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ABSTRACT.
We discuss $\dagger$,he historical $wav$ theories including the fluid dynamics, the heat theory, in

$particular_{\backslash }$ that of Fourier and Poisson. We think, from the heat theories, we have had the
many mathernatically fruitful productions of derivatives from the heat theories, such as the
trigonometric series, the eigenvalue 1roblems and the $ral$ idly decrcaskg function.
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1. INTRODICTION
1,2,3 Fourier explains the motion of the hcat in the irxterior of solid. The difference is that

determines its increment of the temperature during an instant :

Kdydz $d( \frac{dv}{dx})dt+Kanaz$ $a( \frac{d?J}{dy})dl+Kdxdyd(\frac{dt}{d\sim\sim})dt$ $\Rightarrow$ $Kdxdyd_{\wedge} \prime(\frac{d^{2}.u}{dx^{2}}+\frac{d^{2}u}{dy^{2}}+\frac{d^{2}u\prime}{d_{\sim}^{2}7})dt$

$(d)_{F2_{cJ}^{r}}. \frac{du}{dt}=\frac{K}{C.D}(\frac{d^{2}u}{dx^{2}}+\frac{d^{2}u}{dy^{2}}+\frac{d^{2}u}{dz^{2}})$ (1)

where, internal conductibility, $C$ capacity, $D$ density of the substance. ([3, pp.120-2]). We
think that Fourier’s deductive method is very diffuse style and simpler than Poisson’s inductive
method described over 10 pages in original [16], we shovx his poiat below in \S 3.1.

1.1. Poisson’s paradigm and singularity.
Poisson publishes the last books consist of three elements : [13, 14, 15, 16]. ([14, 15] are

the salne title and are divided into two volumes.) These are his paradigm of the mathematical
physics through all his academic life, entitled a study of mathematical phisics. (Un Trait\’e de
Physique $Matf\kappa’$matique.) In the rivalry to Euler, Lagrange, $La1^{1ace}$) , Fourier, Navier, et al.,

Date: 2016/01/12.
lTranslation from Latin/French/German into Enghsh mine, except for Boltzmann.
$2_{To}$ establish $c\backslash$ time line of these contributor, we list for easy reference the year of their birth and death: New-

ton (1643-1727), Euler$(1707-8_{\backslash }{\})$ , $d’ Alernbelt(1717-83)$ , Lagrange(1736-1813), Laplace$(1749-1827),$ $Fourier(1768-$

1830), $p_{(\rangle}i\Re on(1781-1840)$ , Cauchy(1789-1857), $Diriく^{}\backslash ,h1et(1805arrow 59)$ , Riemann$(1826arrow 66)$ , Boltzmann(1844-1906),
Hilbcrt$(1862-1943)$ . Schr\"odinger(1887-1961).

$3_{We}$ use $(J\})$ means our remark not original, when we want to avoid the confusions between $0\iota\iota r$ opinion and
sic. $(\Leftarrow$$)$ means our translation in citing the origin.

数理解析研究所講究録

第 1989巻 2016年 161-169 161



we think, he struggles to make his paradigm. On the other hand, as its proofs, there are some
singular but important sugestions such as:

$\bullet$ rigorous sum instead of integral, (cf. \S 1.2)
$\bullet$ critics to easy applying the rule comes from real to transcendental function, (cf. fig. 1)
$\bullet$ conjecture on the defect of the proof in the eternity of exact differential,
$\bullet$ contribution to the fluid dynamics, especially, to the Navier-Stokes equations, (cf. [7,
pp. 261-271], Table 2, and 3)

$\bullet$ deduction of another heat equation from the basically molecular analysis. (cf. \S 3 and \S
3.1)

1.2. A comment on continuum by Duhamel.
Duhamel 1829 [1] points out the theory of continuum from the viewpoint of scientific history,
citing from the Poisson’s paper in the argument with Navier on the nonsense of Navier’s null
action in nature.

$(\Leftarrow$ $)$ Up to now, the reserchers have considered the corps of the nature as con-
tinue, it makes illusion to this regards, however, partly because this hypothesis
simplify the calcul, and partly because they think that it gives a sufficient ap-
proximation. Mr. Poisson think that this hypothesis isn’t never admissible, and
justify his opinion with following considerations.

