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1 Introduction

We provide a brief tutorial how to apply the Laplace-Carson transform (LCT) to option pricing.

The LCT is a variant of the Laplace transform (LT), and it is named after John Renshaw Carson

(1886-1940), a telecommunication engineer at AT&T Bell Labs. The LCT has been applied

particularly in the fields of physics and railway engineering. Integral transforms such as Fourier,

Fourier-Bessel, Mellin, Hilbert and Laplace are powerful tools for analyzing dynamical systems

formulated by ordinary/partial differential equations. Option pricing problem formulated by a

partial differential equation (PDE) is a natural application of the integral transforms.

Among those integral transforms, we primarily focus on the LCT and its applications to

pricing various American options in this tutorial, because the LCT is equivalent to the price

of an American option with random maturity; see Carr [7]. Carr’s procedure is referred to as

the randomization approach, which is a special case in the general framework of randomization

of Feller [14, Chapter II]. From the view point of a tutorial, we particularly emphasize the

importance of an elementary European vanilla option in pricing more complex options.

This tutorial is organized as follows: In Section 2, we define the LCT formally and summarize

its basic properties. In Section 3, we introduce a basic stochastic framework of the underlying

asset process. In Section 4, the main section of this tutorial, we describe the LCT approach,

starting from European vanilla options and going to American vanilla options, exchange options,

Russian options, and continuous-installment options. Further extensions to barrier options

(Avram et al. [5], Petrella and Kou [38]), lookback options (Kimura [26]), Asian options (Geman

and Yor [17]) and other derivatives (Hayashi et al. [19]) are possible, but they are omitted due

to the page restriction. Finally, in Section 5, we give issues on deck for the LCT approach to

option pricing.

2 Laplace-Carson transform

Let $f(x)$ be a continuous real-valued function for $x\in \mathbb{R}+=[0, \infty$ ), and assume that $|f(x)|\leq$

$Ae^{Bx}(x\geq 0)$ for constants $A$ and $B$ . Then, for $\lambda\in \mathbb{C}({\rm Re}(\lambda)>B)$ , define the LT of $f$ as

$\mathcal{L}[f(x)](\lambda)\equiv\int_{0}^{\infty}e^{-\lambda x}f(x)dx$ . (1)
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For $f(x)$ specified above, define its LCT as

$\mathcal{L}C[f(x)](\lambda)\equiv\lambda \mathcal{L}[f(x)](\lambda)=\int_{0}^{\infty}\lambda e^{-\lambda x}f(x)dx$ . (2)

Denote $\mathcal{L}C[f(x)](\lambda)=f^{*}(\lambda)$ for simplicity. For a random variable $X\sim Exp(\lambda)$ , the LCT

can be interpreted as $f^{*}(\lambda)=E[f(X)]$ . For a constant $A$ , the LCT is an identity map, i.e.,

$\mathcal{L}C[A](\lambda)=A$ , whereas $\mathcal{L}[A](\lambda)=A/\lambda$ . This invariant property of the LCT is important to

generate much simpler formulas for option prices than the LT.

From the definition (2), we can derive some useful identities of the LCT, in the same manner
as for the LT case; check the differences between the LT and LCT.

Proposition 2.1 (Useful Identities)

1. $\mathcal{L}C[\frac{d}{dx}f(x)](\lambda)=\lambda(f^{*}(\lambda)-f(0+))$

2. $\mathcal{L}C[f^{(n)}(x)](\lambda)=\lambda^{n}f^{*}(\lambda)-\sum_{k=0}^{n-1}\lambda^{n-k}f^{(k)}(0+)$ , $n\geq 1$

3. $\mathcal{L}C[\int_{0}^{x}f(y)dy](\lambda)=\frac{1}{\lambda}f^{*}(\lambda)$

4. $\mathcal{L}C[\frac{f(x)}{x}](\lambda)=\lambda\int_{\lambda}^{\infty}\frac{f^{*}(s)}{s}ds$

5. $\mathcal{L}C[f(x-a)1_{\{x\geq a\}}(x)](\lambda)=e^{-a\lambda}f^{*}(\lambda)$ , $a>0$

6. $\mathcal{L}C[e^{ax}f(x)](\lambda)=\frac{\lambda}{\lambda-a}f^{*}(\lambda-a)$

7. $\mathcal{L}C[f(\frac{x}{a})](\lambda)=f^{*}(a\lambda)$ , $a>0$

8. $\mathcal{L}C[\int_{0}^{x}f_{1}(y)f_{2}(x-y)dy](\lambda)=\frac{1}{\lambda}f_{1}^{*}(\lambda)f_{2}^{*}(\lambda)$

Proposition 2.2 (Bromwich Integral)

$f(x)= \mathcal{L}C^{-1}[f^{*}(\lambda)](x)=\frac{1}{2\pi i}\int_{a-i\infty}^{a+i\infty}e^{\lambda x}\frac{f^{*}(\lambda)}{\lambda}d\lambda=\mathcal{L}^{-1}[\frac{f^{*}(\lambda)}{\lambda}](x) , x>0$ , (3)

where $a$ is a real number such that the contour path of integration is in the region of convergence
of $f^{*}(\lambda)$ .

Proposition 2.3 (Abelian Theorem)

$\lim_{xarrow 0}f(x)=\lim_{\lambdaarrow\infty}f^{*}(\lambda)$ , (4)

$\lim_{xarrow\infty}f(x)=\lim_{\lambdaarrow 0}f^{*}(\lambda)$ . (5)
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3 Basic Framework

For an economy with finite time period $[0, T]$ , consider an underlying asset with price process

$(S_{t})_{t\geq 0}$ . For given $S_{0}$ , assume that $(S_{t})_{t\geq 0}$ is a risk-neutralized diffusion process with the Black-

Scholes Merton dynamics

$\frac{dS_{t}}{S_{t}}=(r-\delta)dt+\sigma dW_{t}, t\in[0, T]$ , (6)

where $r>0$ is the risk-free rate of interest, $\delta\geq 0$ is the continuous dividend rate, and $\sigma>0$ is the

volatility coefficient of $(S_{t})_{t\geq 0}$ . Assume that all of these coefficients $(r, \delta, \sigma)$ are constant. $(W_{t})_{t\geq 0}$

denotes a one-dimensional standard Brownian motion process defined on a filtered probability

space $(\Omega, (\mathcal{F}_{t})_{t\geq 0}, \mathcal{F}, \mathbb{P})$ , where $(\mathcal{F}_{t})_{t\geq 0}$ is the natural filtration corresponding to $(W_{t})_{t\geq 0}$ , the

probability measure $\mathbb{P}$ is chosen so that each of assets has mean rate of return $r$ , and the

conditional expectation $\mathbb{E}_{t}[\cdot]\equiv \mathbb{E}[\cdot|\mathcal{F}_{t}]$ is calculated under the risk-neutral probability measure
$\mathbb{P}.$

4 Vanilla Options [24]

4.1 European options

Consider a European call option written on $(S_{t})_{t\geq 0}$ . Let

$c(t, S_{t})\equiv c(t, S_{t};K, r, \delta)$

denote the value of the European call option at time $t\in[0, T]$ , which has strike price $K$ and

maturity date $T$ . Then, it has been well known that

$c(t, S_{t})=\mathbb{E}_{t}[e^{-(T-t)}(S_{T}-K)^{+}]$

$=S_{t}e^{-\delta\tau}\Phi(d_{+}(S_{t}, K, \tau))-Ke^{-r\tau}\Phi(d_{-}(S_{t}, K, \tau$

where $\tau=T-t,$ $\Phi(\cdot)$ is the standard normal cdf, and

$d_{\pm}(x, y, \tau)=\frac{\log(x/y)+(r-\delta\pm\frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}}.$

