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Abstract

In this work, we consider the squared slack variables approach for nonlinear semidefinite
programming (NSDP) problems. We establish the relation between the Karush-Kuhn-
Tucker points and the regularity conditions of the general NSDP problem and its refor-
mulation via slack variables. We will observe that the key to establish the equivalence
of the problems is the second-order sufficient condition.
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1 Introduction

We consider the following nonlinear semidefinite programming (NSDP) problem:

minimize $f(x)$
$x$ (P1)

subject to $G(x)\in S_{+}^{m},$

where $f:\mathbb{R}^{n}arrow \mathbb{R}$ and $G:\mathbb{R}^{n}arrow S^{m}$ are twice continuously differentiable functions, $\mathcal{S}^{m}$ is
the linear space of all real symmetric matrices of dimension $m\cross m$ , and $\mathcal{S}_{+}^{m}$ is the cone of all
positive semidefinite matrices in $\mathcal{S}^{m}$ . For simplicity, we restrict our discussion to problems
without equality constraints. Moreover, it is important to observe that this paper is just a
simple note concerning the relation between (P1) with its reformulation using squared slack
variables. For more details, including proofs of all the results, we refer to [4].
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In the nonlinear programming (NLP) context, it is well-known that the squared slack
variables can easily convert inequality constraints into equality constraints. However, this
strategy is hardly considered nowadays because it increases the dimension of the problem and
may lead to numerical instabilities [5]. Recently, Fukuda and Fukushima [2] showed that
the same approach can be done for nonlinear second-order cone programming (NSOCP)

problems. In this case, the reformulated problem does not contain conic constraints, which
is an advantage, if we consider second-order cones as objects that are difficult to deal with. In
fact, although some methods for NSOCP exist, it is nothing compared to the NLP solvers,

which tend to be more efficient and widely available. Similarly, comparing to the NLP
case, there are few efficient methods for the general nonlinear (and nonconvex) semidefinite
programming problems [7].

The squared slack variables approach can be used in the NSDP case because, like the
nonnegative orthant and the second-order cone, the cone of positive semidefinite matrices is

also a cone of squares. More precisely, $S_{+}^{m}$ can be written as

$S_{+}^{m}=\{Z\circ Z:Z\in S^{m}\},$

where $0$ is the Jordan product associated with the space $S^{m}$ , which is defined as

$W \circ Z:=\frac{WZ+ZW}{2}$

for any $W,$ $Z\in S^{m}$ . Note that actually $Z\circ Z=Z^{2}$ for any $Z\in S^{m}.$

Using the above fact, we can introduce a slack variable $Y\in S^{m}$ in (P1), so we obtain
the following reformulation:

$\min_{x}$imize $f(x)$

(P2)
subject to $G(x)-Y\circ Y=0.$

Note that it is an NLP problem with only equality constraints. Moreover, it is equivalent

to (P1) in terms of optimal points. In fact, if $(x, Y)\in \mathbb{R}^{n}\cross S^{m}$ is a global (local) minimizer
of (P2), then $x$ is a global (local) minimizer of (P1). On the other hand, if $x\in \mathbb{R}^{n}$ is

a global (local) minimizer of (P1), then there exists $Y\in \mathcal{S}^{m}$ such that $(x, Y)$ is a global

(local) minimizer of (P2). Here, we observe that in practice, we can only expect to compute

stationary points, or Karu.sh-Kuhn-Tucker (KKT) points of the problems. Because of this,
it is more important to establish the relation between the KKT points, instead of optimal

points, of (P1) and (P2), although in this case the relation is not so trivial.

