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1. Introduction

In this note we illustrate a nonstandard variational technique that may be used to study varia-

tional and quasi-variational inequalities, and revisit a result of [36].
Let $V$ be a real Banach space, $\beta$ : $Varrow \mathcal{P}(V’)$ (the set of the parts of $V’$ ) be $a$ (possibly

multi-valued) operator, and $z’\in V’$ . A large class of nonlinear either stationary or evolutionary
problems may be formulated in abstract form as

find $u\in V$ such that $\beta(u)\ni z’$ in $V’$ . (1.1)

In several cases $\beta$ is maximal monotone in the sense of Minty and Browder; see e.g. [5,7,26].

In a more general set-up

$\beta(v)=\alpha_{v}(v)$ $\forall v\in V$, with
(1.2)

$\alpha_{v}$ : $Varrow \mathcal{P}(V’)$ maximal monotone for any $v\in V.$

In this case (1.1) reads

find $u\in V$ such that $(\beta(u)=)\alpha_{u}(u)\ni z’$ in $V’$ . (1.3)

Here are some examples:

(i) Let $\Omega$ be an open subset of $R^{N}(N\geq 1)$ , a measurable function $\phi=\phi(x, v, \xi)$ be continuous

in $v\in R$ , and monotone in $\xi\in R^{N}$ . Setting $\alpha_{v}(w)$ $:=-div\phi(x, v, \nabla w)$ in $\mathcal{D}’(\Omega)$ for any

$v,$ $w\in H_{0}^{1}(\Omega)$ , (1.3) reads

find $u\in H_{0}^{1}(\Omega)$ such that $-div\phi(x, u, \nabla u)=z’$ in $H^{-1}(\Omega)$ . (1.4)

$\beta(u)=-div\phi(x, u, \nabla u)$ is a typical operator of the calculus of variations; see e.g. [21,22].

(ii) It is well known that a multi-valued operator may also account for the presence of a

constraint. For instance, let $\alpha_{v}$ : $Varrow V$ be single-valued and maximal monotone for any $v\in V,$

$K$ be a closed convex subset of $V$ , and denote by $\partial I_{K}$ the subdifferential of the indicator function

of $K$ (in the sense of convex analysis, see e.g. [12,14,31]). The inclusion

$\alpha_{u}(u)+\partial I_{K}(u)\ni z’$ (1.5)

is equivalent to the following variational inequality:

$u\in K, \langle\alpha_{u}(u)-z’, u-v\rangle\leq 0 \forall v\in K$ . (1.6)
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In particular, one may consider $\alpha_{u}(u)=-div\phi(x, u, Vu)$ as in (1.4).

(iii) The inclusion (1.1) also encompasses a number of nonlinear evolutionary problems, e.g.,

$D_{t}u+\alpha_{u}(u)+\partial I_{K}(u)\ni z’$ in $W’,$ $in]O,$ $T[(D_{t} :=\partial/\partial t)$ . (1.7)

In this case $V=L^{p}(0, T;W)$ for some real Banach space $W,$ $p\in[2,$ $+\infty[$ , and $K$ is a closed
convex subset of $W$ . Here also one may take $\alpha_{u}(u)=-div\phi(x, u, Vu)$ .

Note. The author is please to devote this little work to Professor Nobuyuki Kenmochi, a master
and a friend.

2. Outline of the Fitzpatrick Theory

Next we briefly review a variational representation of maximal monotone operators, that was
introduced by S. Fitzpatrick in the seminal paper [15].

Fitzpatrick associated to any operator $\alpha$ : $Varrow \mathcal{P}(V’)$ the following function:

$f_{\alpha}(v, v’):= \sup\{\langle v’, w\rangle-\langle w’, w-v\rangle : w’\in\alpha(w)\} \forall(v, v’)\in V\cross V’$ . (2.1)

( $f_{\alpha}$ was then named the Fitzpatrick function of $\alpha.$ ) Being a pointwise supremum of a family of
continuous and linear functions, $f_{\alpha}$ is convex and lower semicontinuous.

