
ACT) = &g AP (C7) = {3 = (¥P));olv® € AP(CT),p =0,1,...,7}, (1.10)

where AP(C") is the p-fold anti-symmetric tensor product of C".
Note that L?(R™) = @™ L?(R). Moreover,

L*(R) 2 F(C) = {¢ = {¢M1520|¢W € C, k20, |6WP < oo} :

k=0

the boson Fock space over C. Hence L%(R") & ®@"F},(C). In this sense, L2(R™) can be
interpreted as a Hilbert space of a quantum system consisting of bosons of n kind without
space degrees. In the present paper, we take this point of view, keeping in mind possible
infinite dimensional extensions.

2In Section 6 in the present paper, we briefly describe a general mathematical framework of SQM. For
physical aspects of SQM, see, e.g., [8].



One has the following natural isomorphism:
52
Fr & LR A(CT)) 2 / A(CT)dz, (111)
Rn

where L2 (R“ A(CT)) is the Hilbert space of A(C")-valued square integrable functions on
R™ and f]R" (CT)dz is the constant fiber direct integral over R™ with fiber A(CT).

Let b; (j = 1,...,7) be the linear operator on A(C") such that its adjoint b} is of the
following form:

G D =0, BY)P = pA(e; @9PY), YeAC),1<p<rj=1,...,7,
(1.12)
where {e;}7_,; is the standard orthonormal basis of C". The operator b; (resp. b}) is called
the j-th fermion annihilation (resp. creation) operator on A(C"). It follows that

{bjabZ}: ik >{bjabk}:0a {b;abZ}:Oa hk=1,...,m

where {A, B} := AB + BA, the anti-commutator of A and B.
The Hilbert space of a supersymmetric quantum system is given by

Hp = gn,ny (1'13)

Fnr with the case r = n. In this case, Klimek and Lesniewski [11] consider the following
supersymmetric Hamiltonian:

2
Hyr, = —h—A - ZAP+ S|VPP? + Z (050, P) bl by,
7,k=1
acting in H,, where P is a polynomial of zi,...,z,, (z1,...,2,) € R*. They derived the

following GT type inequality:

Tre~fin < 1 det(I + e PVEVP@)~F(VP@F-PAP@) g (1.14)

~ @2np)2hn Jr
for all B > 0, where V ® VP(z) (z € R®) is the n X n matrix whose (j,k) component
is equal to 0;0,P(z) (j,k = 1,...,n) and, for an n x n matrix M, det M denotes the
determinant of M.

In this case too, it is interesting to ask when the equality is attained in (1.14). But,
as shown in the next example, the equality in (1.14) is not attained in the case of a
supersymmetric quantum harmonic oscillator, one of the simplest models in SQM and a
finite dimensional version of a free supersymmetric quantum field model. In this sense,
the inequality (1.14) is somewhat unsatisfactory.

Example 1.7 (A supersymmetric quantum harmonic oscillator) Consider the case where

1 n
P(z) = 3 Zwi:vg, z €R"
i=1
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with constants w; > 0,7 =1,--- ,n. Then Hky, takes the form
H, := Hos + Hy, (1.15)

where

flw = g A= 3 Yo 3 Yol
m:ijb;bj.
j=1

Note that the operator Hys is the Hamiltonian Hes — %iz?:l w; with m =1 (see (1.7)).
Hence

U(ﬁos) = Up(ﬁos) = {ijhwjlkj e {0}UN,j=1,...,np,
j=1

counting multiplicities. Therefore, as in Example 1.6, we have

1
[Tjoy (1 —e7Phs)”

TrePHos — (1.16)

It is well known or easy to see that

O'(Hf) = o'p(Hf) = {ijﬁw|k1,. . .,kn e {0, 1}} s
=1

counting multiplicities. Hence

n
Tre #H = [ (1 + e_'@ﬁ“’f) .
i=1

Therefore, for all 3 > 0, e~?H is trace class and

Tre e — (Tre o) (Tre?1t) - H e = ﬁ "

Let

1 _B 2_
e ~BRVV P(z) (IVP(z)|2~RAP(z))
Ip(B) := B PR Jge det(I +e Je 2 dz
Then (1.14) takes the form

Tre PHxL < [p(B).



