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Abstract

In this paper, we introduce some fundamental theorems in the book “‘Theory
of Reproducing Kernels and Applications”’ to explain what this book is oriented
to. The book will be published from Springer. We pick up several theorems and
explain what they are used for in our book. The detailed applications can be found
in the book.

1 Definition of reproducing kernel Hilbert spaces

We start with the definition of reproducing kernel Hilbert spaces.

Definition 1. Let $E$ be an arbitrary abstract nonempty set. Denote by $\mathcal{F}(E)$ the set
of all complex-valued functions on E. A reproducing kernel Hilbert space (RKHS for
short) on the set $E$ is a Hilbert space $\mathcal{H}\subset \mathcal{F}(E)$ coming with a function $K$ : $E\cross Earrow \mathcal{H},$

which is called the reproducing kernel, enjoying the reproducing property that

$K_{p}\equiv K(\cdot,p)\in \mathcal{H}$ (1.1)

for all $p\in E$ and that the representation

$f(p)=\langle f, K_{p}\rangle_{\mathcal{H}}$ (1.2)

holds for all $p\in E$ and all $f\in \mathcal{H}^{-}$ Denote by $(H_{K}=)H_{K}(E)$ the Hilbert space $\mathcal{H}$

whose corresponding reproducing kernel function is $K.$

The following two theorems show that the fundamental property of the space $H_{K}(E)$

and the correspondence $K\mapsto H_{K}(E)$ .

Theorem 1.1. Suppose that $H$ is a Hilbert space consisting of functions on a set $E.$

1. The Hilbert space $H$ is realized as a reproducing kernel Hilbert space $H_{K}(E)$ with
a function $K:E\cross Earrow \mathbb{C}$ if and only if the embedding $H\subset \mathcal{F}(E)$ is continuous.
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2. If a sequence $\{f_{j}\}_{j=1}^{\infty}$ in $H_{K}(E)$ converges to $f$ in $H_{K}(E)$ , then

$\lim_{jarrow\infty}f_{j}(p)=f(p)$ (1.3)

for all $p\in E$ . Furthermore, on any subset of $E$ on which $p\mapsto K(p,p)$ is bounded,

its convergence is uniform on there.

In general, a complex-valued function $k$ : $E\cross Earrow \mathbb{C}$ is called a positive definite
quadratic form function on the set $E$ , or shortly, positive definite function, when it
satisfies the property that, for an arbitrary function $X$ : $Earrow \mathbb{C}$ and for any finite
subset $F$ of $E,$

$\sum_{p,q\in F}\overline{X(p)}X(q)k(p, q)\geq 0.$

Theorem 1.2. For any positive definite quadratic fonn function $K:E\cross Earrow \mathbb{C}$ , there
exists a uniquely determined reproducing kernel Hilbert space $H_{K}=H_{K}(E)$ admitting
the reproducing kernel $K$ on $E.$

2 Fundamental theorems

2.1 Basic operations on reproducing kernel Hilbert spaces

The next theorems are on fundamental operations of RKHS.

Theorem 2.1 (Restriction of RKHS). Suppose that $K:E\cross Earrow \mathbb{C}$ is a positive definite
quadratic form function on a set E. Let $E_{0}$ be a subset of E. Then the reproducing
kernel Hilbert space that $K|E_{0}\cross E_{0}:E_{0}\cross E_{0}arrow \mathbb{C}$ defines is given by

$H_{K|E_{0}.\cross E_{0}}(E_{0})=\{f\in \mathcal{F}(E_{0})$ : $f=\tilde{f}|E_{0}$ for some $\tilde{f}\in H_{K}(E)\}$ . (2.1)

Furthermore, the norm is expressed in terms of the one of $H_{K}(E)$ :

$\Vert f\Vert_{H_{K|E_{0}\cross E_{0}}(E_{0})}=\min\{\Vert\tilde{f}\Vert_{H_{K}(E)}:\tilde{f}\in H_{K}(E), f=\tilde{f}|E_{0}\}$ . (2.2)

Theorem 2.2. Let $K_{1},$ $K_{2}$ : $E\cross Earrow \mathbb{C}$ be positive definite. Set $K\equiv K_{1}+K_{2}.$

1. We have

$H_{K}(E)=\{f_{1}+f_{2}\in \mathcal{F}(E) : f_{1}\in H_{K_{1}}(E), f_{2}\in H_{K_{2}}(E)\}$

as a set. So as a linear space, we have $H_{K_{1}+K_{2}}(E)=H_{K_{1}}(E)+H_{K_{2}}(E)$ .