Let $\mathcal{D}=[0, T]\cross \mathbb{R}+andS\equiv S_{t}$ for abbreviation. Then, the call value $c(t, S)$ satisfies the

Black-Scholes-Merton PDE

$\frac{\partial c}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}c}{\partial S^{2}}+(r-\delta)S\frac{\partial c}{\partial S}-rc=0, (t, S)\in \mathcal{D}$ , (7)

with the boundary conditions

$\lim_{Sarrow 0}c(t, S)=0$ and $\lim_{Sarrow\infty}\frac{\partial c}{\partial S}<\infty$ , (8)

and the terminal condition

$c(T, S)=(S-K)^{+}.$
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For the remaining time to maturity $\tau=T-t$ , define the time-reversed value

$\tilde{c}(\tau, S)=c(T-\tau, S)=c(t, S)$ ,

and its LCT with respect to $\tau$ as

$c^{*}( \lambda, S)=\mathcal{L}C[\tilde{c}(\tau, S)](\lambda)=\int_{0}^{\infty}\lambda e^{-\lambda\tau}\tilde{c}(\tau, S)d\tau.$

Then, the LCT $c^{*}(\lambda, S)$ satisfies the ordinary differential equation (ODE)

$\frac{1}{2}\sigma^{2}S^{2}\frac{dc^{*}}{dS^{2}}+(r-\delta)S\frac{dc^{*}}{dS}-(\lambda+r)c^{*}+\lambda(S-K)^{+}=0$ , (9)

together with the boundary conditions

$\lim_{Sarrow 0}c^{*}(\lambda, S)=0$ and $\lim_{Sarrow\infty}\frac{dc^{*}}{dS}<\infty$ . (10)

Solving the ODE (9) with (10) and simplifying the terms, we have

Theorem 4.1 The $LCTc^{*}(\lambda, S)$ for the European vanilla call option value is given by

$c^{*}(\lambda, S)=\{\begin{array}{ll}\xi_{1}(S) , S<K\xi_{2}(S)+\frac{\lambda S}{\lambda+\delta}-\frac{\lambda K}{\lambda+r}, S\geqK,\end{array}$

where for $i=1$ , 2

$\xi_{i}(S)=_{\theta_{i}(\theta_{i}-1)(\theta_{1}-\theta_{2})}^{\lambda K}\frac{2}{\sigma^{2}}(\frac{S}{K})^{\theta_{i}}$

and $\theta_{i}\equiv\theta_{i}(\lambda;r, \delta, \sigma^{2})(\theta_{1}>1$ and $\theta_{2}<0)$ are two real roots of the quadratic equation

$\frac{1}{2}\sigma^{2}\theta^{2}+(r-\delta-\frac{1}{2}\sigma^{2})\theta-(\lambda+r)=0.$

Proof. See Kimura [24, Theorem 3.2]. The expression for $\xi_{i}(S)$ given here is actually simpler

than [24], using the relations $\lambda+r=-\frac{1}{2}\sigma^{2}\theta_{1}\theta_{2}$ and $r- \delta=-\frac{1}{2}\sigma^{2}(\theta_{1}+\theta_{2}-1)$ . $\square$

Let $p(t, S)$ denote the European put option value associated with $c(t, S)$ , and denote its

time-reversed value by $\tilde{p}(\tau, S)$ . Then, we obtain

Theorem 4.2 The $LCTp^{*}(\lambda, S)=\mathcal{L}C\lceil\tilde{p}(\tau, S)$ ] ( $\lambda$ ) for the European vanilla put option value is

given by

$p^{*}(\lambda, S)=\{\begin{array}{ll}\xi_{1}(S)+\frac{\lambda K}{\lambda+r}-\frac{\lambda S}{\lambda+\delta}, S<K\xi_{2}(S) , S\geq K.\end{array}$

Corollary 4.3 Between $c^{*}(\lambda, S)$ and $p^{*}(\lambda, S)$ , there exists a relation such that

$c^{*}( \lambda, S)-p^{*}(\lambda, S)=\frac{\lambda S}{\lambda+\delta}-\frac{\lambda K}{\lambda+r}$ (11)

for $S\geq 0$ , which is the $LCT$ version of the put-call parity relation

$c(t, S)-p(t, S)=Se^{-\delta(T-t)}-Ke^{-r(T-t)}$ . (12)
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4.2 American options

Consider the associated American call option written on $(S_{t})_{t\geq 0}$ . Let

$C(t, S_{t})\equiv C(t, S_{t};K, r, \delta)$

denote the value of the American call option at time $t\in[0, T]$ . Then, the value $C(t, S_{t})$ is given

by solving an optimal stopping problem

$C(t, S_{t})= ess\sup_{\tau_{e}\in[t,T]}\mathbb{E}_{t}[e^{-r(\tau_{e}-t)}(S_{\tau_{e}}-K)^{+}],$

where $\tau_{e}$ is a stopping time of the filtration $(\mathcal{F}_{t})_{t\geq 0}$ and the random variable $\tau_{e}^{*}\in[t, T]$ is called

an optimal stopping time if it gives the supremum value of $C(t, S_{t})$ .
Solving the optimal stopping problem is equivalent to finding the points $(t, S_{t})$ for which early

exercise is optimal. Let $\mathcal{E}$ and $C$ denote the exercise region and continuation region, respectively.

The exercise region $\mathcal{E}$ is defined by

$\mathcal{E}=\{(t, S_{t})\in \mathcal{D}|C(t, S_{t})=(S_{t}-K)^{+}\}.$

Of course, the continuation region $C$ is the complement of $\mathcal{E}$ in $\mathcal{D}$ . The boundary that separates
$\mathcal{E}$ from $C$ is referred to as the early exercise boundary (EEB), which is defined by

$B_{c}(t)= \sup\{S_{t}\in \mathbb{R}+|C(t, S_{t})=(S_{t}-K)^{+}\}, t\in[O, T].$

Mckean [35] showed that $C(t, S)$ and $B_{c}(t)$ can bejointly obtained by solving a free boundary

problem, which is specified by the Black-Scholes-Merton PDE

$\frac{\partial C}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}C}{\partial S^{2}}+(r-\delta)S\frac{\partial C}{\partial S}-rC=0, (t, S)\in C$ , (13)

together with the boundary conditions

$\lim_{Sarrow 0}C(t, S)=0$

$\lim_{Sarrow B_{c}(t)}C(t, S)=B_{c}(t)-K$
(14)

$\lim_{Sarrow B_{c}(t)}\frac{\partial C}{\partial S}=1,$

and the terminal condition

$C(T, S)=(S-K)^{+}$ . (15)

Using (13) through (15), we can derive an ODE for the LCT $C^{*}(\lambda, S)=\mathcal{L}C[\tilde{C}(\tau, S)](\lambda)$ , from

which we obtain

Theorem 4.4 The $LCTC^{*}(\lambda, S)$ for the American vanilla call option value is given by

$C^{*}(\lambda, S)=\{\begin{array}{ll}S-K, S\geq B_{c}^{*}c^{*}(\lambda, S)+\pi_{c}^{*}(\lambda, S) , S<B_{c}^{*},\end{array}$
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where

