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1 Introduction

In order to fix our background in this note, following [6, 7, 8], we recall a general
theory for linear mappings in the framework of Hilbert spaces using the general
theory of reproducing kernels.

Let $\mathcal{H}$ be a Hilbert (possibly finite-dimensional) space. Let $E$ be an abstract
set and $h$ be a Hilbert $\mathcal{H}$-valued function on $E$ . Then, we will consider the linear

transform
$f(x)=(f, h(x))_{\mathcal{H}}, f\in \mathcal{H}$ , (1)

from $\mathcal{H}$ into the linear space $\mathcal{F}(E)$ consisting of all complex-valued functions on
$E$ . In order to investigate the linear mapping (1), we form a positive definite
quadratic form function $K(x, y)$ on $E\cross E$ defined by

$K(x, y)=(h(y), h(x))_{\mathcal{H}}$ on $E\cross E.$

A complex-valued function $k:E\cross Earrow \mathbb{C}$ is called a positive definite quadratic

form function on the set $E$ , or shortly, positive definite function, when it
satisfies the property that, for an arbitrary function $X$ : $Earrow \mathbb{C}$ and any finite
subset $F$ of $E,$

$\sum_{x,y\in F}\overline{X(x)}X(y)k(x, y)\geq 0$
. (2)

By the fundamental theorem, we know that for any positive definite quadratic
form function $K$ , there exists a uniquely determined reproducing kernel Hilbert
space admitting the reproducing property.

Then, we obtain the following fundamental result.
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Proposition 1.1

(I) The range of the linear mapping (1) by $\mathcal{H}$ is characterized as the reproducing
kernel Hilbert space $H_{K}(E)$ admitting the reproducing kernel $K(x, y)$ whose
characterization is given by the two properties: (i) $K$ $y$ ) $\in H_{K}(E)$ for any
$y\in E$ and, (ii) for any $f\in H_{K}(E)$ and for any $x\in E,$ $(f(\cdot), K(\cdot.x))_{H_{K}(E)}=$

$f(x)$ .

(II) In general we have the inequality

$\Vert f\Vert_{H_{K}(E)}\leq\Vert f\Vert_{\mathcal{H}}.$

Here, for any member $f$ of $H_{K}(E)$ there exists a uniquely determined $f^{*}\in \mathcal{H}$

satisfying
$f(x)=(f^{*}, h(x))_{\mathcal{H}}$ on $E$

and
$\Vert f\Vert_{H_{K}(E)}=\Vert f^{*}\Vert_{\mathcal{H}}.$

(III) In general we have the inversion formula in (1) in the form

$f\mapsto f^{*}$ (3)

in (II) by using the reproducing kernel Hilbert space $H_{K}(E)$ .

However, this formula (3) is, in general, involved and delicate. Consequently,
case-by-case, we need different arguments. See [7] and [8] for the details and
applications. Recently, however, we obtained a very general inversion formula
based on the Aveiro Discretization Method in Mathematics ([2]) by using the
ultimate realization of reproducing kernel Hilbert spaces. In this note, however,
in order to include the prototype example Fourier integral transform with the
analytical nature, and in order to give a general framework of Proposition 1.1, we
will consider the following general inversion formula in the general situation with
natural assumptions.

Here we consider a concrete case of Proposition 1.1. In order to derive a
general inversion formula that is widely applicable in analysis, we assume that
$\mathcal{H}=L^{2}(I, dm)$ and that $H_{K}(E)$ is a closed subspace of $L^{2}(E, d\mu)$ . For a simplicity
statement we assume that $I$ is an interval on the real line. Furthermore, below we
assume that $(I, \mathcal{I}, dm)$ and $(E, \mathcal{E}, d\mu)$ are both $\sigma$-finite measure spaces and that

$H_{K}(E)\mapsto L^{2}(E, d\mu)$ . (4)

Suppose that we are given a measurable function $h$ : $I\cross Earrow \mathbb{C}$ satisfying
$h_{y}=h$ $y)\in L^{2}(I, dm)$ for all $y\in E$ . Let us set

$K(x, y)\equiv\langle h_{y}, h_{x}\rangle_{L^{2}(I,dm)}$ . (5)