2. The norm of $H_{K}(E)$ has another $expre\mathcal{S}sion$ in terms of those of $H_{K_{1}}(E)$ and
$H_{K_{2}}(E)$ :

$\Vert f\Vert_{H_{K}}=f_{1}\in H_{K_{1}}(E),f2\in H_{K_{2}}(E)ff1+f2\min_{=}, \sqrt{\Vert f_{1}\Vert_{H_{K_{1}}(E)}^{2}+\Vert f_{2}\Vert_{H_{K_{2}}(E)}^{2}}$

. (2.3)
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Theorem 2.3. Let $K_{0},$ $K$ : $E\cross Earrow \mathbb{C}$ be positive definite quadratic form functions.
Then the following are equivalent:

1. The Hilbert space $H_{K_{0}}(E)$ is a subset of $H_{K}(E)$ ;

2. there exists $\gamma>0$ such that $K_{0}\ll\gamma^{2}K.$

If these conditions hold, then the embedding $H_{K_{0}}(E)\subset H_{K}(E)$ is actually continuous
and its norm is given by $M= \inf\{\gamma>0 : K_{0}\ll\gamma^{2}K\}.$

Theorem 2.4. Let $\{E_{1}, E_{2}\}$ be a partition of a set E. Suppose that we are given a
reproducing kernel $K$ on E. Denote by $K_{1},$ $K_{2}$ the restrictions of $K$ to $E_{1}\cross E_{1}$ and
$E_{2}\cross E_{2}$ respectively. Then the following are equivalent:

(1) $K|E_{1}\cross E_{2}\equiv 0$ ;

(2) $f\in H_{K}(E)\mapsto(f|E_{1}, f|E_{2})\in H_{K_{1}}(E_{1})\oplus H_{K_{2}}(E_{2})$ is an isomorphism.

If one of these conditions is fulfilled, then we have

$K(x, y)=\{\begin{array}{ll}K_{1}(x, y) x, y\in E_{1},K_{2}(x, y) x, y\in E_{2},0 otherwise.\end{array}$ (2.4)

Theorem 2.5. Let $K_{1}$ : $E_{1}\cross E_{1}arrow \mathbb{C}$ and $K_{2}$ : $E_{2}\cross E_{2}arrow \mathbb{C}$ be positive definite
quadratic form functions. Then $K_{1}\otimes K_{2}$ : $E_{1}\cross E_{2}\cross E_{1}\cross E_{2}arrow \mathbb{C}$ is a positive definite
quadratic form function and

$H_{K_{1}}(E_{1})\otimes H_{K_{2}}(E_{2})=H_{K_{1}\otimes K_{2}}(E_{1}\cross E_{2})$ . (2.5)

Theorem 2.6. Suppose that $K_{1},$ $K_{2}:E\cross Earrow \mathbb{C}$ are positive definite quadratic form
functions. Then so is the pointwise product $K\equiv K_{1}\cdot K_{2}$ : $E\cross Earrow \mathbb{C}.$

Theorem 2.7. Let $n$ be a natural number and $H_{K}(E)$ be a reproducing kernel Hilbert
space on E. Then the function $\wedge^{n}K$ , given by

$\wedge^{n}K(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n})\equiv\frac{1}{n!}\det\{K(x_{i}, y_{j})\}_{i,j=1,2,\ldots,n}$

for $x_{1},$ $x_{2}$ , . . . , $x_{n},$ $y_{1},$ $y_{2}$ , . . . , $y_{n}\in E_{f}$ is positive definite and a reproducing kernel of the
$space\wedge^{n}H_{K}(E)$ .
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2.2 Transforms of reproducing kernel Hilbert spaces

