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1 An Overview

Reproducing kernels have been proven an attractive tool in the context of online esti-
mation of nonlinear functions over the last decades in the signal processing and machine
learning communities [1-16]. (See [17-27] for the theory and applications of reproducing
kernels.) The approach of online nonlinear estimation with kernels has mild computational
complexity compared to the approach based on Volterra series expansion (of which the
second or third order approximation is typically used) and has convex nature of stochas-
tic optimization unlike the neural network. The challenges of the kernel-based approach

include

a) kernel design (how to design a reproducing kernel that fits the nonlinear function to

be estimated);

b) dictionary construction (how to construct a dictionary, a set of vectors, that spans a
‘low-dimensional’ linear subspace containing a vector close to the nonlinear function);

and

¢) parameter estimation (how to estimate the coefficients of the dictionary elements to

approximate the nonlinear function in online and adaptive fashion).

Here, the low dimensionality is of great importance in practice for efficiency both in
computation and memory-resource. For item c), any algorithmic solvers that have been
developed for linear adaptive filtering tasks can be directly applied, such as the adaptive
projected subgradient method (APSM) [28-43], the adaptive proximal forward-backward

subgradient method studied by Polyak [49], and it includes as its particular case the
classical normalized least mean square (NLMS) algorithm [50, 51], the affine projection
algorithm [52-54], the adaptive parallel subgradient projection algorithm [55-58], and

their constrained versions [59-61]. It formulates the adaptive estimation tasks as an



asymptotic minimization problem of a sequence of nonnegative convex functions, and a
strong convergence theorem has been established in [28] under certain mild conditions.
As a direct consequence of the convergence theorem, it extends the convergence theorem
for the projections onto convex sets (POCS), a celebrated alternating projection method
for convex feasibility problems (cf. [62]), to the case of infinitely many closed convex sets.
It should be remarked here that the strong convergence is proved for APSM, whereas the
widely-known result for POCS is weak convergence (see, e.g., [63]). APFBS is an adaptive
extension of the proximal forward-backward splitting method [64,65] for minimizing a sumn
of smooth and nonsmooth convex functions by using Moreau’s proximity operator [66-68].
Its typical applications include adaptive estimation of sparse impulse responses [44].

For item a), the author has proposed multikernel adaptive filtering [69-72], a convex-
analytic learning paradigm using ‘multiple’ reproducing kernels; the reader may refer to
the tutorial paper [73]. Multikernel adaptive filtering is particularly effective when (i)
the nonlinear function contains multiple components with different characteristics such as
linear and nonlinear components and high- and low- frequency components [74-77], and
(ii) an adequate kernel is unavailable because the amount of prior information about the
unknown function is limited, and/or because the unknown function is time-varying and
so is an adequate kernel for the function. Related approaches have been considered by
different research groups [78-80].

The author has also proposed an efficient single-kernel adaptive filtering algorithm
named hyperplane projection along affine subspace (HYPASS) [81-83]. The HYPASS
algorithm is a natural extension of the simple stochastic-gradient-based method called
the naive online R, minimization algorithm (NORMA) proposed by Kivinen et al. [2].
NORMA builds a dictionary by using all the observed data, meaning that the dictionary
size grows linearly with the number of data observed. As a remedy for this issue, a simple
truncation rule has been introduced in [2]. This approach is apparently inefficient be-
cause the dictionary may contain redundant vectors, which cause high dimensionality of
the subspace spanned by the dictionary. HYPASS selectively adds each observed datum
into the dictionary based on the so-called coherence criterion [9]; other criteria have also
been proposed, e.g., in [3,84]. If a datum does not enter the dictionary, the stochastic-
gradient direction does not belong to the dictionary subspace and thus the datum is
simply discarded. In other words, as long as sticking to the stochastic gradient method,
one has to discard such a datum although it may contain information for updating the
coefficients. The HYPASS algorithin systematically eliminates this limitation by enforc-
ing the update direction to lie in the dictionary subspace. HYPASS includes the sparse
sequential method of Dodd et al. [85] and the quantized kernel LMS (QKLMS) [12] as
particular cases. Another technique that has been developed by the author is the adaptive



refinement of the dictionary [71,86,87], borrowing the idea of sparse signal recovery such
as compressed sensing [88-90]. (See [91] for a sparse signal recovery using non-quadratic
strictly-convex objectives. See also [92,93] for studies of regularization paths with £,
quasi-norms for 0 < p < 1.) It has also been extended to online model selection and
learning scheme in [94-96], and the scheme has successfully been applied to an adaptive
online coverage-map reconstruction problem in wireless communications [97].