As we have established in Proposition 1.1, we have

$H_{K}(E)\equiv\{f\in \mathcal{F}(E)$ : $f(x)=\langle F,$ $h_{x}\rangle_{L^{2}(I,dm)}$ for $F\in \mathcal{H}\}$ . (6)
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Let us now define

$L$ : $\mathcal{H}arrow H_{K}(E)(\mapsto L^{2}(E, d\mu))$ (7)

by

$LF(x)\equiv\langle F, h_{x}\rangle_{L^{2}(I,dm)}=lF(\lambda)\overline{h(\lambda,x)}dm(\lambda) , x\in E$ (8)

for $F\in \mathcal{H}=L^{2}(I, dm)$ , keeping in mind (4). Observe that $LF\in H_{K}(E)$ .
The next result will give the inversion formula.

Proposition 1.2 Assume that $\{E_{N}\}_{N=1}^{\infty}$ is an $increa\mathcal{S}ing$ sequence of measurable
subsets in $E$ such that

$\bigcup_{N=1}^{\infty}E_{N}=E$ (9)

and that

$l_{\cross E_{N}}|h(\lambda, x)|^{2}dm(\lambda)d\mu(x)<\infty$ (10)

for all $N\in \mathbb{N}$ . Then we have

$L^{*}f( \lambda)(=\lim_{Narrow\infty}(L^{*}[\chi_{E_{N}}f])(\lambda))=\lim_{Narrow\infty}\int_{E_{N}}f(x)h(\lambda, x)d\mu(x)$ (11)

for all $f\in L^{2}(I, d\mu)$ in the topology of $\mathcal{H}=L^{2}(I, dm)$ . Here, $L^{*}f$ is the adjoint
operator of $L$ , but it represents the inversion with the minimum norm for $f\in$

$H_{K}(E)$ .

In this Proposition 1.2, we see that with the very natural way, the inversion
formula may be given in the strong convergence in the space $\mathcal{H}=L^{2}(I, dm)$ .

2 Formulation of a fundamental problem

Our basic assumption is that $h:I\cross Earrow \mathbb{C}$ satisfies $h_{y}=h$ $y$ ) $\in L^{2}(I, dm)$ for all
$y\in E$ ; that is, the integral kernel or linear mapping is in the framework of Hilbert
spaces. In this paper, as stated in the abstract, we assume that the integral kernel
$h_{y}=h$ y) does not belong to $L^{2}(I, dm)$ , however, for any exhaustion $\{I_{t}\}_{t>0}$

such that $I_{t}\subset I_{t’}$ for $t\leq t’,$ $\bigcup_{t>0}I_{t}=I,$ $h_{y}=h$ $y$ ) $\in L^{2}(I_{t}, dm)$ for all $y\in E$

and $\{h_{y};y\in E\}$ is complete in $L^{2}(I_{t}, dm)$ for any $t>0.$

In Proposition 1.2, as in (1), we consider the integral transform

$f_{t}(x)=\langle F,$ $h_{x}\rangle_{L^{2}(I_{t},dm)}$ for $F\in L^{2}(I, dm)$ (12)

and the corresponding reproducing kernel

$K_{t}(x, y)=\langle h_{y}, h_{x}\rangle_{L^{2}(I_{t},dm)}$ . (13)
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Here, we assume that $\mathcal{H}_{t}$ is the Hilbert space $L^{2}(I_{t}, dm)$ and $h_{x}\in \mathcal{H}_{t}$ for any $x.$

We assume as in stated in the introduction that the non-decreasing reproducing
kernels $K_{t}(x, y)$ , in the sense: for any $t’>t,$ $K_{t’}(y, x)-K_{t}(y, x)$ is a positive definite
quadratic form function, do, in general, not converge, when $\lim_{t\uparrow\infty}K_{t}(x, y)$ . We
write, however, the limit by $K_{\infty}(x, y)$ formally, that is,

$K_{\infty}(x, y) := \lim_{t\uparrow\infty}K_{t}(x, y)$ (14)

$=\langle h_{y}, h_{x}\rangle_{L^{2}(I,dm)}.$

This integral does, in general, not exist and the limit is a special meaning. We
are interesting, however, in the relationship between the spaces $L^{2}(I_{t}, dm)$ and
$L^{2}(I, dm)$ by associating the kernels $K_{t}(x, y)$ and $K_{\infty}(x, y)$ , respectively.