In the present example, we have

P = (wjxj);;l, VQVP = (Wjéjk), AP = ij.

j=1
Hence
Ip(B) = W/ﬂ fII-}-e“ﬁh“’j) e B i1 Wizl /24BR T wi/2 4,
j=1
B n_cosh ﬁi;wj
- j=1——B—2h;)—j-—.

But, since sinh x > x for all x > 0,

Bhw
3 ﬁwj cosh
coth 5 < B,
2

Hence
TrePHe < Ip(B).

Thus the equality in (1.14) does not hold.

From a quantum field theoretical point of view, it would be desirable to find a GT
type inequality which has the following properties:

(i) It attains the equality in the case of supersymmetric quantum harmonic oscillators.
(ii) It can be extended in natural way to an GT type inequality in infinite dimensions.

This is one of the motivations for this work.

2 A Unification of GT Type Inequalities for a Boson System

Before discussing boson-fermion systems in general, we first present a unification of GT
type inequalities for a boson system whose Hilbert space of state vectors is L? (R™).

A new idea here is to take, as an unperturbed operator, a self-adjoint operator Hy, on
L%(R™) bounded from below such that e=PHe (3 > 0) is an integral operator with an integral
kernel Kg(x,y) (z,y € R™) which is strictly positive, continuous in (z,y) € R™ x R™:

Ks € CR" xRY), Kp(z,9)>0, (z,y) €R"xR", (2.1)
e‘ﬁHbf(m) = / Kp(z,y)f(y)dy, fe€ L2(R"), B3>0, aexecR". (2.2)
R'I’L
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Let V be a real-valued Borel measurable function on R", bounded below, and
Hy(V):=Hp+YV, (2.3)

acting in L%(R").
The following conditions (A.1)—(A.2) will be needed:

(A.1) The operator Hp(V') is essentially self-adjoint.
(A.2) :

/ Kgo(z, y)ze_ﬁv(y)dmdy < 00, (2.4)
where 8 > 0 is a constant parameter.

We denote the set of trace class operators on a Hilbert space X by J;(X).
A basic fact on Hy, and V is given in the following lemma:

Lemma 2.1 Under condition (A.2), e #V/2e=PHoe=BV/2 ¢ 3,(L2(R")) and
Tre—BV/2¢~BHo —BY/2 _ / Kp(z,z)e PV @dz. (2.5)
IR‘II

Proof. Let
A= e PV/2=PHo =BV /2

Then A = B*B with
B = e PHu/2,-BV/2

It is easy to see that B is an integral operator on L?(R") with the integral kernel
kB("L',y) = Kﬁ/Z(may)e_ﬂV(y)ﬂa z,y € R™.

Hence

[ syldndy= [ Kopop/e®®dy < oo,
R”xR" R xR"

Hence B is Hilbert~Schmidt. Therefore A is trace class and
TrA=|B|3 = / |k (z,y)*dedy = / Kgo(z, )%~V @dzdy
R” xR™ Rr xR"

We note the following facts:
(Hermiticity) Ki(z,y) = Ki(y,z), t>0, (z,y) € R® x R?, (2.6)
(chain rule) / Ki(z,y)Ks(y, 2)dy = Kyys(z,2), s,t>0,z,z€ R*. (2.7)

Rn

X

Using these facts, we have

/ Kpgjo(w,y)2e PV Wdady = / Ks(y,y)e P ®dy.
R7 xR"” R”

Hence (2.5) follows. [

10



41

Theorem 2.2 Under conditions (A.1) and (A.2), e~PHe(V) ¢ J,(L2(R™)) and

’I‘re_ﬂHb(V) < Kﬂ(w,x)e—_ﬂv(w)dx (28)
R™

Proof. By Lemma, 2.1 and Theorem 1.1, e #He(V) is trace class and

Tr e~ BHb(V) <Tr e~ PBV/2o—BHy ,—BV/2

By this inequality and (2.5), we obtain (2.8). |

Remark 2.3 By a limiting argument, one can extend (2.8) for a more general class of V.
But, here, we omit the details. The same applies to statements below.