The next theorem is used to describe the inverse function of a general mapping $\varphi$ even
for those whose inverse does not exit; that is, the inverse is a multipy-valued case, -

indeed, we can consider transforms for arbitrary mappings. Positive definite quadratic

forms are preserved under arbitrary mappings, and so, we can consider the transform

of a reproducing kernel HIlbert space by any mapping. We use the following theorem:

Theorem 2.8 (Pullback of RKHS). Set

$\mathcal{H}(E)\equiv\bigcap_{p\in F}ker(ev_{\varphi(p)})\subset H_{K}(E)$
.

Denote by $\mathcal{H}^{\perp}(E)$ the orthogonal complement of $\mathcal{H}(E)$ in $H_{K}(E)$ and by $P$ the pro-

jection from $H_{K}(E)$ to $\mathcal{H}^{\perp}(E)\subset H_{K}(E)$ . Then the pullback $H_{\varphi^{*}K}(F)$ is described as

follows:
$H_{\varphi^{*}K}(F)=\{f\circ\varphi : f\in H_{K}(E)\}$ (2.6)

as a set and the inner product is given by

$\langle f\circ\varphi, g\circ\varphi\rangle_{H_{\varphi^{*}K}(F)}=\langle Pf, P, g\rangle_{H_{K}(E)}$ (2.7)

for all $f,$ $g\in H_{K}(E)$ .

2.3 Approximations and reproducing kernel Hilbert spaces

The next theorem is used to control the speed of convergence of the approximate

solutions.

Theorem 2.9 (Highlight of several points). Suppose that we are given a finite number

of points $\Theta=\{\theta_{j}\}_{j=1}^{N}\subset E$ and a positive sequence $\{\lambda_{j}\}_{j=1}^{N}$ . If we set

$A_{\Theta}\equiv\{A_{\Theta,j,j’}\}_{j,j’=1}^{N}\equiv(t\{\delta_{j,j’}+\lambda_{j}K(\theta_{j’}, \theta_{j})\}_{j,j’=1}^{N})^{-1}$

$K_{\Theta}(p, q) \equiv K(p, q)-\sum_{j,j=1}^{N}\lambda_{j}K(p, \theta_{j})A_{\Theta,j,j’}K(\theta_{j’}, q)$

for $p,$ $q\in E.$ Then $H_{K_{\Theta}}(E)=H_{K}(E)$ as a set and the inner product of $H_{K_{\Theta}}(E)$ is

given by

$\langle f, g\rangle_{H_{K_{\Theta}}(E)}=\langle f, g\rangle_{H_{K}(E)}+\sum_{j=1}^{N}\lambda_{j}f(\theta_{j})\overline{g(\theta_{j})} f, g\in H_{K}(E)$ . (2.8)

2.4 Dirac delta and reproducing kernels

We can approximate Hilbert spaces by using reproducing kernel Hilbert spaces as fol-

lows:
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Theorem 2.10. Suppose that we are given an decreasing sequence $\{K_{t}\}_{t>0}$ of positive
definition quadratic form functions satisfying

$\langle f, g\rangle_{H_{K_{t_{1}}}}=\langle f, 9\rangle_{H_{K_{t_{2}}}}$ (2.9)

for all $t_{2}>t_{1}>0$ and $f,$ $g\in H_{K_{t_{2}}}(E)$ .

1. Let $f\in H_{0}$ . If we define

$f_{t}^{*}(x)=\langle f, K_{t} x)\rangle_{H_{0}} (x\in E)$ ,

then $f_{t}^{*}\in H_{K_{t}}(E)$ for all $t>0$ , and as $t\downarrow 0,$ $f_{t}^{*}arrow f$ in the topology of $H_{0}.$

2. The space $H_{K_{t}}(E)$ is a closed subspace of $H_{0}.$

2.5 The structure of separable reproducing kernel Hilbert spaces

The following theorem is a simple consequence of the definition but this theorem is
useful when we calculate reproducing kernels.