First, for the space $\mathcal{H}_{t}$ and the reproducing kernel Hilbert space $H_{K_{t}}(E)$ , we
recall the isometric identity in (12), by assuming that $\{h_{x} : x\in E\}$ is complete in
the space $\mathcal{H}_{t}$

$\Vert f_{t}\Vert_{H_{K_{t}}(E)}=\Vert F\Vert_{L^{2}(I_{t},dm)}$ . (15)

Next note that for any $F\in L^{2}(I, dm)$ ,

$\lim_{t\uparrow\infty}\Vert F\Vert_{L^{2}(I_{t)}dm)}=\Vert F\Vert_{L^{2}(I,dm)}$ . (16)

Here, of course, the norms are nondecreasing.
As the corresponding function to $f_{t}\in H_{K_{t}}(E)$ , we consider the function, in the

view point of (12)

$f(x)=\langle F,$ $h_{x}\rangle_{L^{2}(I,dm)}$ for $F\in L^{2}(I, dm)$ . (17)

However, this function is not defined, because the above integral does, in general,
not exist. So, we consider the function formally, tentatively. However, we are
considering the correspondings

$f_{t}rightarrow f$ (18)

and
$H_{K_{t}}(E)rightarrow H_{K_{\infty}}(E)$ , (19)

however, for the space $H_{K_{\infty}}(E)$ , we have to give its meaning; here, when the
kernel $K_{\infty}(x, y)$ exists by the condition $h_{x}\in L^{2}(I, dm)$ , $x\in E,$ $H_{K_{\infty}}(E)$ is the
reproducing kernel Hilbert space admitting the kernel $K_{\infty}(x, y)$ .

We consider the formal calculations as follows: Following (11)

$F( \lambda)(=\lim_{Narrow\infty}(L^{*}[\chi_{E_{N}}f])(\lambda))=\lim_{Narrow\infty}\int_{E_{N}}f(y)h(\lambda, y)d\mu(y)$ (20)

and (17), for $F\in L^{2}(I, dm)$

$f(x)=\langle F, h_{x}\rangle_{L^{2}(I,dm)}$ (21)

$= \langle\lim_{Narrow\infty}\int_{E_{N}}f(y)h(\lambda, y)d\mu(y) , h_{x}\rangle_{L^{2}(I,dm)}$
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$= \lim_{Narrow\infty}\int_{E_{N}}f(y)\overline{K_{\infty}(y,x)}d\mu(y)$ .

This formal calculation will show that $K_{\infty}(x, y)$ is like a reproducing kernel for
the image space of (21) and we have the isometric identity, in (21)

$\Vert f\Vert_{H_{K_{\infty}}}=\Vert F\Vert_{L^{2}(I,dm)}$ . (22)

Then we obtain the norm convergence as follows:

$\lim_{t\uparrow 0}\Vert f_{t}\Vert_{H_{K_{t}}}=\Vert f\Vert_{H_{K_{\infty}}}=\Vert F\Vert_{L^{2}(I,dm)}$ . (23)

and the norms are nondecreasing.
Note that in (23), the first term and the last term have the real senses that

their meanings do exist and they have the isometric relation. This will mean that
the general $L^{2}$ norm is represented by a reproducing kernel Hilbert member and
its norm.

We will catch the kernel $K_{\infty}(x, y)$ as a generalized reproducing kernel and
the fundamental applications to some general initial value problems by using the
related eigenfunctions are given in [9, 10].

In this note, we will give the natural and precise theory for the above formal
treatment.

3 Completion property

We note the general and fundamental property.
We introduce a preHilbert space by

$H_{K_{\infty}}:= \bigcup_{t>0}H_{K_{t}}(E)$
.