If e=PHo € J) (L*(R™)), then [g, Kg(z,z)dz < oo and

Tre PHe = - Kg(z,z)dz. (2.9)
Hence, if e 8Hv ¢ J;(L%(R™)), the equality in (2.8) with a finite value is attained in
the case V = 0. Moreover, if we take Hy = —h?A/2m (in this case, for each 8 > 0,
e PHo ¢ 3;(L%(R™))), then (2.8) yields (1.5) (see Example 2.4 below). In these senses,
(2.8) improves and generalizes (1.5). From a structural point of view, inequality (2.8)
gives a unification for known GT type inequalities.

Example 2.4 A simple and elementary example is given by the case where

2
o =-1 A
2m

In this case, we have by (1.4)
m n/2 2 2
Kp(z,y) = (Tﬁh?) o—mla—yl?/2028.
Hence (2.8) gives (1.5).

Example 2.5 A next example of Hp one may have in mind is the Hamiltonian of a
quantum harmonic oscillator:

-~

Hy = Hos.

We already know that e~PHos is trace class and (1.16) holds. Moreover, as is well known

(e.g., [9, Theorem 1.5.10], [14, pp.37-38]) e~ Hos (B8 > 0) is an integral operator with the
integral kernel

Qs(z,y) =[] QY (@j,95), z=(21,-.., @),y = (¥1,-..,¥n) ER?, (2.10)
i=1

11
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where
. hw;B )
G (. ) — wjeé _Yi2y 2 .
95" @¥) = A Grsinh by p( oh (% Tt s) coth iy
+hsinhhwjﬁxjyj>, (zj,y;) e R xR, (2.11)

It is easy to see that

i Wi h“;jﬁ 2
o(z,2) = H 271'hsmhhw ﬂexp B h %)

Hence (2.8) gives the following GT type inequality:

I hord tanh w8
—B(Hos+V BV wje 3B wj tanh -~
Tr e FHa+V) < / )H Tk gE i E (——h—-—xj de.  (2.12)

We also note that taking the limit w; | 0 (j = 1,...,n) in (2.12) recovers (1.5) with
m = 1. In this sense too, (2.12) is a generalization of (1.5) and a better inequality.

A unification of Examples 2.4 and 2.5 is given in the following example.
Example 2.6 Consider the case where
H b= TI—U y

the Schrodinger operator given by (1.3) with V = U. Suppose that U is continuous on
R"™ and bounded below. Then, using a functional integral representation with a Brownian
bridge, one can show that, for all 3 > 0, e ~PHU i5 an integral operator with a non-negative
continuous integral kernel e=#HU (z,y) (see, e.g., [6, Theorem 4. 43], [14, Theorem 6.6]).
Hence, in the present example, (2.8) gives

Tre~AHUHV) 5/ e PHY (3, 1)e~ PV (@ dg, (2.13)

n

provided that Hy + V is essentially self-adjoint and the integral on the right hand side of
(2.13) is finite.

3 Applications

GT type inequalities can be applied to study spectral properties of a self-adjoint operator.
Let A be a self-adjoint operator. For each F € R, we define

Ne(4) = #{\ € op(A)|A < E},

the number of the eigenvalues of A less than or equal to F, counting multiplicities.

12



Lemma 3.1 If e P4 is trace class for some 8 > 0, then
Ng(A) < Tre PA4-8) (3.1)
independently of 3.

Proof. Let {\,}n be the set of distinct eigenvalues of A with A\; < Ay < --- and m; be
the multiplicity of A\;. Then

Tlre—,@(A—E) > Z mje—,@(}\j_E) > Z m; = NE(A)
)\jSE AJSE

Theorem 3.2 Under (A.1) and (2.4) for some 3, the spectrum of Hy,(V') is purely discrete
and, for each E € R,

NeET) < [ Kolo.a)e™ VO Pa (3.2)

Proof. The discreteness of the spectrum of Hy, (V) follows from that e ##o(V) is trace

class and hence compact. Inequality (3.2) follows from Lemma 3.1 with A = H,(V) and
(2.8). |

Remark 3.3 Assume (A.1) and that (2.4) holds for all 3 > 0. Then (3.2) implies a more
refined inequality:

Ng(Hp(V)) < inf/ Kp(z,z)e PV@-Eldg (3.3)
£>0 R”»

Theorem 3.4 Assume (A.1) and that (2.4) holds for all 8 > (o with some By > 0. In
addition, suppose that the following hold:

(i) For some E € R, V(z) > E a.e. z € R" and

ﬁlim Kﬁ(x,:c)e"ﬂ(v(m)"E) =0, aexeR" (3.4)
—00
(ii) There exists an integrable function g > 0 on R™ satisfying