Theorem 2.1 [15] If $\alpha$ is maximal monotone then

$f_{\alpha}(v, v’)\geq\langle v’, v\rangle \forall(v, v’)\in V\cross V’$ , (2.2)

$f_{\alpha}(v, v’)=\langle v’, v\rangle \Leftrightarrow v’\in\alpha(v)$ . (2.3)

Defining the further function

$J(v, v’):=f_{\alpha}(v, v’)-\langle v’, v\rangle \forall(v, v’)\in V\cross V’$ . (2.4)

(2.3) also reads
$J(v,v’)= \inf J=0 \Leftrightarrow v’\in\alpha(v)$ . (2.5)

We may label $J(v, v’)= \inf J=0$ a problem of null-minimization.
As it is expressed in (2.5), the maximal monotone relation is tantamount to minimizing $J$ with

respect to both variables. On the other hand, for a prescribed $v’$ , in order to determine $v$ such

that $v’\in\alpha(v)$ the functional $J(\cdot, v’)$ is only minimized with respect to the first variable. As it is

illustrated in Sect. 7 of [36], in this case it is necessary to prescribe the vanishing of the minimum
value, in order to exclude the onset of spurious minimizers.

The prescription of the minimum value is a crucial issue of this theory, which thus differs from
an ordinary variational principle.

Representative functions. The notion of Fitzpatrick function was extended as follows. One
says that a convex and lower semicontinuous function $g$ : $V\cross V’arrow RU\{+\infty\}$ (variationally)
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represents the operator $\alpha$ : $Varrow \mathcal{P}(V’)$ whenever it fulfills the system (that we shall refer to as
the Fitzpatrick system)

$g(v, v’)\geq\langle v’, v\rangle \forall(v, v’)\in V\cross V’$ , (2.6)

$g(v, v’)=\langle v’, v\rangle \Leftrightarrow v’\in\alpha(v)$ . (2.7)

Accordingly, we shall say that $g$ is a representative function of $\alpha$ , and that $\alpha$ is representable.

Let us denote the class of these functions by $\mathcal{F}(V)$ .
For instance, for any convex and lower semicontinuous function $\varphi$ : $Varrow \mathcal{P}(V’)$ , the classical

Fenchel function [14]
$g(v, v’):=\varphi(v)+\varphi^{*}(v’)$ (2.8)

represents the operator $\partial\varphi$ . In this case the Fitzpatrick system (2.6), (2.7) is reduced to the

Fenchel system

$\varphi(v)+\varphi^{*}(v’)\geq\langle v’, v\rangle \forall(v, v’)\in V\cross V’$ , (2.9)

$\varphi(v)+\varphi^{*}(v’)=\langle?/’, v\rangle \Leftrightarrow v’\in\partial\varphi(v)$ . (2.10)

This is a well-known result in convex analysis, see e.g. [12,14,31].

Representable operators are monotone; but, at variance with subdifferentials, they need not be

either cyclically monotone or maximal monotone. Some results of this theory are briefly reviewed

e.g. in [30,34,35].

Some results. Let us next assume that the Banach space $V$ is reflexive, although this is not
really needed for several of the results that follow. Besides the duality between $V$ an $V’$ , let us
consider the duality between the spaces $V\cross V’$ and its dual $V’\cross V$ , and the corresponding convex
conjugation. More specifically, for any function $g:V\cross V’arrow RU\{+\infty\}$ , let us set

$g^{*}(w’, w):= \sup\{\langle w’, v\rangle+\langle v’, w\rangle-g(v, v’):(v, v’)\in V\cross V’\}$ $\forall(w’, w)\in V’\cross V$. (2.11)

Here are some relevant results of this theory.

Theorem 2.2 [11,32] A function $g\in \mathcal{F}(V)$ represents a mastmal monotone operator $\alpha$ : $Varrow$

$\mathcal{P}(V’)$ if and only if $g^{*}\in \mathcal{F}(V’)$ . In this case $g^{*}$ represents the inverse operator $\alpha^{-1}$ : $V’arrow \mathcal{P}(V)$ .