$\pi_{c}^{*}(\lambda, S)=\frac{1}{\theta_{1}}\{\frac{\delta}{\lambda+\delta}B_{c}^{*}-\theta_{2}\xi_{2}(B_{c}^{*})\}(\frac{S}{B_{c}^{*}})^{\theta_{1}}$ $S<B_{c}^{*},$

and $B_{c}^{*}\equiv B_{c}^{*}(\lambda)=\mathcal{L}C[\tilde{B}_{c}(\tau)](\lambda)(\geq K)$ is a unique positive solution of the functional equation

$\lambda(\frac{B_{c}^{*}}{K})^{\theta_{2}}+\delta\theta_{2}\frac{B_{c}^{*}}{K}+r(1-\theta_{2})=0$ . (16)

Corollary 4.5 For $S<B_{c}^{*},$

$\Delta_{\pi_{c}}^{*}\equiv \mathcal{L}C[\frac{\partial\tilde{\pi}_{c}}{\partial S}](\lambda)=\frac{1}{S}\{\frac{\delta}{\lambda+\delta}B_{c}^{*}-\theta_{2}\xi_{2}(B_{c}^{*})\}(\frac{S}{B_{c}^{*}})^{\theta_{1}}>0,$

$\Gamma_{\pi_{c}}^{*}\equiv \mathcal{L}C[\frac{\partial^{2}\tilde{\pi}_{c}}{\partial S^{2}}](\lambda)=\frac{\theta_{1}-1}{S^{2}}\{\frac{\delta}{\lambda+\delta}B_{c}^{*}-\theta_{2}\xi_{2}(B_{c}^{*})\}(\frac{S}{B_{C}^{*}})^{\theta_{1}}>0,$

$\Theta_{\pi_{c}}^{*}\equiv-\mathcal{L}C[\frac{\partial\tilde{\pi}_{c}}{\partial\tau}](\lambda)=-\frac{\lambda}{\theta_{1}}\{\frac{\delta}{\lambda+\delta}B_{C}^{*}-\theta_{2}\xi_{2}(B_{c}^{*})\}(\frac{S}{B_{c}^{*}})^{\theta_{1}}<0.$

For the put case, we also have

Theorem 4.6 The $LCTP^{*}(\lambda, S)$ for the American vanilla put option value is given by

$P^{*}(\lambda, S)=\{\begin{array}{ll}K-S, S\leq B_{p}^{*}p^{*}(\lambda, S)+\pi_{p}^{*}(\lambda, S) , S>B_{p}^{*},\end{array}$

where

$\pi_{p}^{*}(\lambda, S)=-\frac{1}{\theta_{2}}\{\frac{\delta}{\lambda+\delta}B_{p}^{*}+\theta_{1}\xi_{1}(B_{p}^{*})\}(\frac{S}{B_{p}^{*}})^{\theta_{2}} S>B_{p}^{*},$

and $B_{p}^{*}\equiv B_{p}^{*}(\lambda)=\mathcal{L}C[\tilde{B}_{p}(\tau)](\lambda)(\leq K)$ is a unique positive solution of the functional equation

$\lambda(\frac{B_{p}^{*}}{K})^{\theta_{1}}+\delta\theta_{1}\frac{B_{p}^{*}}{K}+r(1-\theta_{1})=0$ . (17)

Corollary 4.7 For $S>B_{p}^{*},$

$\Delta_{\pi_{p}}^{*}\equiv \mathcal{L}C[\frac{\partial\tilde{\pi}_{p}}{\partial S}](\lambda)=-\frac{1}{S}\{\frac{\delta}{\lambda+\delta}B_{p}^{*}+\theta_{1}\xi_{1}(B_{p}^{*})\}(\frac{S}{B_{p}^{*}})^{\theta_{2}}<0,$

$\Gamma_{\pi_{p}}^{*}\equiv \mathcal{L}C[\frac{\partial^{2}\tilde{\pi}_{p}}{\partial S^{2}}](\lambda)=\frac{1-\theta_{2}}{S^{2}}\{\frac{\delta}{\lambda+\delta}B_{p}^{*}+\theta_{1}\xi_{1}(B_{p}^{*})\}(\frac{S}{B_{p}^{*}})^{\theta_{2}}>0,$

$\Theta_{\pi_{p}}^{*}\equiv-\mathcal{L}C[\frac{\partial\overline{\pi}_{p}}{\partial\tau}](\lambda)=\frac{\lambda}{\theta_{2}}\{\frac{\delta}{\lambda+\delta}B_{p}^{*}+\theta_{1}\xi_{1}(B_{p}^{*})\}(\frac{S}{B_{p}^{*}})^{\theta_{2}}<0.$

McDonald [34] proved that a symmetric relation holds between the call and put values, i. e.,

$C(t, S_{t};K, r, \delta)=P(t, K;S_{t}, \delta, r)$ . (18)

Also, between the EEBs $B_{c}(t)\equiv B_{c}(t;r, \delta)$ and $B_{p}(t)\equiv B_{p}(t;r, \delta)$ , Carr and Chesney [6] proved

a symmetric relation

$B_{C}(t;r, \delta)=\frac{K^{2}}{B_{p}(t;\delta,r)}, t\in[0, T]$ (19)
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For the LCTs of the option values and EEBs, there exist symmetric relations similar to (18) and

(19); see Kimura [29, Theorem 1] for the proof.

Theorem 4.8

1. Between the LCTs $C^{*}(\lambda, S)\equiv C^{*}(\lambda, S;K, r, \delta)$ and $P^{*}(\lambda, S)\equiv P^{*}(\lambda, S;K, r, \delta)$ , there

exists a symmetric relation such that

$C^{*}(\lambda, S;K, r, \delta)=P^{*}(\lambda, K;S, \delta, r)$ . (20)

2. Between the LCTs $B_{c}^{*}(\lambda)\equiv B_{c}^{*}(\lambda;r, \delta)$ and $B_{p}^{*}(\lambda)\equiv B_{p}^{*}(\lambda_{|r}, \delta)$ , there exists a symmetric

relation such that

$B_{c}^{*}(\lambda;r, \delta)B_{p}^{*}(\lambda;\delta, r)=K^{2}$ . (21)

With the aid of Abelian theorem in Proposition 2.3, we can derive some asymptotic results

for the LCTs as follows:

Proposition 4.1 For the EEBs of the American call and put options, we have

$B_{c}(T)= \max(\frac{r}{\delta}, 1)K$ and $B_{p}(T)= \min(\frac{r}{\delta}, 1)K.$

Proposition 4.2

1. For the time-reversed EEBs,

$\lim_{\tauarrow\infty}\tilde{B}_{c}(\tau)\equiv\overline{B}_{c}=\frac{r}{\delta}\frac{\theta_{2}^{o}-1}{\theta_{2}^{o}}K=\frac{\theta_{1}^{o}}{\theta_{\mathring{1}}-1}K$ , (22)

$\lim_{\tauarrow\infty}\tilde{B}_{p}(\tau)\equiv\underline{B}_{p}=\frac{r}{\delta}\frac{\theta_{1}^{o}-1}{\theta_{\mathring{1}}}K=\frac{\theta_{\mathring{2}}}{\theta_{\mathring{2}}-1}K$ , (23)

where $\theta_{i}^{o}=\lim_{\lambdaarrow 0}\theta_{i}(\lambda)$ .