Kg(ac,m)e_'@(v(x)_E) <g(z), B> po,aexecR" (3.5)

Then

inf o(Hp(V)) > E. (3.6)

13
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Proof. For all 8 > [y, (3.2) holds. By (i) and (ii), we can apply the Lebesgue dominated
convergence theorem to obtain

ﬂlim Kp(z,z)e PV@-Elqg — 0.
—00 R"

Hence, by (3.2), Ng(Hp(V)) = 0. This implies (3.6). i

Remark 3.5 In general, for a self-adjoint operator A bounded below, Fy(A) := inf ¢(A)
(the infimum of the spectrum o(A) of A) is called the ground state energy of A. Hence,
under the assumption of Theorem 3.4, (3.6) gives a lower bound for the ground state
energy Eo(Hp(V)) of Hp(V):

Eo(Hp(V)) > E. (3.7)
To consider a meaning of (3.7), let Hy, = —h?/A/2m. Then

Hy(V)=Hy

with V € L2

loc

(R%) bounded below satisfying
/ e V@ < 0o

for all B> o (Bo > 0 is a constant). Then (A.1) and (2.4) with 8 > o hold. In this case

we have by Example 2.4
m n/2

Suppose that V(z) > E for a.e. z € R®. Then the assumption of Theorem 3.4 is satisfied.

Hence (3.7) gives
Ey (Hv) > E.

Suppose that, for some =g € R™, V(zo) = E. Then the classical ground state energy
2

. D
= f
Ecl a:,;IEIR" <2m

+ V(a:))

is equal to E. Hence
Eo(Hvy) > Eq.

This means that the quantum ground state energy is more than the classical one. This
phenomenon is called the enhancement of the ground state energy due to quantization. In
a previous paper [4], the enhancement of the ground state energy is discussed by a different
method which makes it possible to treat a more general class of potentials V.

14



4 Functional Integral Representations for a Boson System

In this section we consider a generalization of functional integral representations for a
boson system derived in [7]. The idea for that is to use a conditional measure associated
with the heat semi-group {e #Hv} 4.

For convenience, we define

Ko(z,y) :==d(z —y), (4.1)

the n-dimensional Dirac’s delta distribution.
Let R = R U {oo} be the one-point compactification of R and

Q:={w:[0,00) — R"}, (4.2)

the set of mappings from [0, c0) to R™. For each ¢ € [0,00) we define a function ¢(t) =
(q1(2),...,qn(t)) : 2 = R™ by

0 ifwj(t)=00

%(H) ::{ wit) ifw;(t) ER (43)

where w(t) = (W1(t),...,wn(t)) € R%t > 0. Let B be the Borel field generated by

{g;(®)i=1,...,n,te[0,00)}.

Lemma 4.1 Let 8> 0 and a,c € R™ be fized arbitrarily. Let 0 <t} <te <. <t, <.
Then there ezists a probability measure Py .5 on (§2,B) such that the joint distribution of

(q(t1), -+ ,q(tn)) is given by
Kg(a,¢) Ky, (a,71) Kpy—t, (T1,22) - Kty —t_ 1 (Tr—1, Tn) K g—t,, (T, €)dz1 - - - A
Namely, for all Borel sets B C R",
Foep({w € Ql(q(t),. .-, q(tn)) € B})

= ./; Kﬁ(aa C)_thl (a, xl)th——t], (331,(1:2) e Ktn—tnﬁl(mn—lyxn)
XKﬂ—tn (xn, c)dxl v da:n. (4‘4)

Proof. This follows from a simple application of Kolmogorov’s theorem (e.g., [14,
Theorem 2.1]). For a proof, see [6, Lemma 4.40]. 1

We define a finite measure p, .5 on (2, B) by
dua,c;ﬂ = Kﬂ(a’7c)dPa,c;ﬂ- (45)

Note that
/1 dpz gy = Kp(z,y), =,y € R™ (4.6)
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Remark 4.2 In the case where Hy = H, so that Kga(z,y) = Qa(x,Y), tacp is called a
conditional oscillator measure. This measure is used in [7] to derive functional integral
representations for a boson system.

In what follows, we assume the following:

(A.3) For all 8 > 0, e b is trace class.