In this state, the distance which separate the molecules must
be such that this condition were replaced, in having regard to
their mutual attraction and the caloric repulsion which we take
also among the molecular actions. However the corps is hard or
something solid, the force which opposes the separation of their
parties is zero or doesn’t exist in the state of which we discuss.
It doesn’t begin the existence that when we seek to effectuate
this separation, and when we change only a few distance of the
molecules. Namely, if we explain this force with $a$ integral it gets
to as its value being zero in the natural state of $co7y_{J}s$ , it will be so
even if after the variation of the molecular distances, so that, the
corps will opposite any resistance to the separatiopn of its parties
; this is what will be nonsense. It results from here, that the
sum which explain the total action of a series of disjoint molecules
can’t convert the sum instead of the definite integral ; this is what
holds in the nature of the function of distances which represent
the action of each molecule. The molecular force, of which we
will find the expression in the \S 1 of this Memoire, is calculated
according to this principle, and reduced at least in the simplest
form of which it were susceptible. [1, pp.98-99] (trans. and
italics mine.)

2. $c\circ NFUSI0NS$ AND UNIFY ON CONTINUUM THEORY

The hysico-mathematicians are must construct at first the physical structure, then allpies
the mathematical concept on it. The former is necessary to fit with the actual phenomena.
Arago 1829 $[?]$ seeks to separate these items to Navier 1829 [8] in the current of dispute with
Poisson and Arago. This is comes from the word what-Navier-called l’une sur l’autre, he fails
to explain exactly it, and since then, his theories and the equations are neglected up to the top
of the 20th century. We consider that the confusions and unify are as follows :

$\bullet$ Poisson and Fourier discuss on the handling of the De Gua’s theorem into the transcen-
dental equations. Without clear explanation, Fourier passed away in 1830. cf. (fig.1)
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$\bullet$ On the attraction and replusion of molecule, Navier depends on Fourier’s principle of
heat molecule. The then hysico-mathematiciams had little evaluated Navier until the
top of the 20th century. For formulation of heat motion in the fluid, Fourier cites not
Navier’s fluid equations, but $Euler^{\rangle}s$ fluid equations.

$\bullet$ The hydrodynamists like Navier, Poisson, Cauchy are propose the wave equations in the
elasticity, and the last two hydrodynamists proposes the total equations in unity on the
continuum.

$\bullet$ On the formulation of heat motion in the fluid, Fourier had submitted this paper, how-
ever, until his death, he has not published it, $i_{R}$ which he seems to aim the unity of
hydro- and thermodynamics, however, he has given up it.

We show the difference between Poison and Fourier in applying the rule of De Gua, which is
reduced for real to the transcendental. Fourier shows only real case in $a=2,$ $b=1$ in Poisson’s.

fig.1 Difference of applying the De Gua’s theorem into the transcendental

between Poisson and Fourier

3. THE HEAT AND FLUID THEORIES IN THE $19TH$ CENTURY

Poisson [11] traces Fourier’s work of heat theory, from the another point of view. Poisson
emphasizes, in the head paragraph of his paper, that although he totally takes the different
approaches to formulate the heat differential equations or to solove the various problems or to
deduce the solutions from them, the results by Poisson are coincident with Fourier’s.

I will take care of, through this Memoire, to cite the principle result which
Mr. Fourier have obtained before me ; and I dare to say at first, in all the
particular problems which we have taken the one and the another for examples,
and which being naturally indicated in this material, the formulae of my Memoire
coincides with that this piece includes. However, just only that there $\dot{u}$ common
between our two oeuvres ; because, it were to formulate the differential equations
of the motion of the heat, or it were to solve them and deduce the definitive
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solution of each problem, I am using the entirely different methods from that Mr.
Fourier is tracing. $[11, pp.1-2]$ (trans. and italics mine.)

3.1. The deduction of hrat equations by Poisson.

Poisson deduces his heat equations of the motion in interior of solid corps or liquid with the
function $R$ , which depend on the distance between the two molecules.

(\S 44.) There is always the heat in motion in all the corps, even when of all their points is
invariable,

$\bullet$ were each point would have a particular temperature,
$\bullet$ were its would have all a same temperature.

However, the expression motion of the heat is taken here, in the another sense ; it signifies the
variation of temperature which holds from an instant to the other in a corps which is heated or
is cooled ; and the velocity of this motion, in each point of the corps, is the primary differential
coefficient of the temperature with respect to the time.