2 Notations

Throughout the paper, the following notations will be used. For $x\in \mathbb{R}^{s}$ and $Y\in \mathbb{R}^{\ell\cross s},$ $x_{i}\in \mathbb{R}$

and $Y_{ij}\in \mathbb{R}$ denote the ith entry of $x$ and the $(i,j)$ entry (ith row and jth column) of $Y,$

respectively. The transpose, the Moore-Penrose pseudo-inverse, and the rank of $Y\in \mathbb{R}^{\ell\cross s}$

are denoted by $Y^{T}\in \mathbb{R}^{s\cross\ell},$
$Y^{\uparrow}\in \mathbb{R}^{s\cross\ell}$ , and rank $Y$ , respectively. If $Y$ is a square matrix, its

144



trace is denoted by $tr(Y)$ $:= \sum_{i}Y_{ii}$ . For square matrices $W$ and $Y$ of the same dimension,

their inner product is denoted by $\langle W,$ $Y\rangle$ $:=tr(W^{T}Y)$ . We will also use the same notation
$\rangle$ for the Euclidean inner product of two vectors. Moreover, given a matrix $Z\in S_{+}^{m}$ , we

will denote by $\sqrt{Z}$ the positive semidefinite square root of $Z$ , that is, $\sqrt{Z}$ satisfies $\sqrt{Z}\in \mathcal{S}_{+}^{m}$

and $\sqrt{Z}^{2}=Z.$

For any linear operator $\mathcal{G}:\mathbb{R}^{s}arrow \mathcal{S}^{\ell}$ defined by $\mathcal{G}v=\sum_{i=1}^{s}v_{i}\mathcal{G}_{i}$ with $\mathcal{G}_{i}\in S^{\ell},$ $i=1$ , . . . , $s,$

and $v\in \mathbb{R}^{s}$ , the adjoint operator $\mathcal{G}^{*}:\mathcal{S}^{\ell}arrow \mathbb{R}^{S}$ is defined by

$\mathcal{G}^{*}Z=(\langle \mathcal{G}_{1}, Z\rangle, \ldots, \langle \mathcal{G}_{s}, Z\rangle)^{T}, Z\in S^{\ell}.$

Given a mapping $\mathcal{H}:\mathbb{R}^{s}arrow \mathcal{S}^{\ell}$ , its derivative at a point $x\in \mathbb{R}^{s}$ is denoted by $\nabla \mathcal{H}(x):\mathbb{R}^{s}arrow$

$S^{\ell}$ and defined by

$\nabla \mathcal{H}(x)v=\sum_{i=1}^{s}v_{i}\frac{\partial \mathcal{H}(x)}{\partial x_{i}}, v\in \mathbb{R}^{s},$

where $\partial \mathcal{H}(x)/\partial x_{i}\in \mathcal{S}^{\ell}$ are the partial derivative matrices. Finally, for a closed convex
cone $\mathcal{K}$ , we will denote by $lin\mathcal{K}$ the largest subspace contained in $\mathcal{K}$ . Note that in this case
lin $\mathcal{K}=\mathcal{K}\cap-\mathcal{K}.$

3 KKT conditions

Let us first recall the KKT conditions of the NSDP problem (P1). Define the Lagrangian
function $L:\mathbb{R}^{n}\cross S^{m}arrow \mathbb{R}$ associated with problem (P1) as

$L(x, \Lambda):=f(x)-\langle G(x) , \Lambda\rangle,$

where $\Lambda\in \mathcal{S}^{m}$ corresponds to the Lagrange multiplier. We say that $(x, \Lambda)\in \mathbb{R}^{n}\cross S^{m}$ is a
KKT pair of problem (P1) if the following conditions are satisfied:

$\nabla f(x)-\nabla G(x)^{*}\Lambda=0,$

$\Lambda\in S_{+}^{m}$ , (1)

$G(x)\in S_{+}^{m},$

$\Lambda\circ G(x)=0,$

where we have $\nabla f(x)-\nabla G(x)^{*}\Lambda=\nabla_{x}L(x, \Lambda)$ . It can be shown that the last equality can
be replaced by $\langle\Lambda,$ $G(x)\rangle=0$ or $\Lambda G(x)=0.$

Similarly, for the equality constrained NLP problem (P2), we define the Lagrangian
function $\mathcal{L}:\mathbb{R}^{n}\cross \mathcal{S}^{m}\cross \mathcal{S}^{m}arrow \mathbb{R}$ associated with it as

$\mathcal{L}(x, Y, \Lambda) :=f(x)-\langle G(x)-Y\circ Y, \Lambda\rangle.$

So, $(x, Y, \Lambda)\in \mathbb{R}^{n}\cross \mathcal{S}^{m}\cross S^{m}$ is a KKT triple of problem (P2) if the conditions below are
satisfied:

$\nabla_{(x,Y)}\mathcal{L}(x, Y, \Lambda)=0,$

$G(x)-Y\circ Y=0.$
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Some calculations show that these conditions can be written as follows:

$\nabla f(x)-\nabla G(x)^{*}\Lambda=0,$

$\Lambda\circ Y=0,$

$G(x)-Y\circ Y=0.$

Using the above definitions, we can prove the following result. Again, we refer to [4] for
the details of the proofs.