The convex biconjugate function of $f_{\alpha}$ , denoted by $(f_{\alpha})^{**}$ , thus also represents $\alpha$ , whenever

the operator $\alpha$ is maximal monotone.

Theorem 2.3 [10,15,25,28] Let $\alpha$ : $Varrow \mathcal{P}(V’)$ be a maximal monotone operator, $f_{\alpha}$ be its

Fitzpatrick function, and $g:V\cross V’arrow R\cup\{+\infty\}$ be a convex and lower semicontinuous function.
Then

$g\in \mathcal{F}(V)$ , $g$ represents $\alpha$ $\Leftrightarrow$ $f_{\alpha}\leq g\leq(f_{\alpha})^{**}$ (2.12)

Corollary 2.4 If two functions $g_{1},$ $g_{2}\in \mathcal{F}(V)$ represent a maximal monotone operator $Varrow$

$\mathcal{P}(V’)$ , then $\max\{g_{1}, g_{2}\}\in \mathcal{F}(V)$ represents the same operator.

Theorem 2.5 [3] Let $\alpha$ : $Varrow \mathcal{P}(V’)$ be a maximal monotone operator, $f_{\alpha}$ be its Fitzpatrick

function, and set

$F_{\alpha}(v, v’, w, w’):=f_{\alpha}(v+w, v’+w’)+f_{\alpha}(v-w, v’-w’)+\Vert w\Vert_{V}^{2}+\Vert w’\Vert_{V’}^{2}$

(2.13)
$\forall(v, v (w, w’)\in V\cross V’,$

$\phi_{\alpha}(v, v’):=\frac{1}{2}\inf\{F_{\alpha}(v, v’, w, w’):(w, w’)\in V\cross V’\} \forall(v, v’)\in V\cross V’$ . (2.14)
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Then
$\phi_{\alpha}^{*}(v’,v)=\phi_{\alpha}(v, v’)$ (2.15)$\forall(v, v’)\in V.$

Because of (2.15), the function $\phi_{\alpha}$ is called a self-dual representative of $\alpha$ . Its use allows one to
replace the null-minimization (2.5) by an ordinary $minimiza_{\wedge}$tion, since in this case it is granted
that the minimum value vanishes.

Corollary 2.6 Under the assumptions of Theorem 2.5, let us set

$\tilde{J}(v, v’) :=\phi_{\alpha}(v, v’)-\langle v’, v\rangle \forall(v, v’)\in V\cross V’$ . (2.16)

Then $\inf\tilde{J}=0$ , so that
$\tilde{J}(v, v’)=\inf\tilde{J} \Leftrightarrow v’\in\alpha(v)$ . (2.17)

Proof. By (2.15)

$\tilde{J}(v, v’)=\frac{1}{2}[\phi_{\alpha}(v, v’)+\phi_{\alpha}^{*}(v’, v)]-\langle v’, v\rangle \forall(v, v’)\in V\cross V’.$

By the classical Fenchel system (2.9), (2.10) then $\inf\tilde{J}=0.$ $\square$

Existence methods. The above variational formulation may be used to prove existence of a
solution for several problems of the form (1.1) for a representable operator $\beta$ . We briefly illustrate
some basic techniques.

(i) A subdifferential flow of the form $D_{t}u+\partial\varphi(u)\ni z’$ , (with $\varphi$ : $Varrow \mathcal{P}(V’)$ convex and
lower semicontinuous), may be reformulated as a null-minimization problem along the lines of
Brezis and Ekeland [6] and Nayroles [27]. (These two works predate [15], but already contain
some elements of the Fitzpatrick theory). (1) (2)

(ii) An inclusion like (1.1) may be approximated by a sequence of inclusions (or equalities) for
which existence of a solution is already known; uniform estimates may then be derived. This
approximated problem may be represented as an equivalent null-minimization problem, and the
limit may be taken in this formulation. If in this procedure the functional is also approximated,

the $\Gamma$-convergence must also be proved – a nontrivial task for evolutionary problems; see e.g.
[34,35].