Theorem 2.11. Let $\{v_{j}\}_{j=1}^{\infty}$ be a complete orthonormal basis in $H_{K}(E)$ . Then we
have

$K(p, q)= \sum_{j=1}^{\infty}v_{j}(p)\overline{v_{j}(q)} (p, q\in E)$ . (2.10)

The next theorem is used to create some algorithms.

Theorem 2.12. Let $H_{K}(E)$ be a separable reproducing kernel Hilbert space. Choose an
orthonormal basis $\{e_{j}\}_{j=1}^{\infty}\subset H_{K}(E)$ . If $\ell$ : $H_{K}(E)arrow \mathbb{C}$ is a bounded linear operator,
then the expression

$\ell\triangleright\triangleleft K\equiv\sum_{j=1}^{\infty}\overline{\ell(e_{j})}e_{j}$ (2.11)

converges in $H_{K}(E)$ and it does not depend on the choice of $\{e_{j}\}_{j=1}^{\infty}.$

3 Nature of the book from its preface

The theory of reproducing kernels is starting from a paper in 1921 [4] and the one in 1922
[2] which dealt with typical reproducing kernels of Szeg\"o and Bergman, and then the
theory has been developed into a large and deep theory in complex analysis by many
mathematicians. However, precisely, reproducing kernels were appeared previously
during the first decade of 20th century by S. Zaremba [5] in his work on boundary
value problems for harmonic and biharmonic functions. But he did not develop any
further theory for the reproducing property. Furthermore, in fact, we knew many

99



concrete reproducing kernels for spaces of polynomials and trigonometric functions
in much older days, as we will see in this book. Meanwhile, the general theory of
reproducing kernels was established in a complete form by N. Aronszajn [1] in 1950.
Furthermore, L. Schwartz [3], who is Fields-Medalist and founded distribution theory,

developed the general theory remarkably in 1964 with the paper of over 140 pages.

The general theory is certainly beautiful, it seems, however, that for a long time we
have overlooked the importance of the general theory of reproducing kernels. We were
not able to find an essential reason why the theory is important. Indeed, it was an
abstract theory, and from the theory, we were not able to derive any definite results and
any essential developments in mathematics. The theory by Schwartz is great, however
its importance remained unnoticed for a long time: It is still ignored.

When we consider linear mappings in the framework of Hilbert spaces, we will en-
counter in a natural way the concept of reproducing kernels; then the general theory

is not restricted to Bergman and Szeg\"o kernels, but the general theory is as important

as the concept of Hilbert spaces. It is a fundamental concept and important mathe-
matics. The general theory of reproducing kernels is based on elementary theorems on
Hilbert spaces. The theory of Hilbert spaces is the minimum core of functional analysis,
however, when the general theory is combined with linear mappings on Hilbert spaces,
it will have many relations in various fields, and its fruitful applications will spread

over to differential equations, integral equations, generalizations of the Phytagorean

theorem, inverse problems, sampling theory, nonlinear transforms in connection with
linear mappings, various operators among Hilbert spaces and other many and broad

fields. Furthermore, when we apply the general theory of reproducing kernels to the

Tikhonov regularization, it produces approximate solutions for equations on Hilbert
spaces which contain bounded linear operators. Looking from the viewpoint of com-
puter users at numerical solutions, we will see that they are fundamental and have

practical applications.

Concrete reproducing kernels like Bergman and Szeg\"o kernels will produce many
wide and broad results in complex analysis. They developed some deep theoqy and lead
to profound results in complex analysis containing several complex variables. Mean-
while, the formal general theory by Aronszajn has also favorable connections with vari-

ous fields like learning theory, support vector machines, stochastic theory and operator
theory on Hilbert spaces.

In this book, we will concentrate on the general theory of reproducing kernels de-
veloped by Aronszajn while keeping in mind the theory combined with linear mappings
and applications of the general theory to the Tikhonov regularization. We will present

many concrete applications from the viewpoint of numerical solutions for computer use.
These topics will be general and fundamental for many mathematical scientists beyond
mathematicians as in calculus and linear algebra in the undergraduate course.