2. For the time-reversel values,

$\lim_{\tauarrow\infty}\tilde{C}(\tau, S)=\overline{\frac{B_{c}}{\theta_{\mathring{1}}}}(\frac{S}{\overline{B}_{c}})^{\theta_{\mathring{1}}} S<\overline{B}_{c}$ , (24)

$\lim_{\tauarrow\infty}\tilde{P}(\tau, S)=-\frac{\underline{B}_{p}}{\theta_{\mathring{2}}}(\frac{S}{\underline {}B_{p}})^{\theta_{\mathring{2}}} S>\underline{B}_{p}$ . (25)

5 Exchange Options [30]

An exchange option is a simple contingent claim written on two assets, which gives its holder

the right to exchange one asset for another. European prototypes of the exchange option were
independently introduced by Fischer [15] and Margrabe [31], which are special cases of a general

European exchange option (EEO) studied by McDonald and Siegel [32]. For the perpetual

American exchange option (AEO), McDonald and Siegel [33] obtained explicit formulas for the
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Figure 1: Early exercise boundaries $B_{p}(t)(t\in[0, T])$ for American put options $(T=1,$ $K=100,$

$r=0.05,$ $\delta=0.02$ , 0.05, 0.08, $\sigma=0.2)$

option value and the early exercise boundary. There has been, however, insufficient research on

the finite-lived AEO, compared with the standard American option written on a single asset.

For an economy with finite time period $[0, T]$ , consider a pair of assets with price processes
$(S_{t}^{1})_{t\geq 0}$ and $(S_{t}^{2})_{t\geq 0}$ . For $S_{0}^{i}(i=1,2)$ given, assume that $(S_{t}^{\acute{l}})_{t\geq 0}$ is a risk-neutralized diffusion

process described by the SDE

$\frac{dS_{t}^{i}}{S_{t}^{i}}=(r-\delta_{i})dt+\sigma_{i}dW_{t}^{i}, t\in[0, T]$ , (26)

where $\delta_{i}\geq 0$ is the continuous dividend rate of asset $i$ , and $\sigma_{i}>0$ is the volatility coefficient

of $(S_{t}^{i})_{t\geq 0}$ . Assume that all of these coefficients $(r, \delta_{i}, \sigma_{i})$ are constant. In the SDE for $(S_{t}^{i})_{t\geq 0},$

$(W_{t}^{i})_{t\geq 0}(i=1,2)$ denote one-dimensional standard Brownian motion processes with constant

correlation $\rho(|\rho|<1)$ , defined on a filtered probability space $(\Omega, (\mathcal{F}_{t})_{t\geq 0}, \mathcal{F}, \mathbb{P})$ , where $(\mathcal{F}_{t})_{t\geq 0}$

is the natural filtration corresponding to $(W_{t}^{1}, W_{t}^{2})_{t\geq 0}$ , and the probability measure $\mathbb{P}$ is chosen

so that each of assets has mean rate of return $r.$

For these two assets, consider an option to exchange one asset for another with payoff

$(S_{t}^{2}-S_{t}^{1})^{+}=S_{t}^{1}(S_{t}-1)^{+}$ , where $S_{t} \equiv\frac{S_{t}^{2}}{S_{t}^{1}}$

upon exercise. With numeraire $S_{t}^{1}e^{\delta_{1}t}$ , define the equivalent measure $\mathbb{Q}$ on $\mathcal{F}_{T}$ by

$\frac{d\mathbb{Q}}{d\mathbb{P}}|_{\mathcal{F}_{T}}=\exp\{-\frac{1}{2}\sigma_{1}^{2}T+\sigma_{1}W_{T}^{1}\}$ . (27)

By It\^o’s lemma, $(S_{t})_{t\geq 0}$ under $\mathbb{Q}$ has the dynamics

$\frac{dS_{t}}{S_{t}}=(\delta_{1}-\delta_{2}-\rho\sigma_{1}\sigma_{2}+\sigma_{1}^{2})dt+\sigma_{2}dW_{t}^{2}-\sigma_{1}dW_{t}^{1}.$

By the Girsanov theorem, $(\hat{W}_{t}^{i})_{t\geq 0}(i=1,2)$ defined by

$d\hat{W}_{t}^{1}=dW_{t}^{1}-\sigma_{1}dt, d\hat{W}_{t}^{2}=dW_{t}^{2}-\rho\sigma_{1}dt$
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are Brownian motion processes under $\mathbb{Q}$ , and hence $(W_{t})_{t\geq 0}$ defined by

$dW_{t}=\frac{1}{\sigma}(\sigma_{2}d\hat{W}_{t}^{2}-\sigma_{1}d\hat{W}_{t}^{1})$

is also a Brownian motion under $\mathbb{Q}$ , where $\sigma=\sqrt{\sigma_{1}^{2}-2\rho\sigma_{1}\sigma_{2}+\sigma_{2}^{2}}$ . Hence, under the measure
$\mathbb{Q}$ , we obtain the SDE

$\frac{dS_{t}}{S_{t}}=(\delta_{1}-\delta_{2})dt+\sigma dW_{t}$ , (28)

which means that $(S_{t})_{t\geq 0}$ is a geometric Brownian motion with drift $\delta_{1}-\delta_{2}$ and volatility $\sigma.$

From the relation $(S_{t}^{2}-S_{t}^{1})^{+}=S_{t}^{1}(S_{t}-1)^{+}$ , the exchange option is equivalent to $S^{1}$ vanilla call

options with unit strike, written on a single underlying asset with continuous dividend rate $\delta_{2}$

and volatility $\sigma$ , in a financial market with interest rate $\delta_{1}.$

5.1 European option

Let

$e(t, S_{t}^{1}, S_{t}^{2})=\mathbb{E}_{t}[e^{-r(T-t)}(S_{T}^{2}-S_{T}^{1})^{+}]$

denote the value of the EEO at time $t\in[0, T]$ with maturity date $T$ . Then, by the change of

numeraire, we have the McDonald and Siegel formula [32]:

$e(t, S_{t}^{1}, S_{t}^{2})=S_{t}^{1}\mathbb{E}_{t}^{\mathbb{Q}}[e^{-\delta_{1}\tau}(S_{T}-1)^{+}]=S_{t}^{1}c(t, S_{t};1, \delta_{1}, \delta_{2})$

$=S_{t}^{1}\{S_{t}e^{-\delta_{2}\tau}\Phi(d_{+}^{e}(S_{t}, 1, \tau))-e^{-\delta_{1}\tau}\Phi(d_{-}^{e}(S_{t}, 1, \tau))\}$

$=S_{t}^{2}e^{-\delta_{2}\tau}\Phi(d_{+}^{e}(S_{t}^{2}, S_{t}^{1}, \tau))-S_{t}^{1}e^{-\delta_{1}\tau}\Phi(d_{-}^{e}(S_{t}^{2}, S_{t}^{1}, \tau$ (29)

where $\tau=T-t$ , and

$d_{\pm}^{e}(x, y, \tau)=\frac{\log(x/y)+(\delta_{1}-\delta_{2}\pm\frac{1}{2}\sigma^{2})\tau}{\sigma\sqrt{\tau}}.$

5.2 American option

Let $E(t, S_{t}^{1}, S_{t}^{2})$ denote the value of the AEO at time $t\in[0, T]$ with maturity date $T$ . In the

absence of arbitrage opportunities, the value $E(t, S_{t}^{1}, S_{t}^{2})$ is a solution of the optimal stopping

problem

$E(t, S_{t}^{1}, S_{t}^{2})= ess\sup_{\tau_{e}\in[t,T]}\mathbb{E}_{t}[e^{-r(\tau_{e}-t)}(S_{\tau_{e}}^{2}-S_{\tau_{e}}^{1})^{+}].$