(iii) (1.1) may be reformulated via a self-dual representative function, see e.g. [3]. This $a\triangleright$

proach was investigated by Ghoussoub and coworkers; see e.g. [16,17,18] and references therein.
(iv) Along the lines of [35], here in Sect. 3 existence of a solution of an inclusion like (1.1) is

proved, first by reformulating the problem via a representative function, and then applying an

extension of the classical minimax theorem of Ky Fan; see Theorem 3.3 ahead.

(1) They pointed out that the gradient flow $D_{t}u+\partial\psi(u)=z’$ is tantamount to the null-minimization of

the functional

$\Phi(v, z’)=\int_{0}^{T}[\psi(v)+\psi(z’-D_{t}v)]dt+\frac{1}{2}(\Vert v(T)\Vert_{H}^{2}-\Vert u(0)\Vert_{H}^{2})-\langle z’, v\rangle,$

as $n$ ranges in $H^{1}(0, T;V’)\cap L^{2}(0, T;V)(\subset C^{0}([0, T];H$ (Here $V\subset H=H’\subset V’$ with dense

inclusions).
(2) A different saddle-point approach is also at the basis of the results of Sect. 3 of the present note.
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A look at the literature. Aftyer the pioneering work of Fitzpatrick [15] and its rediscov-

ery by Martinez-Legaz and Th\’era [23] and also by Burachik and Svaiter [10], a recent but

rapidly expanding literature has been devoted to this theory in the last fifteen years; see e.g.

[3,11,18,24,25,28,29]. This may be compared with the approach that is developed in the mono-
graph [16], and with that based on the notion of bipotential of Buliga, de Saxc\’e and Vall\’ee, see

e.g. [9].

The analysis of inclusions of the form (1.3) classically lead to the introduction of the class of

pseudo-monotone operators in the sense of Brezis, and successive extensions; see e.g. [4,8] and

the surveys [20,38]. This extended the classical theory of maximal monotone operators, see e.g.

[2,5,7]. Apparently, the corresponding pseudo monotone flow $D_{t}u+\alpha_{u}(u)\ni z’$ has been less

studied in that abstract set-up.

As this author dealt with a variational approach for equations of the form (1.3) and (1.4) also

in other works (with special reference to quasilinear evolutionary problems), a comparison seems
in order. In [34] the method (iii) was used, and in particular quasilinear maximal monotone

equations and first-order flows were formulated as null-minimization problems. The structural

stability, namely, the dependence of the solution on data and operators, was then studied via

De Giorgi’s notion of $\Gamma$-convergence. In [35] this method was applied to the homogenization of

monotone quasilinear PDEs with $a\rho$ingle nonlinearity. In [37] the structural stability of pseudo-

monotone equations and the corresponding doubly-nonlinear first-order flow were studied without

using the Fitzpatrick theory.

Representation of nonmonotone operators. The present analysis may be extended in

several directions. For instance, in [36] this author suggested to generalize the notion of repre-

sentative function (see the system (2.6) and (2.7)) as follows.
Let us still assume that $V$ is a real reflexive Banach space. An (in general nonconvex) function

$g$ : $V\cross V’arrow RU\{+\infty\}$ is said to represent an (in general nonmonotone) operator $\beta$ : $Varrow \mathcal{P}(V’)$ ,

whenever $g$ is weakly lower semicontinuous and fulfills a generalized Fitzpatrick system

$g(v, v’)\geq\langle v’, v\rangle \forall(v, v’)\in V\cross V’$ , (2.18)

$g(v, v’)=\langle v’, v\rangle \Leftrightarrow v’\in\beta(v)$ . (2.19)

(We assumed $V$ to be reflexive. If $V$ were not so, we would require $g$ to be lower semicontinuous

with respect to the product of the weak topology of $V$ by the weak star topology of $V$

For instance, for any $v\in V$ let a monotone operator $\alpha_{v}$ : $w\mapsto\alpha_{v}(w)$ be represented by a

function $g_{\alpha_{v}}\in \mathcal{F}(V)$ , and set

$\beta(v):=\alpha_{v}(v) , g_{\beta}(v, v’):=g_{\alpha_{v}}(v, v’) \forall(v, v’)\in V\cross V’$ . (2.20)

It is promptly seen that the function $g_{\beta}$ then fulfills (2.18) and (2.19).