For any $f\in H_{K_{\infty}}$ , there exists a space $H_{K_{t}}(E)$ containing the function $f$ for some
$t>0$ . Then, for any $t’$ such that $t<t’,$

$H_{K_{t}}(E)\subset H_{K_{t’}}(E)$

and, for the function $f\in H_{K_{\infty}},$

$\Vert f\Vert_{H_{K_{t}}(E)}\geq\Vert f\Vert_{H_{K_{t’}}(E)}.$

(Here, inequality holds, in general, however, in this case, equality, indeed, holds,
for the sake of the completeness of the integral kernel.) Therefore, there exits the
limit

$\Vert f\Vert_{H_{K_{\infty}}}:=\lim_{t\uparrow\infty}\Vert f\Vert_{H_{K_{t’}}(E)}.$

Denote by $H_{\infty}$ the completion of $H_{K_{\infty}}.$
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Theorem 3.1 For the general situation $\mathcal{S}uch$ that $K_{t}(x, y)$ exits for all $t>0$ and
$K_{\infty}(x, y)$ does, in general not exist, for any function $f\in H_{\infty}$

$\lim_{t\uparrow\infty}(f(x’), K_{t}(x’, x))_{H_{\infty}}=f(x)$ , (24)

in the space $H_{\infty}.$

Proof: Note that for any $t<t’$ , and for any $f_{t}\in H_{K_{t}}(E)$ , $f_{t}\in H_{K_{t}}$ , (E) and
furthermore, for the sake of the completeness of the kernel $h_{x}$ , in particular, that

$\langle f, g\rangle_{H_{K_{t}(E)}}=\langle f, g\rangle_{H_{K_{t’}(E)}}$

for all $t’>t$ and $f,$ $g\in H_{K_{t}}(E)$ .
Just observe that

$|(f(x’), K_{t}(x’, x))_{H_{\infty}}|^{2}\leq\Vert f\Vert_{H_{\infty}}^{2}\Vert K_{t}(\cdot, x)\Vert_{H_{\infty}}^{2}$

$\leq\Vert f\Vert_{H_{\infty}}^{2}\Vert K_{t}(\cdot, x)\Vert_{H_{K_{t}}(E)}^{2}$

$=\Vert f\Vert_{H_{\infty}}^{2}K_{t}(x, x)$ .

Therefore, we see that $(f(x’), K_{t}(x’, x))_{H_{\infty}}\in H_{K_{t}}(E)$ and that

$\Vert(f(x’), K_{t}(x’, x))_{H_{\infty}}\Vert_{H_{K_{t}}(E)}\leq\Vert f\Vert_{H_{\infty}}.$

Indeed, for these, recall the identity

$K_{t}(x, y)=\langle K_{t}(\cdot, y) , K_{t} x)\rangle_{H_{\infty}}.$

The mapping $f\mapsto(f(x’), K_{t}(x’, x))_{H_{\infty}}$ being uniformly bounded, and so, we
can assume that $f\in H_{K_{t}}(E)$ for any fixed $t>0$ . However, in this case, the result
is clear, since, $f\in H_{K_{t}}$ , (E) for $t<t’$

$\lim_{t\uparrow\infty}(f(x’), K_{t’}(x’, x))_{H_{\infty}}=\lim_{t\uparrow\infty}\langle f,$
$K_{t}$

$x) \rangle_{H_{\infty}}=\lim_{t\uparrow\infty}\langle f,$
$K_{t}$ $x)\rangle_{H_{K_{t}},(E)}=f(x)$ .

$\blacksquare$

Theorem 3.1 may be looked as a reproducing kernel in the natural topology
and in the sense of Theorem 3.1, and the reproducing property may be written as
follows:

$f(x)=\langle f, K_{\infty} x)\rangle_{H_{\infty}},$

with (24). Here the limit $K_{\infty}$ x) does, in general, not need to exist,
however, the series are non-decreasing.

The completion space $H_{0}$ will be determined, in many concrete cases, from the
realizations of the spaces $H_{K_{t}}(E)$ , by case-by-case.
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4Convergence of $f_{t}(x)=\langle F,$ $h_{x}\rangle_{L^{2}(I_{t},dm)};F\in L^{2}(I, dm)$

As in the case of Fourier integral, we will prove the convergence of (12) in the
completion space $H_{\infty}$ . Indeed, for any $t,$ $t’>0,$ $t<t’$ , we have:

$\lim_{t,t\uparrow\infty}\Vert f_{t}-f_{t’}\Vert_{H_{\infty}}^{2}$

$= \lim_{t,t\uparrow\infty}\Vert f_{t}-f_{t’}\Vert_{H_{K_{t}(E)}}^{2}$

$\leq\lim_{t,t\uparrow\infty}(\Vert f_{t}\Vert_{H_{K_{t}(E)}}^{2}+\Vert f_{t’}\Vert_{H_{K_{t’}(E)}}^{2}-2\Vert f_{t}\Vert_{H_{K_{t}(E)}}^{2})$

$=0.$

In this sense, as in the Fourier integral of the cace $L^{2}(R, dx)$ we will write, for

$\lim_{t\uparrow\infty}f_{t}=f$ in $H_{\infty}$

as follows:
$f(x)= \lim_{t\uparrow\infty}(F(\cdot), h x))_{L^{2}(I_{t},dm)}$ (25)

$= (F(\cdot), h x))_{L^{2}(I,dm)}.$

5 Inversion of the integral transforms

We will consider the inversion of the integral transform (25) from the space $H_{\infty}$

onto $L^{2}(I, dm)$ . For any $f\in H_{\infty}$ , we take functions $f_{t}\in H_{K_{t}}(E)$ such that

$\lim_{t\uparrow\infty}f_{t}=f$

in the space $H_{\infty}$ . This is possible, because the space $H_{\infty}$ is the completion of the
spaces $H_{K_{t}}(E)$ . However, $f_{t}$ may be constructed by Theorem 3.1, in the form

$f_{t}(x):=(f(x’), K_{t}(x’, x))_{H_{\infty}}$

For the functions $f_{t}\in H_{K_{t}}(E)$ , by Proposition 1.2-we are assuming the conditions
in Propostioin 1.2-, we can construct the inversion in the following way:

$F_{t}( \lambda)=\lim_{Narrow\infty}\int_{E_{N}}f_{t}(x)h(\lambda, x)d\mu_{t}(x)$ (26)

in the topology of $L^{2}(I, dm)$ satisfying

$f_{t}(x)=(F_{t}(\cdot), h_{x}(\cdot))_{L^{2}(I,dm)}$ (27)

$=(F_{t}, h_{x})_{L^{2}(I_{t},dm)}.$

Here, of course, the function $F_{t}$ of $L^{2}(I, dm)$ is the zero extension of a function $F_{t}$

of $L^{2}(I_{t}, dm)$ . Note that the isometric relation that for any $t<t’$

$\Vert f_{t}-f_{t’}\Vert_{H_{0}}=\Vert F_{t}-F_{t’}\Vert_{L^{2}(I,dm)}$ . (28)
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Then, we see the desired result: The functions $F_{t}$ converse to a function $F$ in
$L^{2}(I, dm)$ and

$f(x)=(F, h_{x})_{L^{2}(I,dm)}$ (29)

in our sense. We can write down the inversion formula as follows:

$F( \lambda)=\lim_{t\uparrow\infty}\lim_{Narrow\infty}\int_{E_{N}}(f(x’), K_{t}(x’, x))_{H_{\infty}}h(\lambda, x)d\mu_{t}(x)$ , (30)

where both limits $\lim_{Narrow\infty}$ and $\lim_{t\uparrow\infty}$ are taken in the sense of the space $L^{2}(I, dm)$ .

Of course, the correspondence $f\in H_{\infty}$ and $F\in L^{2}(I, dm)$ is one to one.
Indeed, we assume that $f\in H_{\infty},$ $f\equiv 0$ , then

$0 \equiv f(x)=\lim_{t\uparrow\infty}(f, K_{t} x)=\lim_{t\uparrow\infty}f_{t}(x)$ (31)

in the space $H_{\infty}.$ ; that is,

$\lim_{t\uparrow\infty}1f_{t}\Vert_{H_{K_{t}}}=0=\lim_{t\uparrow\infty}\Vert F\Vert_{L^{2}(I,dm)}$ ; (32)

that implies the desired result that $F=0$ on the space $L^{2}(I, dm)$ .