Under the measure $\mathbb{Q}$ , we have

$E(t, S_{t}^{1}, S_{t}^{2})=S_{t}^{1} ess\sup \mathbb{E}_{t}^{\mathbb{Q}}[e^{-\delta_{1}(\tau_{e}-t)}(S_{\tau_{e}}-1)^{+}]=S_{t}^{1}C(t, S_{t})$ ,
$\tau_{e}\in[t,T]$

where $C(t, S_{t})=C(t, S_{t};1, \delta_{1}, \delta_{2})$ is the value of an American vanilla call option with unit strike,

written on an underlying asset with dividend rate $\delta_{2}$ and volatility $\sigma$ , in a market with interest

rate $\delta_{1}.$

The value $C(t, S_{t})$ can be represented as the sum of the European vanilla call value and the

early exercise premium, i.e.,

$C(t, S_{t})=c(t, S_{t};1, \delta_{1}, \delta_{2})+\pi(t, S_{t})$ , (30)
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where $c(t, S_{t})=c(t, S_{t};1, \delta_{1}, \delta_{2})$ ,

$\pi(t, S_{t})=\int_{t}^{T}\{\delta_{2}S_{t}e^{-\delta_{2}(u-t)}\Phi(d_{+}^{e}(S_{t}, B_{u}, u-t))-\delta_{1}e^{-\delta_{1}(u-t)}\Phi(d_{-}^{e}(S_{t}, B_{u}, u-t))\}du$ , (31)

and $(B_{t})_{t\in[0,T]}$ is the EEB of the American vanilla call, which is given by solving the integral

equation

$B_{t}-1=c(t, B_{t})+\pi(t, B_{t})$ . (32)

Proposition 5. 1

$C^{*}(\lambda, S)=\{\begin{array}{ll}S-1, S\geq B^{*}c^{*}(\lambda, S)+\pi^{*}(\lambda, S) , S<B^{*},\end{array}$

where

$\pi^{*}(\lambda, S)=\frac{1}{\theta_{1}}\{\frac{\delta_{2}B^{*}}{\lambda+\delta_{2}}-\theta_{2}\xi_{2}(B^{*})\}(\frac{S}{B^{*}})^{\theta_{1}} S<B^{*},$

$B^{*}\equiv B^{*}(\lambda)=\mathcal{L}C[\tilde{B}_{\tau}](\lambda)(\geq 1)$ is a unique positive solution of the functional equation

$\lambda B^{*\theta_{2}}+\delta_{2}\theta_{2}B^{*}+\delta_{1}(1-\theta_{2})=0,$

and $\theta_{i}=\theta_{i}(\lambda;\delta_{1}, \delta_{2}, \sigma^{2})(i=1,2)$ .

$T$heorem 5.1 The $LCTE^{*}(\lambda, S^{1}, S^{2})=\mathcal{L}C[\tilde{E}(\tau, S^{1}, S^{2})](\lambda)$ for the American exchange option

value is given by

$E^{*}(\lambda, S^{1}, S^{2})=\{\begin{array}{ll}S^{2}-S^{1}, S^{2}\geq S^{1}B^{*}S^{1}\{\xi_{2}(\frac{S^{2}}{S^{1}})+\pi^{*}(\lambda, \frac{S^{2}}{S^{1}})\}+\frac{\lambda S^{2}}{\lambda+\delta_{2}}-\frac{\lambda S^{1}}{\lambda+\delta_{1}}, S^{1}\leq S^{2}<S^{1}B^{*}S^{1}\{\xi_{1}(\frac{S^{2}}{S^{1}})+\pi^{*}(\lambda, \frac{S^{2}}{S^{1}})\}, S^{2}<S^{1}.\end{array}$ (33)

Proposition 5.2

$B_{T}= \max(\frac{\delta_{1}}{\delta_{2}},1)$ . (34)

Proposition 5.3

1. For the time-reversed $EEB,$

$\lim_{\tauarrow\infty}\tilde{B}_{\tau}\equiv\overline{B}=\frac{\delta_{1}}{\delta_{2}}\frac{\theta_{\mathring{2}}-1}{\theta_{2}^{o}}=\frac{\theta_{1}^{o}}{\theta_{\mathring{1}}-1}$ . (35)

2. For the time-reversed value,

$\lim_{\tauarrow\infty}\tilde{E}(\tau, S^{1}, S^{2})=\overline{\frac{B}{\theta_{1}^{o}}}(\frac{S^{2}}{S^{1}\overline{B}})^{\theta_{\mathring{1}}} S^{2}<S^{1}\overline{B}$ . (36)
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6 Russian Options [22]

Russian options are path-dependent contingent claims that give the holder the right to receive

the realized supremum value of the underlying asset prior to his exercise time. The holder can
exercise the option at any time, i.e., the option is of American-style. There exists an optimal

threshold level of the asset price below which it is advantageous to exercise the option, provided

that the asset pays dividends. Russian options are not genuine option contracts, because they

pay the holder the supremum asset price, always finishing in-the-money. This means that high

premiums are charged for Russian options in compensation for reduced regret.

For the underlying process $(S_{t})_{t\geq 0}$ with $S_{0}=s$ and a constant $m\geq s$ , define the supremum

process as

$M_{t}=m \vee\sup_{0\leq u\leq t}S_{u}, t\geq 0.$

Given a finite time horizon $T>0$ , the arbitrage-free value of the Russian option at time $t\in[0, T]$

is given by

$R(t, s, m)= ess\sup \mathbb{E}_{s,m}[e^{-r(\tau_{e}-t)}M_{\tau_{e}}],$

$\tau_{e}\in[t,T]$

where the conditional expectation $\mathbb{E}_{s,m}[\cdot]\equiv \mathbb{E}[\cdot|S_{0}=s, M_{0}=m]$ is calculated under the

risk-neutral probability measure $\mathbb{P}.$

Let $\mathcal{D}=\{(t, s, m)\in[0, T]\cross \mathbb{R}+\cross[s, +\infty)\}$ be the whole domain, and $C$ continuation re-
gion. In terms of the value function $R(t, s, m)$ , the continuation region $C$ is defined by $C=$

$\{(t, s, m)|R(t, s, m)>m\}$ . Since $R$ is nondecreasing in $s,$ $(t, s, m)\in C$ implies $(x, m, t)\in C$ for

all $x\in[s, m]$ . Hence, there exists an EEB $B\equiv B(t, m)(\leq m)$ such that

$B(t, m)= \inf\{s\in[0, m]|(t, s, m)\in C\}.$

In terms of the EEB $B(t, m)$ , the continuation region $C$ can be represented as

$C=\{(t, s, m)|B(t, m)<s\leq m\}.$

The value $R(t, s, m)$ satisfies the Black-Scholes-Merton PDE

$\frac{\partial R}{\partial t}+\frac{1}{2}\sigma^{2}s^{2}\frac{\partial^{2}R}{\partial s^{2}}+(r-\delta)s\frac{\partial R}{\partial s}-rR=0, (t, s, m)\in C$ , (37)

together with the boundary conditions

$\lim R(t, s, m)=m$
$sarrow B(t,m)$

$\lim_{sarrow B(tm)},\frac{\partial R}{\partial s}=0$ (38)

$\lim_{marrow s}\frac{\partial R}{\partial m}=0,$

and the terminal condition

$R(T, s, m)=m$ . (39)
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Theorem 6.1 The $LCTR^{*}(\lambda, s, m)$ for the finite-lived Russian option value is given by