The existing algorithms of online nonlinear estimation with kernels can be classified
into two categories: the functional approach and the parameter approach. Here, the
functional approach formulates the online nonlinear estimation problem in a reproducing
kernel Hilbert space (RKHS), while the parameter approach formulates the problem in
a parameter (Euclidean) space. Our recent studies have shown significant advantages
of the functional approach over the parameter space [81-83]. The Cartesian HYPASS
(CHYPASS) algorithm proposed in [72] is a multikernel adaptive filtering scheme falling
into the functional approach, which unifies the works in [71] and [81-83]. CHYPASS has
been applied to time-series prediction problems with laser signals and CO2 emission data,
and its efficacy has been demonstrated in [72]. In the remainder of this article. we present
basic materials that support the CHYPASS algorithm, and then present its concept in a

simple manner.

2 Sum Space and Reproducing Kernel

We denote by R and N the sets of all real numbers and nonnegative integers, respec-
tively. Vectors and matrices are denoted by lower-case and upper-case letters in bold-face,
respectively. The identity matrix is denoted by I and the transposition of a vector /matrix
is denoted by (-)T. We denote the null (zero) function by 0.

Let 4/ C RY and R be the input and output spaces, respectively. We consider the
problem of estimating/tracking a nonlinear unknown function v-: 4 — R from sequen-
tially arriving input-output measurements u, € U and d,, = v(u,) +v, € R, n € N,
where v, € R is the additive noise. We focus on the case where 9 contains several dis-
tinctive components; e.g., linear and nonlinear (but smooth) components, high- and low-
frequency components, etc. To generate a minimal model to describe such a multicom-
ponent function ¢, we use multiple RKHSs (M1, (-, -)5;,), (Ha. (1 )ps,) -+ (How (- Vo)
over U, where each of the H,s consists of functions from ¢ to R. Here, () is the number
of components of 1, and each RICHS is associated with each component. The positive
definite kernel associated with the gth RKHS H,, ¢ € Q := {1,2,---,Q}, is denoted by
|ll3,- The function ¢ is

Kq 1 U XU — R, and the norm induced by (-, -)Hq is denote by



modeled as an element of the sum space

HY =Hi+Ha+- -+ Hg:= {quiquHq}-

qeQ

Given an element f € H*, the decomposition f = . € H,, is not necessarily

; e o Jq 0 3
unique in general. If the decomposition is unique for any f € H*, H* is the direct sum
of H,s [98], and it is usually denoted by H* = H; © Ha @ - - & Hg.

Theorem 1 (Reproducing kernel of sum space H* [17]) The sum space H* equipped

with the norm

£l = {Z Ifallde, 1 £ = for fa€ Hq}. fen, (1)

qeQ qeQ

is @ RKHS with the reproducing kernel k= ge0 Kg-

Theorem 2 Let v : U x U — R be the reproducing kernel of a real Hilbert space
(H, (-, -)5)- Then. given an arbitrary w > 0, Ky, (u, v) 1= wr(uw,v), u,v € U, is the repro-
ducing kernel of the RKHS (M, (-, )5,,) with the inner product (w,v),,,, == w™" (U, v)y,
u,v EU.

Theorems 1 and 2 yield the following result.

Corollary 1 (Weighted norm and reproducing kernel) Given any w, >0, ¢ € Q,
Fa(W,0) 1= 370 o Wykqg(U,v), w,v € U, is the reproducing kernel of the sum space H*
equipped with the weighted norm |||+ ., defined as Hfo#,w := min { Yogco Wy} ||fq||ziq |

f=Y0eofe fe€Hy} fEHT

3 Examples of Reproducing Kernels and Basic Results
Example 1 (Positive definite kernels)
1. Linear kernel: Given ¢ > 0,
ku(z,y) =z y+c, zyel. (2)
2. Polynomial kernel: Given ¢ > 0 and m € N* := N\ {0},
kp(z.y) = (@'y+o)™, T,y eU. (3)

3. Gaussian kernel (normalized): Given o > 0,

1 Iz — yll5e
I'{(;.(,(ﬂj,y) = (—\/2_‘;:0—)-‘[:63)([) (—Why— , &,Y € U. (4)



The following theorem has been shown by Minh in 2010.