6 Fourier integral transform case

As a typical example, we shall examine the Fourier integral transform. For one di-
mensiona case, we consider the integral transform, for the functions $F$ of $L_{2}(-\pi t, +\pi t)$ ,
$t>0$ as

$f_{t}( z)=\frac{1}{2\pi}\int_{-\pi t}^{\pi t}F(t)e^{-iz\xi}d\xi$ . (33)

In order to identify the image space following the theory of reproducing kernels,
we form the reproducing kernel

$K_{t}(z, \overline{u})=\frac{1}{2\pi}\int_{-\pi t}^{\pi t}e^{-iz\xi}\overline{e^{-iu\xi}}d\xi$ (34)

$= \frac{1}{\pi(z-\overline{u})}\sin\pi t(z-\overline{u})$ .

The image space of (31) is called the Paley Wiener space $W(\pi t)$ consisting of
all analytic functions of exponential type satisfying, for some constant $C$ and as
$zarrow\infty$

$|f_{t}(z)|\leq C\exp(\pi|z|t)$

and

$\int_{R}|f_{t}(\xi)|^{2}d\xi<\infty.$

From the identity

$K_{t}( \frac{j}{t},\frac{j’}{t})=t\delta(j, j’)$
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(the Kronecker’s $\delta$), since $\delta(j,j’)$ is the reproducing kernel for the Hilbert space
$\ell^{2}$ , from the general theory of integral transforms and the Parseval’s identity we
have the isometric identities in (31)

$\frac{1}{2\pi}\int_{-\pi t}^{\pi t}|F(\xi)|^{2}d\xi=\frac{1}{t}\sum_{j=-\infty}^{\infty}|f_{t}(j/t)|^{2}=\int_{R}|f_{t}(\xi)|^{2}d\xi.$

That is, the reproducing kernel Hilbert space $H_{K_{t}}$ with $K_{t}(z, \overline{u})$ is characterized
as a space consisting of the Paley Wiener space $W(\pi t)$ and with the norm squares
above. Here we used the well-known result that $\{j/t\}_{j=-\infty}^{\infty}$ is a unique set for the
Paley Wiener space $W(\pi t)$ ; that is, $f_{t}(j/t)=0$ for all $j$ implies $f_{t}\equiv 0$ . Then, the
reproducing property of $K_{t}(z, \overline{u})$ states that

$f_{t}(x)=(f_{t}( \cdot), K_{t} x))_{H_{K_{t}}}=\frac{1}{t}\sum_{j=-\infty}^{\infty}f_{t}(j/t)K_{t}(j/t, x)$

$= \int_{R}f_{t}(\xi)K_{t}(\xi, x)d\xi.$

In particular, on the real line $x$ , this representation is the sampling theorem which
represents the whole data $f_{t}(x)$ in terms of the discrete data $\{f_{t}(j/t)\}_{j=-\infty}^{\infty}$ . For a
general theory for the sampling theory and error estimates for some finite points
$\{j/t\}_{j}$ , see [7]. As this typical case, we note that all the reproducing kernel Hilbert
spaces $H_{K_{t}}$ may be realized in the space $L^{2}(R, d\xi)$ which is now the completion
$H_{\infty}$ of the spaces $H_{K_{t}}.$

7 Discrete versions

We refer to a typical discrete version whose situation is very general. Let the
family $\{U_{n}(x)\}_{n=0}^{\infty}$ be a complete orthonormal system in a Hilbert space with the
norm

$\Vert F\Vert^{2}=\int_{E}|F(x)|^{2}dm(x)$ (35)

with a $dm$ measurable set $E$ in the usual form $L^{2}(E, dm)$ . We consider the family
of all the functions, for arbitrary complex numbers $\{C_{n}\}_{n=0}^{N}$

$F(x)= \sum_{n=0}^{N}C_{n}U_{n}(x)$ (36)

and we introduce the norm

$\Vert F\Vert^{2}=\sum_{n=0}^{N}|C_{n}|^{2}$ (37)

Then, the function space forms a Hilbert space $H_{K_{N}}(E)$ determined by the repro-
ducing kernel $K_{N}(x, y)$ :

$K_{N}(x, y)= \sum_{n=0}^{N}U_{n}(x)\overline{U_{n}(y)}$ (38)
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with the inner product induced from the norm (35), as usual. Then, the functions
in the Hilbert space $L^{2}(E, dm)$ and the norm (33) are realized as the completion
$H_{K_{\infty}}(E)$ of the spaces $H_{K_{N}}(E)$ . In this case, for the correspondence:

$\ell^{2}:\{C_{n}\}rightarrow F(x)=\sum_{n=0}^{\infty}C_{n}U_{n}(x)$ , (39)

we obtain the same results in the classical analysis and in this note.
We can consider such linear mappings for arbitrary functions $\{U_{n}(x)\}$ which

are linearly independent and by considering the kernel forms (36), however, the
realization of the completion space $H_{\infty}$ becomes the crucial problem, in our new
approarch.