$R^{*}(\lambda, s, m)=\{\begin{array}{ll}\frac{r}{\lambda+r}\frac{m}{\theta_{2}-\theta_{1}}\{\theta_{2}(\frac{s}{B^{*}})^{\theta_{1}}-\theta_{1}(\frac{S}{B^{*}})^{\theta_{2}}\}+\frac{\lambda m}{\lambda+r}, B^{*}<s\leq mm, 0<s\leq B^{*},\end{array}$

where the $LCTB^{*}\equiv B^{*}(\lambda, m)=\mathcal{L}C[\tilde{B}(\tau, m)](\lambda)(\underline{<}m)$ is a unique positive solution of the

functional equation

$\frac{\theta_{1}(1-\theta_{2})}{\theta_{2}(1-\theta_{1})}(\frac{B^{*}}{m})^{\theta_{1}-\theta_{2}}+\frac{\lambda}{r}\frac{\theta_{1}-\theta_{2}}{\theta_{2}(1-\theta_{1})}(\frac{B^{*}}{m})^{\theta_{1}}=1.$

Corollary 6.2 The LCTs of the time-reversed Greeks

$\Delta_{R}^{*}\equiv \mathcal{L}C[\frac{\partial\tilde{R}}{\partial s}](\lambda)$ , $\Gamma_{R}^{*}\equiv \mathcal{L}C[\frac{\partial^{2}\tilde{R}}{\partial s^{2}}](\lambda)$ and $\Theta_{R}^{*}\equiv-\mathcal{L}C[\frac{\partial\tilde{R}}{\partial\tau}](\lambda)$

for $s\in(B^{*}, m]$ are, respectively, given by

$\Delta_{R}^{*}=\frac{r}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{2}-\theta_{1}}\frac{m}{s}\{(\frac{s}{B^{*}})^{\theta_{1}}-(\frac{s}{B^{*}})^{\theta_{2}}\}>0,$

$\Gamma_{R}^{*}=\frac{r}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{2}-\theta_{1}}\frac{m}{s^{2}}\{(\theta_{1}-1)(\frac{s}{B^{*}})^{\theta_{1}}-(\theta_{2}-1)(\frac{s}{B^{*}})^{\theta_{2}}\}>0,$

$\Theta_{R}^{*}=-\frac{\lambda rm}{\lambda+r}\frac{1}{\theta_{2}-\theta_{1}}\{(\theta_{2}-1)(\frac{S}{B^{*}})^{\theta_{1}}-(\theta_{1}-1)(\frac{s}{B^{*}})^{\theta_{2}}\}<0.$

Proposition 6.1 For the $EEB$ of the finite-lived Russian option, we have

$B(T, m)=m.$

Proposition 6.2

1. For the time-reversed $EEB,$

$\lim_{\tauarrow\infty}\tilde{B}(\tau, m)\equiv\underline{B}=m(\frac{\theta_{\mathring{2}}(1-\theta_{\mathring{1}})}{\theta_{1}^{o}(1-\theta_{\mathring{2}})})^{\frac{1}{\theta_{1}-\theta_{2}}}$

2. For the time-reversed value,

$\lim_{\tauarrow\infty}\tilde{R}(\tau, s, m)=\{\begin{array}{ll}\frac{m}{\theta_{2}-\theta_{1}}\{\theta_{2}(\underline{\frac{s}{B}})^{\theta_{1}}-\theta_{1}(\underline{\frac{s}{B}})^{\theta_{2}}\}, \underline{B}<s\leq mm, 0<s\leq\underline{B}.\end{array}$

Theorem 6.3 For $r,$ $\delta>0$ , denote $\underline{B}\equiv\underline{B}(r, \delta)$ . Then, $\underline{B}(r, \delta)$ is a symmetric function of $r$

and $\delta$ , i.e.,

$\underline{B}(r, \delta)=\underline{B}(\delta, r)$ .
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$t$

Figure 2: Normalized early exercise boundaries $B(t, m)/m(t\in[0, T])$ for Russian options

$(T=10, r=0.04, \delta=0.02,0.04,0.06, \sigma=0.2)$

7 Continuous-Installment Options

Installment options are contingent claims in which a small amount of up-front premium instead

of a lump sum is paid at the time of purchase, and then a sequence of installments are paid up to

a fixed maturity to keep the contract alive. The holder has the right of stopping payments at any

time, thereby terminating the option contract. If the option is not worth the Net Present Value

(NPV) of the remaining payments, he does not have to continue to pay further installments.

Hence, an optimal stopping problem arises for the installment option even in European style.

The option can be exercised only if all installments are paid until maturity. For brevity, we only

deal with the call case.

7.1 European options [9, 10, 25, 36]

Consider a European continuous-installment option written on $(S_{t})_{t\geq 0}$ . Assume that the option

holder pays his installments continuously with rate $q(>0)$ , i.e., the holder pays an amount of

$qdt$ in time $dt$ . Let
$c(t, S_{t};q)\equiv c(t, S_{t};q, K, r, \delta)$

denote the value of the European continuous-installment call option at time $t\in[0, T]$ , which has

strike price $K$ and maturity date $T$ . Then, the value $c(t, S_{t};q)$ is given by solving an optimal

stopping problem

$c(t, S_{t};q)= ess\sup_{\tau_{e}\in[t,T]}\mathbb{E}_{t}[1_{\{\tau_{e}\geq T\}}e^{-r(T-t)}(S_{T}-K)^{+}-\frac{q}{r}(1-e^{-r(\tau_{e}\wedge T-t)})]$ . (40)

Solving the optimal stopping problem is equivalent to finding the points $(t, S_{t})$ for which the

termination of the contract is optimal. Let $\mathcal{D}=[0, T]\cross \mathbb{R}+$ , and $S$ and $C$ denote the stopping
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Figure 3: Stopping boundaries $A_{t}(t\in[0, T])$ for European continuous-installment call options

$(T=1, K=100, q=10, r=0.05, \delta=0,0.04,0.08, \sigma=0.2)$

region and continuation region, respectively. The stopping region $\mathcal{S}$ is defined by

$S=\{(t, S_{t})\in \mathcal{D}|c(t, S_{t};q)=0\}.$

The continuation region $C$ is the complement of $S$ in $\mathcal{D}$ . The EEB that separates $S$ from $C$ is

referred to as a stopping boundary, which is defined by

$A_{t}= \inf\{S_{t}\in \mathbb{R}+|c(t, S_{t};q)>0\}, t\in[0, T].$

Since $c(t, S_{t};q)$ is nondecreasing in $S_{t}$ , the stopping boundary is a lower critical asset price

below which it is advantageous to terminate the option contract by stopping the payments, and

it vanishes when $q\leq 0.$

The call value $c(t, S;q)$ satisfies the inhomogeneous PDE

$\frac{\partial c}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}c}{\partial S^{2}}+(r-\delta)S\frac{\partial c}{\partial S}-rc=q, (t, S)\in C,$

together with the boundary conditions

$\lim_{Sarrow A_{t}}c(t, S;q)=0$

$\lim_{Sarrow A_{t}}\frac{\partial c}{\partial S}=0$

$\lim_{sarrow\infty}\frac{\partial c}{\partial S}<\infty,$

and the terminal condition

$c(T, S;q)=(S-K)^{+}.$

Theorem 7.1 The value function of the European continuous-installment call option has the

integral representation

$c(t, S_{t};q)=c(t, S_{t})-q \int_{t}^{T}e^{-r(u-t)}\Phi(d_{-}(S_{t}, A_{u}, u-t))du,$
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where $c(t, S_{t})$ is the value of the associated European vanilla call option.