Existence of a solution of (1.1) might be proved by extending the methods $(i)-(iii)$ that we

mentioned above. Although the lack of convexity precludes the use of duality, examples may be

constructed starting from the convex case; one may thus exploit the standard theory, as we do in

this note. This also calls for an extension of the stability results that were studied for maximal

monotone operators in [34].
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3. Existence via Minimax

In this section we first assume that $\alpha$ : $Varrow \mathcal{P}(V’)$ is maximal monotone, and deal with the
inclusion $\alpha(u)\ni z’$ for a prescribed $z’\in V’$ . If $V$ is reflexive and $\alpha$ is coercive, existence of a
solution is well known. Here we reformulate that inclusion in terms of a representative function
of $\alpha$ , and prove existence of a solution of the associated null-minimization problem via a minimax
method. Afterwards we consider the nonmonotone inclusion $\alpha_{u}(u)\ni z’$ , and restate the theorem
of [36] of existence of a solution.

In order to perform this program, we need a simple extension of the classical minimax theorem
of Ky Fan, that here we recall.

Lemma 3.1 ($Ky$ Fan) [13] Let $C$ be a convex subset of a real Hausdorff topological vector space
$X$ , and $\Phi$ : $C\cross Carrow R$ be such that

$\Phi(\cdot, y)$ is lower semicontinuous, $\forall y\in C,$ $|(3.1)$

$\Phi(x, \cdot)$ is quasi-concave, $\forall x\in C$, (3.2)

$\Phi(x, x)\leq 0, \forall x\in C$, (3.3)

$\exists$ compact convex set $K\subset X,$ $\exists y_{0}\in C\cap K$ :
(3.4)

$\Phi(x,y_{0})>0 \forall x\in C\backslash K.$

Then
$\exists\tilde{x}\in C\cap K$ :

$\sup_{y\in C}\Phi(\tilde{x}, y)=\inf_{x\in C}\sup_{y\in C}\Phi(x, y)\leq 0$
. (3.5)

Corollary 3.2 Let $X$ be the dual of a real Banach space equipped with the weak star topology,
$C$ be a convex subset of $X$ , and $\Phi$ be as above. Lemma 3.1 then holds under the assumption

$\exists M>0$ such that
I
$\sup_{y||\leq M}\inf_{||x||>M}\Phi(x, y)>0$

, (3.6)

in place of the condition (3.4).

Proof. As the set $K=\{x\in X : \Vert x\Vert\leq M\}$ is weakly star compact, (3.6) yields (3.4) for this
topology. $\square$

The (maximal) monotone problem. Let us assume that

$V$ is real reflexive Banach space, $z’\in V’,$

(3.7)
$\alpha$ : $Varrow \mathcal{P}(V’)$ is maximal monotone,

and consider the inclusion

find $u\in V$ such that $\alpha(u)\ni z’$ in $V’$ . (3.8)

Next we prove existence of a solution via an associated representative function.

Theorem 3.3 Let a mapping $\psi\in \mathcal{F}(V)$ represent $\alpha$ , and be such that

$\inf_{v\in V},$
$\frac{\psi(v,v’)}{||v||_{V}}arrow+\infty$ as $\Vert v\Vert_{V}arrow+\infty$ . (3.9)
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Then there exists $u\in V$ such that

$\psi(u, z’)=\langle z’, u\rangle$ . (3.10)

As $\psi\in \mathcal{F}(V)$ represents $\alpha$ , it is promptly checked that the function $g=\psi$ fulfills the system

(2.6), (2.7). The condition (3.9) entails the coerciveness of the operator $\alpha$ , and by (2.7) the
equality (3.10) is equivalent to the inclusion $\alpha(u)\ni z’$ . We thus retrieve a classical result,

namely, the surjectivity of coercive maximal monotone operators acting on a reflexive Banach
space; see e.g. [2,5,7].