One of our strong motivations for writing this book is given by the historical success
of numerical and real inversion formulas of the Laplace transform which is a famous
ill-posed and difficult problem and, in fact, we will give their mathematical theory and

formulas, as a clear evidence of definite power of the theory of reproducing kernels by
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combining the Tikhonov regularization. For the algorithm based on the theory, Hiroshi
Fujiwara made the software and we can use it through his kind guide.

For these topics, we will need background materials like integration theory, fun-
damental Hilbert space theory, the Fourier transform and the Laplace transform. We
describe the structure of this book.

In Chapter 1, we will give many concrete reproducing kernels first and in Chap-
ter 2, we develop the general theory of reproducing kernels with general and broad
applications by combining with linear mappings.

In Chapter 3, we will apply the general and global theory of reproducing kernels to
the Tikhonov regularization in a lucid manner. We stand on the viewpoint of numerical
solutions of bounded linear operator equations on Hilbert spaces for computer use in a
definite and self-contained way.

Chapter 4 intends an introduction to what Hiroshi Fujiwara did. In particular,
Fujiwara solved linear simultaneous equations with 6000 unknowns by means of dis-
cretization of a Fredholm integral equation of the second kind. This integral equation
of the second kind was derived by the Tikhonov regularization and the reproducing
kernel method in the above real inversion formula. At this moment, theoretically we
will use the whole data of the output–in fact, 6000 data. Fujiwara gave solutions in
600 digits precision with the data of 10 GB for solutions. This fact gave a great
impact to the authors. Computer power and its algorithm will be improved year by
year. Meanwhile, we can practically obtain a finite number of observation data, and so
we expect to obtain solutions in terms of a finite number of data for various forward
and inverse problems. Thanks to the power of computers, we will be able to realize
more direct and simple algorithms and so, we had included results based on a finite
number of observation data. This method will give a new discretization principle.

Chapter 5 deals with the applications to ODEs such as fundamental equations
$y”+\alpha y’+\beta y=0$ , where $\alpha$ and $\beta$ can be general functions. Sometimes, we consider
the case when the boundary condition comes into play.

As one main substance of new results, in Chapter 6 we present many concrete
results for various fundamental PDEs. Here we take up the Poisson equation, the
Laplace equation, the heat equation and the wave equation.

Similarly, in Chapter 7 we deal with integral equations. We will consider typical
singular integral equations, convolution equations, convolution integral equations and
integral equations with the mixed Toeplitz-Hankel kernel.

In Chapter 8, we refer to specially hot topics and important materials on repro-
ducirig kernels; namely, norm-inequalities, convolution inequalities, inversion of an ar-
bitrary matrix, representation of inverse mappings, identification of nonlinear systems,
sampling theory, statistical learning theory and membership problems–this will give
a new method how to catch analyticity and smoothing properties of functions by com-
puters. Furthermore, we will see basic relationships among eigenfunctions, initial value
problems for linear partial differential equations, and reproducing kernels, and we will
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refer to a new type general sampling theory with numerical experiments. In the last

two subsections, we added new fundamental results on generalized reproducing kernels,

generalized delta functions, generalized reproducing kernel Hilbert spaces and general

integral transform theory. In particular, any separable Hilbert space consisting of func-

tions may be looked as generalized reproducing kernel Hilbert spaces and the general

integral transform theory may be extended to a general framework.

Chapter 9 is an appendix of this book. In Section 9.1, we introduce the theory

of Akira Yamada discussing equality problems in nonlinear norm-inequalities in repro-

ducing kernel Hilbert spaces, indeed, we may be surprised at his general theory in the

general theory of reproducing kernels. In Section 9.2, we introduce Yamada’s unified

and generalized inequalities for Opial’s inequalities. Similar, but different generaliza-

tions were independently published by Nguyen Du Vi Nhan, Dinh Thanh Duc, and Vu

Kim Tuan, in the same year. In Section 9.3, we introduce concrete integral represen-

tations of implicit functions. We rely upon the implicit function theory guaranteeing

the existence of implicit functions. The fundamental result was obtained as a great

development of a general abstract theory of reproducing kernels.
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