Griebsch et al. [18] proved that the total premium has the decomposition

$c(t, S_{t};q)+K_{t}=c(t, S_{t})+P_{c}(t, S_{t};q)$ ,

where

$K_{t}= \frac{q}{r}(1-e^{-r(T-t)})$

is the NPV of the future payment stream at time $t$ , and

$P_{c}(t, S_{t};q)= ess\sup_{\tau_{s}\in[t,T]}\mathbb{E}_{t}[e^{-r(\tau_{s}-t)}(K_{\tau_{s}}-c(\tau_{s}, S_{\tau_{s}}))^{+}]$

$=q \int_{t}^{T}e^{-r(u-t)}\Phi(-d_{-}(S_{t}, A_{u}, u-t))du$

represents the value of an American compound put option maturing in time $T$ written on the

vanilla call option.

Theorem 7.2 The $LCTc^{*}(\lambda, S;q)=\mathcal{L}C[\tilde{c}(\tau, S;q)]$ for the European continuous-installment

call option is given by

$c^{*}(\lambda, S;q)=\{\begin{array}{ll}c^{*}(\lambda, S)-\frac{q}{\lambda+r}\{1-\frac{\theta_{1}}{\theta_{1}-\theta_{2}}(\frac{S}{A^{*}})^{\theta_{2}}\}, S>A^{*}0, S\leq A^{*},\end{array}$

where $\mathcal{A}^{*}\equiv A^{*}(\lambda)=\mathcal{L}C[\tilde{A}_{\tau}](\leq K)$ is given by

$A^{*}( \lambda)=[\frac{2(\lambda+\delta)q}{\lambda(1-\theta_{2})K\sigma^{2}}]^{\theta_{1}^{-1}}K.$

Corollary 7.3 The $LCTP_{c}^{*}(\lambda, S;q)=\tilde{P}_{c}(\tau, S;q)$ for the American compound put option is

given by

$P_{c}^{*}( \lambda, S_{1}q)=\frac{q}{\lambda+r}\frac{\theta_{1}}{\theta_{1}-\theta_{2}}(\frac{S}{A^{*}})^{\theta_{2}}$

Corollary 7.4 For $S>A^{*},$

$\Delta_{P_{c}}^{*}\equiv \mathcal{L}C[\frac{\partial\tilde{P}_{c}}{\partial S}](\lambda)=\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\frac{1}{S}(\frac{S}{A^{*}})^{\theta_{2}}<0,$

$\Gamma_{P_{c}}^{*}\equiv \mathcal{L}C[\frac{\partial^{2}\tilde{P}_{c}}{\partial S^{2}}](\lambda)=\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}(\theta_{2}-1)}{\theta_{1}-\theta_{2}}\frac{1}{S^{2}}(\frac{S}{A^{*}})^{\theta_{2}}>0,$

$\Theta_{P_{c}}^{*}\equiv-\mathcal{L}C[\frac{\partial\tilde{P}_{c}}{\partial\tau}](\lambda)=-\frac{\lambda q}{\lambda+r}\frac{\theta_{1}}{\theta_{1}-\theta_{2}}(\frac{S}{A^{*}})^{\theta_{2}}<0.$

Theorem 7.5 For the stopping boundary,

$A_{T}=K$ and $\lim_{Tarrow\infty}A_{t}=\{\begin{array}{ll}\infty, \delta>0\frac{2q}{2r+\sigma^{2}}, \delta=0.\end{array}$
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$t$

Figure 4: Three regions for American continuous-installment call option $(T=1,$ $K=100,$

$q=5,$ $r=0.05,$ $\delta=0.04,$ $\sigma=0.2)$

7.2 American options [8, 11, 23]

Let

$C(t, S_{t};q)\equiv C(t, S_{t};q, K, r, \delta)$

denote the value of the American continuous-installment call option at time $t\in[0, T]$ , which has

strike price $K$ and maturity date $T$ . Then, the value $C(t, S_{t};q)$ is given by solving an optimal

stopping problem

$C(t, S_{t};q)= ess\sup_{\tau_{e},\tau_{s}}\mathbb{E}_{t}[1_{\{\tau_{e}\wedge\tau_{s}\geq T\}}e^{-r(T-t)}(S_{T}-K)^{+}$

$+1_{\{\tau_{e}<\tau_{s}<T\}} e^{-r(\tau_{e}-t)}(S_{\tau_{e}}-K)^{+}-\frac{q}{r}(1-e^{-r(\tau_{e}\wedge\tau_{s}\wedge T-t)})]$

for $t\in[0, T]$ , where $\tau_{e}$ and $\tau_{s}$ are stopping times of the filtration $(\mathcal{F}_{t})_{t\geq 0}$ . Solving the optimal

stopping problem is equivalent to finding the points $(t, S_{t})$ for which termination of the contract

or early exercise is optimal.

Let $S,$ $\mathcal{E}$ and $C$ denote the stopping region, exercise region and continuation region, respec-

tively. In terms of the value $C(t, S_{t};q)$ , these regions can be defined by

$S=\{(t, S_{t})\in \mathcal{D}|C(t, S_{t};q)=0\},$

$\mathcal{E}=\{(t, S_{t})\in \mathcal{D}|C(t, S_{t};q)=(S_{t}-K)^{+}\},$

$C=\mathcal{D}\backslash S\cup \mathcal{E},$

among which there are two boundaries: the stopping boundary $(A_{t})_{t\in[0,T]}$ , which is a lower

critical asset price, and the early exercise boundary $(B_{t})_{t\in[0,T]}$ , which is an upper critical asset

price, due to the monotonicity of $C(t, S_{t};q)$ in $S_{t}.$

The call value $C(t, S;q)$ satisfies the inhomogeneous PDE

$\frac{\partial C}{\partial t}+\frac{1}{2}\sigma^{2}S^{2}\frac{\partial^{2}C}{\partial S^{2}}+(r-\delta)S\frac{\partial C}{\partial S}-rC=q, (t, S)\in C,$
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together with the boundary conditions

$\lim_{Sarrow A_{t}}C(t, S;q)=0, \lim_{Sarrow B_{t}}C(t, S;q)=\overline{S}_{t}-K$

$\lim_{Sarrow A_{t}}\frac{\partial C}{\partial S}=0, \lim_{sarrow B_{t}}\frac{\partial C}{\partial S}=1,$

and the terminal condition

$C(T, S;q)=(S-K)^{+}.$

Theorem 7.6 The value function of the American continuous-installment call option has the

integral representation

$C(t, S_{t};q)=c(t, S_{t})$

$+ \int_{t}^{T}\{\delta S_{t}e^{-\delta(u-t)}\Phi(d_{+}(S_{t}, B_{u}, u-t))-(rK-q)e^{-r(u-t)}\Phi(d_{-}(S_{t}, B_{u}, u-t))\}du$

$-q \int_{t}^{T}e^{-r(u-t)}\Phi(d_{-}(S_{t}, A_{u}, u-t))du$ . (41)

Theorem 7.7 The terminal values of the stopping and early exercise boundaries at expiry are

given by

$A_{T}=K$ , (42)

$B_{T}= \max(\frac{rK-q}{\delta}, K)$ . (43)

Theorem 7.8 The $LCTC^{*}(\lambda, S;q)$ for the American continuous-installment call option value

is given by

$C^{*}(\lambda, S;q)=\{\begin{array}{ll}0, S\in[0, A^{*}]c^{*}(\lambda, S)+\pi_{c}^{*}(\lambda, S;q)-\frac{q}{\lambda+r}, S\in(A^{*}, B^{*})S-K, S\in[B^{*}, \infty) ,\end{array}$

where $\pi_{c}^{*}(\lambda, S;q)$ is defined by

$\pi_{c}^{*}(\lambda, S;q)=\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\{\frac{1}{\theta_{2}}(\frac{S}{A^{*}})^{\theta_{2}}-\frac{1}{\theta_{1}}(\frac{S}{A^{*}})^{\theta_{1}}\}-\xi_{1}(S)$ ,