(A.4) For all real-valued functions V on R™ which are in L2 (R"), Hy(V) is essentially
self-adjoint on C§°(R™).

For a complex Hilbert space X, we denote by (:,-) and || - || the inner product (linear
in the second variable) and norm of X respectively. We denote by L®(R"™) the set of es-
sentially bounded Borel measurable functions on R™ and by || f||eo the essential supremum
of f.

We first derive trace formulae concerning the heat semi-group {e=#¢|3 > 0}:

Lemma 4.3 Assume (A.8). Let 0 <t) < - <ty < f and fj € L°R"™) (j =1,...,m).
Then e~tb fle—(tz—t)Hs f, ... £, o=(B=tm)Hb 5 i 3 (L?(R™)) and

Tr (e—tlefle"(tZ—tl)Hbf2 . fme—(ﬁ—tm)Hb)
= [ do ([ flatt) -+ fmlattmbzzi ). (@)
Proof. Similar to the proof of Lemma 3.1 in [7]. |

Using this lemma, one can derive a functional integral representation for Tre BAHp(V),

Theorem 4.4 Assume (A.8) and (A.4). Suppose that, for all B > 0,

Ks(z,z)e PV @ dr < co. (4.8)
Rn

Then, for all B > 0, e #H(V) € 3 (L?(R™)) and the following (i) and (i) hold:

(i) (A Golden-Thompson type inequality)

Tr e AHe(V) S/ Kp(z,z)e PV @) dg. (4.9)
R™

(ii) (A functional integral representation for the partition function)

Ty e~ V) / dz / B ALCCIL I, (4.10)
n Q

Proof. Similar to the proof of [7, Theorem 3.5). 1
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Remark 4.5

(1) In Theorem 4.4, V is not necessarily bounded below. This may be one of the
results showing effectiveness of the functional integral approach.

(2) Inequality (4.9) is a generalization of (2.13). If V = 0, then the equality in (4.9)
holds .

The functional integral representation (4.10) can be extended to a more general class
of objects.

Theorem 4.6 Assume (A.3) and (A.4). Let Vi,...,Vy, € L2 (R™) be such that, for all
B>0andj=1,...,m,

Kp(z,2)e Pi®dz < oo.
Rn

Let0<ty < <tm <P and fj € L°R") (j=1,...,m). Then

e—tle(Vl)fle—(tz—tl)Hb(Vz)f2 . fme—(ﬁ—tm)Hb(Vm)

is in J1(L*(R")) and

Tr (e—tfﬁm‘i fre~ et (%) £, fme—(ﬂ—tm)m)

= /Rn dx (/ Filq(t) -+ - fm(q(tm))e” DU A Vj(q(t))dtdﬂm,m;ﬂ) @)

where tg = 0,tm41 = 0.

Proof. Similar to the proof of [7, Theorem 3.8]. |

5 A Boson—Fermion System

We now consider a boson—fermion system. The Hilbert space of state vectors of the system
is taken to be ¥, , defined by (1.9).

The purely bosonic part of the total Hamiltonian of the boson—fermion system is taken
to be Hy (V) discussed in the preceding section.

To introduce a fermionic part of the total Hamiltonian, including an interaction be-
tween the bosons and the fermions, let U = (Uj);k=1,.. be an 7 x r Hermitian matrix-
valued function on R", i.e., the (j, k) component Ujj of U is a Borel measurable function
on R™ such that Uy;(z)* = Ujk(z), j,k=1,...,r, a.e.x € R" (for a complex number z, z*
denotes the complex conjugate of z). Then we define

T @ T
Hf’U = Z Ujkb;'bk :/ Z Ujk(a:)b;bkda:
k=1 R™ k=1
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This is the fermionic part of the total Hamiltonian. Note that H y describes an interaction
between the bosons and the fermions if U is not a constant matrix.
The total Hamiltonian is defined by

H(V, U) = Hb(V) + Hf7]U. (5.1)
We need the following conditions:

(A.5) V € L2 (R") and Hy,(V) is self-adjoint and bounded below. Moreover, for all 8 > 0,

loc

e PHY) € 31 (L2(R™)).
(A.6) There exist constants a € [0,1) and a,b > 0 such that
Uie(@)? < a|V(z)**+b, aexecR™jk=1,..,r
Lemma 5.1 Assume (A.5) and (A.6). Then H(V,U) is self-adjoint and bounded below.
Proof. Similar to the proof of [7, Lemma 2.3-(i)]. |
Let

.
N;:= ) bibj,
j=1

the fermion number operator on A(C").
The following theorem is a basic result on the boson-fermion Hamiltonian H(V,U).