Proposition 1. Let $(x, \Lambda)\in \mathbb{R}^{n}\cross S^{m}$ be a $KKT$ pair of problem (P1). Then, there exists
$Y\in S^{m}$ such that $(x, Y, \Lambda)$ is a $KKT$ triple of (P2).

However, the converse implication is not always true. That is, even if $(x, Y, \Lambda)$ is a KKT
triple of (P2), $(x, \Lambda)$ may fail to be a KKT pair of (P1), because the condition (1) may not
hold, i.e., $\Lambda$ is not necessarily positive semidefinite. This is actually the only obstacle for
establishing the equivalence.

Proposition 2. If $(x, Y, \Lambda)\in \mathbb{R}^{n}\cross S^{m}\cross S^{m}$ is a $KKT$ triple of (P2) such that $\Lambda$ is positive
semidefinite, then $(x, \Lambda)$ is a $KKT$ pair of (P1).

4 Equivalence between KKT conditions

Proposition 2leads us to consider conditions which ensure that the multiplier $\Lambda$ is positive
semidefinite. One of these conditions follows from the lemma below, which gives a new
characterization of positive semidefinite matrices, taking into account the rank information.

Lemma 3. Let $\Lambda\in S^{m}$ . The following statements are equivalent:

(a) $\Lambda\in S_{+}^{m}$ ;

(b) There exists $Y\in S^{m}$ such that $Y\circ\Lambda=0$ and $Y\in\Phi(\Lambda)$ , where

$\Phi(\Lambda):=\{Y\in S^{m}:\langle WoW,$ $\Lambda\rangle>0$ for all $0\neq W\in S^{m}$ with $Y\circ W=0\}$ . (2)

For any $Y$ satisfying the conditions in (b) , we have rank $\Lambda=m$ –rank Y. Moreover, if $\sigma$

and $\hat{\sigma}$ are nonzero eigenvalues of $Y$ , then $\sigma+\hat{\sigma}\neq 0.$

Proposition 4. Assume that $(x, Y, \Lambda)\in \mathbb{R}^{n}\cross S^{m}\cross S^{m}$ is a $KKT$ triple of (P2) such
that $Y\in\Phi(\Lambda)$ , where $\Phi(\Lambda)$ is the set defined in (2). Then, $(x, \Lambda)$ is a $KKT$ pair of (P1)
satisfying the strict complementarity condition, i. e.,

rank $G(x)+$ rank $\Lambda=m.$

The above result shows that the KKT pair of (P1) also satisfies the strict complementarity

condition. Moreover, it can be shown that the second-order sufficient condition of (P2)

can also guarantee the same result. In fact, the idea for the characterization of positive
definiteness given in Lemma 3 comes from the second-order conditions of (P2).
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Lemma 5. Let $(x, Y, \Lambda)\in \mathbb{R}^{n}\cross \mathcal{S}^{m}\cross S^{m}$ be a $KKT$ triple ofproblem (P2). The second-order
sufficient condition (SOSC-NLP) holds if

$\langle\nabla_{x}^{2}L(x, \Lambda)v, v\rangle+2\langle W\circ W, \Lambda\rangle>0$

for every nonzero $(v, W)\in \mathbb{R}^{n}\cross S^{m}$ such that $\nabla G(x)v-2Y\circ W=0$ . Recall that $\nabla_{x}^{2}L(x, \Lambda)$

is the Hessian of the Lagrangian function associated to problem (P1) with respect to $x.$

Corollary 6. Assume that SOSC-NLP is satisfied at a $KKT$ triple $(x, Y, \Lambda)\in \mathbb{R}^{n}\cross \mathcal{S}^{m}\cross \mathcal{S}^{m}$

of problem (P2). Then $(x, \Lambda)$ is a $KKT$ pair for (P1) which satisfies the strict complemen-
tarity condition.