Proof. This argument is based on reformulating the equation (3.10) as a minimax problem,

and then applying the classical Fan theorem. This proof follows the lines of the more general

argument of Sect. 5 of [36]. We split it into three steps.

(i) First we set

$K(v, t):= \sup_{t’\in V},\{\langle v, t’\rangle-\psi^{*}(t’, t)\} \forall v, t\in V$. (3.11)

By a standard procedure,

$K(v, t)= \sup_{t\in V}, \{\langle v, t’\rangle-\sup_{(w,w)\in V\cross V’}\{\langle w, t’\rangle+\langle w’, t\rangle-\psi(w, w’)\}\}$

$= \sup_{t\in V}, \inf_{(w,w)\in V\cross V}, \{\langle v-w, t’\rangle-\langle w’, t\rangle+\psi(w, w’)\}$

(3.12)

$= \sup_{t\in V}, \inf_{w\in V}\{\langle v-w, t’\rangle+\inf_{w\in V}, \{-\langle w’, t\rangle+\psi(w.w$

$= \inf_{w\in V}, \{-\langle w’, t\rangle+\psi(v, w’)\} \forall v, t\in V.$

By (3. 11) and (3.12) we infer that

$K(\cdot, t)$ is convex and lower semicontinuous $\forall t\in V,$

(3.13)
$K(v, \cdot)$ is concave and upper semicontinuous $\forall v\in V.$

By (3.7) and Theorem $2.2_{\}}\psi$ and $\psi*are$ both representative functions; therefore they fulfill

the Fitzpatrick system (2.6), (2.7). Thus

$K(t, t)= \inf_{w\in V}, \{-\langle w’, t\rangle+\psi(t, w \geq 0 \forall t\in V,$ (3.14)

$K(t, t)= \sup_{t\in V}, \{\langle t, t’\rangle-\psi^{*}(t’,t)\}\leq 0 \forall t\in V$, (3.15)

whence
$K(t, t)=0 \forall t\in V$. (3.16)

Thus $(t, t)$ is a saddle point of $K$ for any $t\in V.$

(ii) Next we set
$\Phi(v, t) :=K(v, t)+\langle z’, t-v\rangle \forall v, t\in V$, (3.17)

whence
$\Phi(v, v)=K(v, v)^{(3}=^{16)}0 \forall v\in V$. (3.18)
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By (3.11),

$\sup_{t\in V}\Phi(v, t)=\sup_{(t,t’)\in V\cross V’}(\langle z’,t\rangle+\langle v,t’\rangle-\psi^{*}(t’, t))-\langle z’, v\rangle$

(3.19)
$=\psi^{**}(v, z’)-\langle z’, v\rangle=\psi(v, z’)-\langle z’, v\rangle \forallv\in V.$

Because of (3.19)

$v\mapsto\Phi(v, t)$ is concave and weakly lower semicontinuous, $\forall t\in V$. (3.20)

Moreover,

$\Phi(v, 0)^{(3}=^{17)}K(v, 0)-\langle z’, v\rangle^{(3}\geq^{14)}\inf_{w\in V}, \psi(v, w’)-\Vert z’\Vert_{V}, ||v\Vert_{V} \forall v\in V$ ; (3.21)

by (3.9) then
$\exists M>0$ : $\Vert v\Vert>M\Rightarrow\Phi(v, 0)>0$ . (3.22)

(iii) By (3.18), (3.20) and (3.22), we may apply Fan’s Theorem via.Corollary 3.2, selecting
$X=V$ equipped with the weak topology and $C=V$. Therefore there exists $u\in V$ (with
$\Vert u\Vert\leq M)$ such that