Theorem 5.2 Assume (A.8), (A.5), (A.6) and (4.8). Suppose that, for all 3 > 0,

/ eﬁ E;,k:l IUjk(m)le_ﬂV(w)Kﬂ(m, x)d:z: < oQ. (52)
V(z)<0

Let z € C\ {0} and F € L®(R"). Then, for all 8 > 0, e PEVV) s in J;(Fn,) and

Tr (Fsz e‘ﬁH(V’U)> = / dzF(z) / det (I + ze” I U(‘J(t))dt) e Is V(q(t))dtd,u«ac,m;ﬁ-

(5.3)
Proof. Similar to the proof of [7, Theorem 4.2]. |
One can derive Golden—Thompson type inequalities from (5.3).
By using the chain rule (2.7), one can easily show that
1 r8
Lalw,y) = | K@ y)Ko-s(wa)dt. (5.4)

is finite for a.e. (z,y) € R™ x R™.

18



Theorem 5.3 Assume (A.3), (A.5), (A.6), (4.8) and that (5.2) holds for all B > 0. Let
z2€C\ {0}, >0 and F € L*°(R"). Then

’I‘r(Fsze‘ﬂH(V’U))‘g / dz / dy|F(z)|Ls(z,y) det(I + |2|e PVW)e=BVE)  (5.5)
n Rn
In particular,

Tre P20 < | doKp(z, z) det(I + e PV)emV @), (56)
R

Proof. Similar to the proof of [7, Theorem 5.1]. [ |

Remark 5.4 In the same manner as in [7, Theorem 4.6], we can extend Theorems 5.2
and 5.3 to a more general class of V.

6 Application to SQM

The boson-fermion system considered in the preceding section includes, as a special case,
a class of SQM (see below). Hence the results concerning the boson-fermion system can
be applied to such supersymmetric quantum systems.

For the reader’s convenience, we recall an abstract mathematical definition of SQM
(see, e.g., [16, Chapter 5] and [5, Chapter 9] for more details).

6.1 Definition of SQM and basic properties

A SQM is a quartet (H,I',Q, H) consisting of a complex Hilbert space H, a unitary
self-adjoint operator I" # +1 and self-adjoint operators @, H satisfying the following con-
ditions:

(SQM.1) The operator I' leaves D(Q) (the domain of Q) invariant (i.e. T'D(Q) C D(Q))
and {T', @} = 0, ¥4 € D(Q).

(SQM.2) H = Q2.

The operator @) (resp. H) is called the supercharge (resp. the supersymmetric Hamilto-
nian).
It follows that o(I') = o (I") = {£1}. Hence H has the orthogonal decomposition
H=H,pH_

with J, :=ker(I' — 1) and H_ :=ker(I' + 1). The subspace H (resp. H_) is called the
bosonic (resp. fermionic) subspace.
Property (SQM.1) implies that @ maps D(Q)NH 4 to Hx and hence @ has the operator

matrix representation
_ (0 Qi)
@ (Q+ 0
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with respect to the row vector representation of H

= {(4)

where ()4 is a densely defined closed operator from H, to H_. Hence it follows from
(SQM.2) that H is reduced by Hi and

3 _(H. 0
nomon (% 0

¢ieﬂfi},

with Hy = Q1Q+ and H_ = Q4+Q%. The reduced part H, (resp. H_) is called the
bosonic (resp. fermionic) Hamiltonian.

If ker Q # {0}, then each non-zero vector in ker @ is called a supersymmetric state. If
ker @ = {0}, then the supersymmetry is said to be spontaneously broken.

Remark 6.1 In the physical view point which rega,rds supersymmetry as a more funda-
mental principle in the universe, supersymmetry is expected to be spontaneously broken.
In this context too, it is important to investigate ker ).

The easily proved relation
kerQ =ker H =ker Hy @ ker H_ (6.1)

is useful to investigate ker Q).