The converse implication is also true from Proposition 1, and under the strict comple-
mentarity condition.

Proposition 7. Suppose that $(x, \Lambda)\in \mathbb{R}^{n}\cross \mathcal{S}^{m}$ is a $KKT$ pair of (P1) which satisfies the
strict complementarity condition. Then there exists some $Y\in\Phi(\Lambda)$ such that $(x, Y, \Lambda)$ is a
$KKT$ triple of (P2).

5 Analysis of second-order sufficient conditions

In this section, we examine the relations between KKT points of problems (P1) and (P2) that
satisfy second-order sufficient conditions. Before that, we also show that the so-called non-
degeneracy condition of (P1) is equivalent to the linear independence constraint qualification
(LICQ) of (P2).

Proposition 8. If $(x, Y)\in \mathbb{R}^{n}\cross S^{rn}$ satisfies LICQ for (P2), then $x$ is nondegenerate for
(P1), i. e., the following equality holds:

$S^{m}=lin\mathcal{T}_{S_{+}^{m}}(G(x))+{\rm Im}\nabla G(x)$ ,

where ${\rm Im}\nabla G(x)$ denotes the image of the linear map $\nabla G(x)$ , and $\mathcal{T}s_{+}^{m}(G(x))$ denotes the
tangent cone of $S_{+}^{m}$ at $G(x)$ . On the other hand, if $x$ satisfies nondegeneracy and if $Y=$

$\sqrt{G(x)}$, then $(x, Y)$ satisfies LICQ for (P2).

Next, we will refine the result of Corollary 6, taking into account the second-order suffi-
cient condition of (P1), which is defined below.

Definition 9. Let $(x, \Lambda)\in \mathbb{R}^{n}\cross S^{m}$ be a $KKT$ pair of problem (P1). Define $H(x, \Lambda)\in S^{m}$

as a matrix with elements

$H(x, \Lambda)_{ij}:=2$ tr $( \frac{\partial G(x)}{\partial x_{i}}G(x)^{\dagger}\frac{\partial G(x)}{\partial x_{j}}\Lambda)$

for $i,j=1$ , . . . , $n$ . We say that the second-order sufficient condition (SOSC-SDP) holds if
$\langle(\nabla_{x}^{2}L(x, \Lambda)+H(x, \Lambda))d, d\rangle>0$

for all nonzero $d\in \mathbb{R}^{n}$ such that $\nabla G(x)d\in \mathcal{T}_{\mathcal{S}_{+}^{m}}(G(x))$ and $\langle\nabla f(x)$ , $d\rangle=0.$
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Theorem 10. Assume that $(x, Y, \Lambda)\in \mathbb{R}^{n}\cross S^{m}\cross S^{m}$ is a $KKT$ triple of (P2) satisfying

SOSC-NLP. Then $(x, \Lambda)$ is a $KKT$ pair of (P1) that satisfies strict complementarity and

SOSC-SDP.

Returning to the converse implication, we have the following result from Proposition 7
and by using the second-order sufficient condition.

Theorem 11. Assume that $(x, \Lambda)\in \mathbb{R}^{n}\cross \mathcal{S}^{m}$ is a $KKT$ pair for (P1) satisfying SOSC-SDP
and the strict complementarity condition. Then, there exists $Y\in S^{m}$ such that $(x, Y, \Lambda)$ is

a $KKT$ triple for (P2) satisfying SOSC-NLP.

6 Final remarks

We have analyzed the use of squared slack variables in the context of NSDP. We have

shown that, under the second-order sufficient conditions and the regularity conditions, KKT

points of the original and the reformulated problems are essentially equivalent. It is worth
mentioning that the point of view considered in [4] is different from the one given here. In

fact, in such a paper, the squared slack variables reformulation was used as a tool to derive

second-order optimality conditions of NSDP problems. This point of view also makes sense if
we consider important to find alternative ways for obtaining these not trivial conditions. See
the starting work from Shapiro [6], and the subsequent ones from Forsgren [1] and Jarre [3].
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