$\sup_{t\in V}\Phi(u, t)=\inf_{v\in V}\sup_{t\in V}\Phi(v,t)\leq 0$ . (3.23)

Hence, recalling that $\psi\in \mathcal{F}(V)$ ,

$0^{(2} \leq^{6)}\psi(u, z’)-\langle z’, u\rangle^{(3}=^{19)}\sup_{t\in V}\Phi(u,t)\leq 0$ . (3.24)

Thus $\psi(u, z’)=\langle z’,$ $u\rangle.$ $\square$

Remark. The proof of existence is trivialized whenever the representative function $\psi$ is self-
dual, in the sense of (2.15). Setting $J_{z’}(v)=\psi(v, z’)-\langle z’,$ $v\rangle$ for any $v\in V$ , in this case by
Corollary 2.6

$J_{z’}(u)= \inf_{v\in V}J_{z’}(v)$
$\Leftrightarrow$ $\alpha(u)\ni z’$ in $V’$ , (3.25)

and existence of a minimizer directly follows from the coerciveness and lower semicontinuity of
$J_{z’}.$

A nonmonotone problem. Next we deal with the nonmonotone inclusion

$\alpha_{u}(u)\ni z’$ in $V’$ . (3.26)

More specifically, we assume that a maximal monotone operator $\alpha_{v}$ : $Varrow \mathcal{P}(V’)$ is represented

(in the sense of Fitzpatrick) by a function $\psi_{v}\in \mathcal{F}(V)$ for any $v\in V$ . We formulate the inclusion
$\alpha_{\not\in 1}(u)\ni z’$ variationally, and state a theorem of existence of a solution.

Theorem 3.4 [36] Let $\alpha_{z}$ : $Varrow \mathcal{P}(V’)$ be a maximal monotone operator for any $z\in V$ , and
let $\alpha_{z}$ be represented by a function $V\cross V\cross V’arrow RU\{+\infty\}:(z, v, v’)\mapsto\psi_{z}(v, v’)$ such that

$\psi_{z}\in \mathcal{F}(V) , \psi_{z}^{*}\in \mathcal{F}(V’) \forall z\in V$, (3.27)

$\inf_{v\in V},$
$\frac{\psi_{v}(v,v’)}{\Vert v\Vert_{V}}arrow+\infty$ as $\Vert v\Vert_{V}arrow+\infty$ , (3.28)

$\inf_{v\in V}\frac{\psi_{v}(v,v’)}{||v\Vert_{V}}arrow+\infty$ as $\Vert v’\Vert_{V’}arrow+\infty$ , (3.29)

$V\cross V’arrow R\cup\{+\infty\}:(v, v’)\mapsto\psi_{v}(v, v’)$ is weakly lower semicontinuous. (3.30)
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For any $z’\in V’$ , then there exists $u\in V$ such that

$\psi_{u}(u, z’)=\langle z’, u\rangle$ . (3.31)

This equation is equivalent to the inclusion $\alpha_{u}(u)\ni z’$ in $V’.$

We refer the reader to [36] for the argument and for application of this result to problems like
those that we outlined in Sect. 1.

Remark. Similarly to what we pointed out in the previous remark, the proof of existence of
(3.31) is also trivialized whenever for any $z\in V$ the (assumed maximal monotone) operator
$v\mapsto\alpha_{z}(v)$ is represented by a self-dual function $\psi_{z}$ , in the sense of (2.15). Theorem 2.5 above
(see [3]) provides a way to construct a large class of examples. Setting $\tilde{J}_{z’}(v)=\psi_{v}(v, z’)-\langle z’,$ $v\rangle,$

in this case
$\tilde{J}_{z’}(u)=\inf_{v\in V}\tilde{J_{z’}}(v)$

$\Leftrightarrow$ $\alpha_{u}(u)\ni z’$ in $V’$ , (3.32)

and existence of a minimizer directly follows from the coerciveness and weak lower semicontinuity

of $\tilde{J}_{z’}.$
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