A standard method to see if spontaneous supersymmetry breaking occurs is to estimate
the analytical index

ind(Q+) := dimker Q@ — dimker Q7

of @, which is defined under the condition that at least one of dim ker @ and dimker Q%
is finite. If supersymmetry is spontaneously broken, then ker Q. = {0} and kerQ% =
{0} and hence ind(Q+) = 0. Therefore ind(Q+) = 0 gives a necessary condition for
supersymmetry to be spontaneously broken. The following fact is well known (e.g., [16,
Theorem 5.19] and [5, Theorem 9.16}):

Lemma 6.2 Suppose that, for some B > 0, e PH is trace class on H. Then Q. is a

Fredholm operator and
ind(Q+) = Tr (Te~#H),

independently of 3.

6.2 A model of SQM

We now discuss a model of SQM which includes the model considered by Klimek and
Lesniewski [11].
Let 3, be the Hilbert space given by (1.13) and

T, = (—1)M. (6.2)
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Then it is easy to see that I'y, is a unitary self-adjoint with I';, # 41 and

Hy = Hny © Hoe
with
Hpt =ker(T, — 1) = €D L*([R™) @ AP(CY),
preven
Hp- =ker(Tn +1) = @5 L*(R™) ® AP(C™).
p:odd
Let

aj := —Z—<—ih—6—- — iwja:j> [CPRM), j=1,...,n,

\/ ﬁwj 83: j
Then, as is well known, the renormalized harmonic oscillator Hamiltonian ﬁos defined by
(1.16) is written as follows:

n
7y — I3 * .
Hy = E hwjaja;
=1

The operator a; (resp. a;f) is called the j-th bosonic annihilation (resp. creation) operator.
Note that the following commutation relations hold on C§°(R™):

laj,ak] = 0jk, laj,ax] =0, [a],a}] =0, j,k=1,...,n,

where [A, B] := AB — BA, the commutator of A and B.
We introduce a Dirac type operator

QQ = ZZ \/hwj(ajb;f - a;bj).
j=1

It is not so difficult to show that Qo is essentially self-adjoint on C§°(R™) and
=2
Hw - Qo, (6-3)

where H,, is the operator defined by (1.15). Moreover, one can show that T, leaves D(Q,)
invariant and

{Tn,Q0} =0 on D(Q).

Thus (J-Cn,I‘n,Z?O,ﬁw) is a SQM. Using (6.1), one can prove that dimker @ = 1. Hence,
in this model, supersymmetry is not spontaneously broken.

We consider a perturbation of the Dirac type operator Qg to obtain a new supercharge
(a perturbed Dirac type operator). Let W be a real distribution on R™ such that

Wj == D;W € Li (R™), Wi :=D;DiW € LL_(R™) (j,k=1,...,n),

loc
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where D; denotes the distributional partial differential operator in the variable z;, and

. n
o= G55 o)
Then a candidate for a new supercharge is defined by
Qw = Qo + Q1. (6.4)
At this statge, we only know that Qw is a symmetric operator on H, satisfying
{Tn,Qw}=0 on D(@Qw).

The self-adjointness of Qu may depend on properties of W. Here we do not go into
discussing the problem when Qy is self-adjoint. Instead, we consider as a substitute for
a perturbed supersymmetric Hamiltonian

Hss :=Qw Qw, (6.5)
which, by von Neumann’s theorem, is non-negative and self-adjoint. We have
ker Hsg = ker Qw . (6.6)

Hence
dim ker Qw = dim ker Hgg. (6.7)

To write down an explicit form of Hgg on a restricted subspace, let

1 s h
Sy ;%%D iW(z) + 5 ‘; ID;W(2)[* — 5AW(z), z€R"  (6.8)
Then we have n
Hsg = Hos + @w + Hy + 1 ) Wby (6.9)
jak=1
on
Do := CL RS A (C), (6.10)

where ® means algebraic tensor product. Hence Hgg [ Dy is the operator H (V,U) | Do
with
Hy=Hy, V =0y, U=HiD+W, (6.11)

where D := (w;djk)jk=1,.,n a0d W = (Wjg)jk=1,..n. Therefore, if we impose suitable
additional conditions on W, then we may apply the results in Section 5 to Hgs. Such
conditions are given as follows:

(A.7) There exists a nonnegative continuous function U € L2 (R") satisfying the follow-

ing conditions:

loc
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(a) For all e € (0,8) with a constant 6 > 0, Hes + €U is self-adjoint.
(b) For all 7 > 0, there exists a constant ¢, > 0 such that

|Bw (2)|? < n?U(z)? + c%, a.e.x € R™.
(c) There exist constants « € [0,1) and a,b > 0 such that
Wik(2)]? < aU(z)** +b, aezcR* jk=1,...,n
(d) D(Qw) N D(U/?) is a core of Q.
Let Qg(z,y) (8 > 0) be the integral kernel of e—PHos (see (2.10)) and Rg be the function
La(z,y) with Kg = Qg (see (5.4)): |

8
Ro(e,9) = 5 [ Qulen)Qor(y, )it (6.12)

We denote by v, .5 the conditinal measure piz 4.3 in the case where Kz = Q. We call
Vzy:.8 the conditional oscillator measure.

Theorem 6.3 Assume (A.7). Let z € C\ {0} and F € L°(R").

(i) Suppose that
/ Qp(x,z)det (I + e“ﬂh(D"'W(m))) e P < 0o, VB> 0. (6.13)
Rn

Then, for all B > 0, e BHss s trace class and the spectrum of Hsg is purely discrete.
Moreover,

Tre PHss < / Qp(x, ) det(1 + e PHPFWEe=B2w @) qy V3> 0.  (6.14)
Rn

(ii) Suppose that

Kp(z,z)det (1 + |z|e_ﬂh(D+W("”))) e PPwl)dz < 0o, VB> 0. (6.15)
Rn
Then, for all 5 > 0,

[Tx (Fe ) < [ aolF@)] | duRe(o)
R” R”

x det (1 + |zl PHEHVW) ) ~B2w )

and

Tr (FZNfe—ﬁHSS) — / d(I)F(iB)/det (1 + ze—ﬁhD—hfoﬁ W(q(s))ds)
Rn

e s8 q)W(q(S))dstz,w;ﬁ- (6.16)
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For a proof of the theorem, we refer the reader to [7, Section 6].
Corollary 6.4 Assume (A.7) and (6.13). Then
dim ker Qs < [151;% e Qp(x,z) det(1 + e PHP+W()))e=Bw (@) 4y, (6.17)
Proof. By (6.7) and the obvious inequality
dim ker Hgg < Tr e PHss
(note that Hgs > 0), we have
dimker Qy < Tre PHss

independently of 5 > 0. Hence, using (6.14), we obtain (6.17). 1

Corollary 6.5 Assume (A.7) and (6.18). Suppose that there ezxists a fp € R such that

/ Qp, (z, ) det(1 + e PohPIW))e=bodw (@) gy < 1.
Rﬂ.

Then ker Qw = {0}.
Proof. By (6.17), dimker Qs < 1. Hence ker Qy = {0}. |

The following theorem gives a functional integral representation for the index of Qw
under the condition that Qy is self-adjoint:

Theorem 6.6 Assume (A.7). Suppose that Qw is essentially self-adjoint on Dy and, for
some 3 > 0,

/Rn Qp(z,z)det (I + e'ﬂﬁ(D+W(“’))) e PP @y < 0. (6.18)
Then e~PHss s trace class and Z)——u;_‘_ is Fredholm. Moreover,
ind@Qw.,) = /R _da / det (1 — =PHD-h [T W(q(t))dt) e o ewa®aty, o (6.19)
independently of 8 > 0.
Proof (Outline). We have
ind(Qw,) = Tr (rne*ﬁHss) =Tr ((—1)Nfe—ﬁHss),

where we have use (6.2). Applying (6.16) with F' =1 and z = —1 to the right hand side,
we obtain (6.19). ]
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7 Concluding Remarks

In the present paper we have considered a class of boson-fermion systems with finite degrees
of freedom including supersymmetric quantum ones. This theory can be extended to a
class of boson-fermion systems with infinite degrees of freedom including supersymmetric
quantum field models. A mathematical framework for this purpose is given by the abstract
boson-fermion Fock space over a pair of two infinite dimensional Hilbert spaces. Basic
partial results in this direction have been obtained in [1, 2]. Further studies are under
progress from view-points of analysis on infinite dimensional Dirac type operators (recall
that Qw is a finite dimensional Dirac type operator).
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