Theorem 3 ( [99]) Let U C R be any set with nonempty interior and H, . the RKHS
associated with a Gaussian kernel kg (x,y) for an arbitrary o > 0 together with the
input space U. Then, H,, . does not contain any polynomial on U, including the nonzero

constant function.

Corollary 2 (Polynomial and Gaussian RKHSs [72]) Assume that the input space
U C RY has nonempty interior. Let Heup, and Hy, , be the RKHSs associated, respec-
tively, with a polynomial kernel kp and a Gaussian kernel kg, for arbitrary parameters
c>0,meN* and o > 0. Then, ‘

Hep N HNGJ = {0} (5)
In particular, (5) for m = 1 implies that
He, N He, = {0}. (6)

Theorem 4 ( [72]) Let U C R* be an arbitrary subset and ry = wikg,, and ky =
WokG.s, Gaussian kernels for o1 > oy > 0 and wq,wy > 0. Then, the associated RKHSs
H,y and Hy satisfy the following:

1. Hy C H,, and
2.Vt (| flly, = vwz || flly, for any f € Hy.

See [100-102] for the related results to Theorem 4.

4 Adaptive Leaning Algorithm Based on Orthogonal Projection
in Product Space

Suppose that H, N H, = {0} for any p # ¢ (cf. Corollary 2). Then, any f € H* can be
decomposed uniquely into f = qug fa: fo € Hy. It is clear in this case that, under the
correspondence between f and the Q-tuple (f,),c0, the sum space H™ is isomorphic to

the Cartesian product
H> C=H1 X Hz X oo X HQ = {(fl;fZ;"' ,fQ) : fq & Hq, q€ Q}‘
which is a real Hilbert space equipped with the inner product defined by

(f) Ohpx = Z <fq~gq>Hq o =g 9= (9g)gee € H™. (7)

qeQ



We denote by D,,, C {rq(-.u) | w € U} the dictionary constructed for the gth kernel
at time n € N. The dictionary typically starts with D, _; := § and grows based on some
novelty criterion such as the coherence criterion (dictionary constructions for CHYPASS
depend on kernels employed; sce [72] for details). The kernel-by-kernel dictionary sub-
spaces are defined as M,,, := span D,,, C Hy, ¢ € Q, n € N. The multikernel adaptive
filter at time n is given as

IRES Z an EHT, nEN, (8)
q€Q
where p,, € Mg 1. Thus, the dictionary D, contains the atoms (vectors) that form
the next estimate wq 4.

It should be emphasized that the isomorphism mentioned above relies on the assumption
H,NH, = {0}, Vp # ¢. In general, the norm in the sum space has no closed-form, as can
be seen from Corollary 1. This makes the orthogonal projection in the sum space difficult
to compute in practice. The CHYPASS algorithm therefore projects the current estimate
onto a zero instantaneous-error hyperplane in the product space (rather than in the sum
space). After simple manipulations, with the initial filter o := 0, its update equation is

given as follows [72]:

dn — ©PnlUp
Cn+1 = ©n + )\n ¥ ( ) 3 Z PM(;,n(Hq<-lun))’ n € N’ (9)
Z Pr o (kq(- un))|| 159

qeQ Hy

where A, € (0,2) is the step size and Pay,, (kq(, t,)) denotes the orthogonal projection
of #,(-. u,) onto the closed linear subspace Mgy, [98]. This can be computed efficiently.

When we employ a linear (or polynomial) kernel together with a Gaussian kernel,
the product space H* is isomorphic to the sum space H™ by Corollary 2, which im-
plies that CHYPASS can be interpreted as projecting the current estimate into the zero
instantaneous-error hyperplane in the sum space H* in this case. Referring to Theorem
4, on the other hand, the same does not apply to the case where we employ multiple
Gaussian kernels. CHYPASS works well in both cases, as demonstrated by simulations
in [72].
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