8 Conclusion

When we consider the integral transform

$LF(x)=lF(\lambda)\overline{h(\lambda,x)}dm(\lambda) , x\in E$ (40)

for $F\in \mathcal{H}=L^{2}(I, dm)$ , indeed, the integral kernel $h(\lambda, x)$ does not need to
belong to the space $L^{2}(I, dm)$ and with the very general assumptions that for any
exhausion $\{I_{t}\}$ of $I,$

$h(\lambda, x)$ belongs to $L^{2}(I_{t}, dm)for$ any $x$ of $E$

and
$\{h(\lambda, x);x\in E\}$ is complete in $L^{2}(I_{t}, dm)$ ,

we can establish the isometric identity and inversion formula of the integral trans-
form (38) by giving the natural interpretation of the integral transform (38), as in
the Fourier transform.

Acknowledgements

The first author is supported in part by the Grant-in-Aid for the Scientific
Research (C)(2)(No. 26400192).

References

[1] N. Aronszajn, Theory of reproducing kernels, hans. Amer. Math. Soc., 68
(1950),. 337-404.

[2] L. P. Castro, H. Fujiwara, M.M. Rodrigues, S. Saitoh and V.K. Tuan,
Aveiro Discretization Method in Mathematics: A New Discretization Prin-
ciple, MATHEMATICS WITHOUT BOUNDARIES: SURVEYS IN PURE
MATHEMATICS, Edited by Panos Pardalos and Themistocles M. Rassiasm,
Springer (2014), 37-92.

79



[3] L. P. Castro, H. Fujiwara, T. Qian and S. Saitoh, How to cath smooth-
ing properties and analyticity of functions by computers?, MATHEMATICS
WITHOUT BOUNDARIES: SURVEYS IN PURE MATHEMATICS, Edited
by Panos Pardalos and Themistocles M. Rassias, Springer (2014), 101-116.

[4] L. P. Castro, M. M. Rodorigues and S. Saitoh, Initial value problems in linear
integral operators equations, Topics in Mathematical Analysis and Applica-
tions, Edited by Laszlo Toth and Themistcles M. Rassias, Springer (2014),
175-188.

[5] L. P. Castro, M. M. Rodorigues and S. Saitoh, A fundamental theorem on
initial value problems by using the theory of reproducing kernels, Complex
Anal. Oper. Theory 9(2015), 87-98.

[6] S. Saitoh, Hilbert spaces induced by Hilbert space valued functions, Proc.
Amer. Math. Soc., 89 (1983), 74-78.

[7] S. Saitoh, Integral transforms, reproducing kermels and their applications, Pit-
man Research Notes in Mathematics Series 369, Addison Wesley Longman,
Harlow, 1997.

[8] S. Saitoh, Theory of reproducing kernels: Applications to approximate solu-
tions of bounded linear operator functions on Hilbert spaces, Amer. Math. Soc.
Transl. Ser., 230, Amer. Math. Soc., Providence, RI, 2010.

[9] Saitoh, S. and Sawano, Y., Generalized delta functions as generalized repro-
ducing kernels (manuscript).

[10] Saitoh, S. and Sawano, Y., General initial value problems using eigenfunctions
and reproducing kernels (manuscript).

Tsutomu Matsuura
Division of Mechanical Science and Tchonology,
Gunma University,
Tenjin-cho, 1-5-1,
Kiryu 376-0041, Japan
$E$-mail: matsuura@gunma-u.ac.jp
and
Saburou Saitoh
Institute of Reproducing Kernels
Kawauchi-cho, 5-1648-16,
Kiryu 376-0041, Japan
$E$-mail: saburou.saitoh@gmail.com

80