$A^{*}$ and $B^{*}$ are given by solving a pair of nonlinear equations

$\{\begin{array}{l}\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\{\frac{1}{\theta_{2}}(\frac{B^{*}}{A^{*}})^{\theta_{2}}-\frac{1}{\theta_{1}}(\frac{B^{*}}{A^{*}})^{\theta_{1}}\}=\xi_{1}(B^{*})-\xi_{2}(B^{*})+\frac{\delta}{\lambda+\delta}B^{*}-\frac{rK-q}{\lambda+r},\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\{(\frac{B^{*}}{A^{*}})^{\theta_{2}}-(\frac{B^{*}}{A^{*}})^{\theta_{1}}\}=\theta_{1}\xi_{1}(B^{*})-\theta_{2}\xi_{2}(B^{*})+\frac{\delta}{\lambda+\delta}B^{*}.\end{array}$

(44)

Corollary 7.9 The LCTs of the time-reversed Greeks

$\Delta_{\pi_{c}}^{*}\equiv \mathcal{L}C[\frac{\partial\tilde{\pi}_{c}}{\partial S}](\lambda)$ , $\Gamma_{\pi_{c}}^{*}\equiv \mathcal{L}C[\frac{\partial^{2}\tilde{\pi}_{c}}{\partial S^{2}}](\lambda)$ and $\Theta_{\pi_{c}}^{*}\equiv-\mathcal{L}C[\frac{\partial\tilde{\pi}_{c}}{\partial\tau}](\lambda)$
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for $S\in(A^{*}, B^{*})$ are, respectively, $g\iota ven$ by

$\Delta_{\pi_{c}}^{*}=\frac{1}{S}[\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\{(\frac{S}{A^{*}})^{\theta_{2}}-(\frac{S}{A^{*}})^{\theta_{1}}\}-\theta_{1}\xi_{1}(S)],$

$\Gamma_{\pi_{c}}^{*}=\frac{1}{S^{2}}[\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\{(\theta_{2}-1)(\frac{S}{A^{*}})^{\theta_{2}}-(\theta_{1}-1)(\frac{S}{A^{*}})^{\theta_{1}}\}-\theta_{1}(\theta_{1}-1)\xi_{1}(S)],$

$\Theta_{\pi_{c}}^{*}=-\lambda[\frac{q}{\lambda+r}\frac{\theta_{1}\theta_{2}}{\theta_{1}-\theta_{2}}\{\frac{1}{\theta_{2}}(\frac{S}{A^{*}})^{\theta_{2}}-\frac{1}{\theta_{1}}(\frac{S}{A^{*}})^{\theta_{1}}\}-\xi_{1}(S)].$

Theorem 7.10 Let $C_{\infty}(S;q)$ denote the perpetual continuous-installment call option value.

Then, for $S\in(A_{\infty}, B_{\infty})$ ,

$C_{\infty}(S;q) = \frac{-\frac{1}{\theta_{\mathring{1}}}(A_{\infty})^{\theta_{\mathring{2}}}S^{\theta_{\mathring{1}}}+\frac{1}{\theta_{2}^{o}}(A_{\infty})^{\theta_{\mathring{1}}}S^{\theta_{2}^{o}}}{(A_{\infty})^{\theta_{\mathring{1}}}(B_{\infty})^{\theta_{\mathring{2}}-1}-(A_{\infty})^{\theta_{\mathring{2}}}(B_{\infty})^{\theta_{\mathring{1}}-1}}-\frac{q}{r}$

$= \frac{q}{r}\frac{\theta_{\mathring{1}}\theta_{2}^{o}}{\theta_{\mathring{1}}-\theta_{\mathring{2}}}\{-\frac{1}{\theta_{1}^{o}}(\frac{S}{A_{\infty}})^{\theta_{\mathring{1}}}+\frac{1}{\theta_{2}^{o}}(\frac{S}{A_{\infty}})^{\theta_{2}^{o}}\}-\frac{q}{r},$

$A_{\infty}$ and $B_{\infty}$ are the optimal threshold levels given by

$\{\begin{array}{l}A_{\infty}=\frac{q}{r}\frac{\theta_{\mathring{1}}\theta_{\mathring{2}}}{\theta_{1}^{o}-\theta_{2}^{o}}(\gamma^{\theta_{\mathring{2}}-1}-\gamma^{\theta_{\mathring{1}}-1}) ,B_{\infty}=\gamma A_{\infty}=\frac{q}{r}\frac{\theta_{\mathring{1}}\theta_{2}^{o}}{\theta_{\mathring{1}}-\theta_{2}^{o}}(\gamma^{\theta_{2}^{o}}-\gamma^{\theta_{\mathring{1}}}) ,\end{array}$

in terms of $\gamma>1$ , which is the unique solution of the equation

$\theta_{\mathring{2}}(\theta_{1}^{o}-1)\gamma^{\theta_{\mathring{1}}}-\theta_{\mathring{1}}(\theta_{2}^{o}-1)\gamma^{\theta_{\mathring{2}}}=(\theta_{1}^{o}-\theta_{2}^{o})(1-\frac{rK}{q})$ .

8 Issues on Deck

8.1 Numerical inversion methods

By virtue of the Bromwich integral in Proposition 2.2, we see that numerical inversion methods

developed for inverting LTs also can be used for LCTs, i.e., for a LCT $f^{*}(\lambda)=\mathcal{L}C[f(x)](\lambda)$

$(\lambda\in \mathbb{C}, {\rm Re}(\lambda)>0)$ ,

$f(x)= \mathcal{L}C^{-1}[f^{*}(\lambda)](x)=\mathcal{L}^{-1}[\frac{f^{*}(\lambda)}{\lambda}](x) , x>0$

There have been so many numerical inversion methods developed for LT with an explicit form;

see Table 1. For option pricing problems, however, the values in target are often given in implicit

forms such as functions of the LCT of its EEB, which is a solution of a functional equation. Some

numerical methods are required to obtain the value of $f^{*}(\lambda)$ for an arbitrary $\lambda\in \mathbb{C}$ . Under the

existing circumstances, the Gaver-Stehfest method is only one choice, because it depends only

on the value of $f^{*}(\lambda)$ for $\lambda\in \mathbb{R}+\cdot$ In fact, Figures 1-4 in this tutorial are drawn by using the
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Table 1: Classification of numerical LT-inversion methods

Gaver-Stehfest method. Unfortunately, numerical experiments shows that the Gaver-Stehfest

method is sometimes less stable than other methods. It is necessary to extend/modify the

previous numerical LT-inversion methods, so that they can handle implicit LCTs.

8.2 Future works

$\triangleright$ Developing closed-form approximations for the EEB

From the view point of option holders, the EEB is more important than the option price. The

EEB contains complete information on making a decision on the timing of exercise. If a simple

and closed-form approximation for the EEB is available, it would be a powerful tool for the

option holders. The LCT asymptotics may have potential to this issue (Kimura [27,29 Much

work should be directed toward such approximations; see Kimura [28] for a survey.

$\triangleright$ Generalizing the underlying asset process

No doubt, the geometric Brownian motion (GBM) defined in (6) is a standard process for

underlying assets in option pricing. It has been, however, known that GBM is often inconsistent

with actual data in capital markets. Better alternatives to GBM in such cases would be a CEV

process or a L\’evy process. For these processes, there are a few studies on the LCT approach;

see Avram et al. [5], Pun and Wong [40], and Wong and Zhao [46]. We also need much work on

such generalizations.
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