I will call $A$ the corps solid or liquid, homogeneous or heterogeneous, in which we are going
to consider the motion of the heat. Let

$\bullet$ $M$ a certain point of $A,$

$\bullet$ and $m$ a particle of this corps, of insensible magnitude (no. 7),
$\bullet$ and take the point $M.$

At the end of a certain time $t_{:}$

$\bullet$ designate with $x,$ $y,$ $z$ , the three rectangular coordinates of $M,$

$\bullet$ with $v$ the volume of $m,$

$\bullet$ and with $\rho$ its density,

so that we have $m=v\rho$ . Let also, at the same instant, $u$ the temperature and as 4 the velocity
of motion of the heat which responds to the point $M.$

The quantity $u$ will be a function of $t,$ $x,$ $y,$ $z$ , dependent on an equation in the partial
differences with respect to these four variables, which it is the problem to form. If $A$ is a corps
solid, and which we make neglect its small dilations, positive or negative, products with the
variations of $u$ relative to time, the coordinates $x,$ $y,$ $z$ , according to independent of $t$ , and we
will have simply, as $= \frac{du}{dt}.$

$\bullet$ If in contrast, we have regard to small displacement of the point $M$ caused from these
dilations,

$\bullet$ or also, if $A$ is a fluid in which the integrality of temperature, or all other cause, hold to
the motions of its molecules,

then the coordinates $x,$ $y,$ $z$ , will be the function of $t$ ; and then we will have with the known
rules of the differentiation of functions made of functions,5

(1) $[S= \frac{du}{dt}+\frac{dx}{dt}\frac{du}{dx}+\frac{dy}{dt}\frac{du}{dy}+\frac{dz}{dt}\frac{du}{dz}$ ; (2)

where, expression in which $\frac{dx}{dt}$

)
$4ddt,$ $\frac{dz}{dt}$ , will be the components of the velocities at the point $M,$

parallel to the axes $x,$ $y,$ $z$ . (Below, original citation omitted.)
(\S 45.) Let $M’$ a second point of $A$ very near to $M$ , and $m’$ a particle of $A$ of insensible
magnitude, like $m$ which will contain $M’$ . At the end of time $t$ , we call $x’,$ $y’,$ $z’$ , the coordinates
of $M’$ in relating to same axes with $x,$ $y,$ $z$ , and designate with $u’$ the temperature of $m’$ ; also
let $r$ the distance $MM’.$

According to the general hypothesis on which the mathematical theory of the heat (no. 7) is
based, there will be a continuous exchange of heat between $m$ and $m’$ . I will represent with $\delta$

$4(\Downarrow)$ We use $tJ$ , because, in origin, Poisson uses the vertical type $of\propto$ like the opened shape in upper of the
numerical letter 8, however, this exact type isn’t in our LaTex font system.

$s_{(\Downarrow)}$ sic. The function is repeated.
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the augmentation of heat which will result then for $m$ during the instant $dt$ , namely, the excess
positive or negative, during this instant,

$\bullet$ of the heat emitted from $m’$ and absorbed with $m,$

$\bullet$ over the heat emitted from $m$ and absorbed with $m’.$

It will be able to suppose this excess proportional to product $m7n’dt$ , or to $vv^{f}p\rho’dt$ , in
calling $v’$ and $\rho’$ the volume and the density of $\uparrow n’$ , so that we would have $m’=v’\rho^{;}$ , as we have
already $m=v\rho$ . It will be zero in the case of $u’=u$, and same sign with the difference $u^{f}-u,$

$w\}zen$ it won’t be zero ; in the $vacuum_{3}$ it will come $i1’1$ the reverse ratio of the square of $r$ ; and
generally its value will be the form

(2) $\delta=\frac{vv’}{r^{2}}R(u’-u)dt$ , (3)

where, in designating with $R$ a positive coefficient, in whiclx we contain the factor $p\rho’$ , which
will decrease very rapidly for the values increasing with $r$ , which will be also able to depend on
materials and the temperatures of $m$ and $m’$ , and will vary with the direction of $MM’$ , when
the absorption of the heat won’t be the same in all direction around of $M.$

In the supposition the most general, $R$ will be hence a function of $r,$ $u_{\grave{ノ}}u$ , and the coordinates
of $M$ and $M’$ ; so that we will have

$R=\Phi\langle r, u, u’, x, y, z, x’, y’, z$

(Below, original citation omitted.)
(\S 46.) The total augmentation of heat of $m$ during the instant $dt$ will be the sum of values of

$\delta$ , extended to all the point $M’$ of which the distance at the point $M$ is smaller $thax\backslash l$ . I will
indicate a such sum with the characteristic $\Sigma$ . The factor $vdt$ being common to all the value of
$\delta$ , their sum will be

$vdt \sum\frac{R}{r^{2}}(u’-u)v’$ . (4)

However, during the instance $dt$ , the temperature of $m$ augments with as $dt$ ; if hence, we call
$c$ its specific heat, $cvtJdt$ will be also its augmentation of heat during this instant ; hence in
suppressing the common factor $vdt$, we will have

(3) $c$ as $= \sum\frac{R}{r^{2}}(u^{f}-u)v’$ . (5)

for the equation of motion of the heat equally applicable to a $cox\cdot ps$ solid and to a liquid, in
substituting the convenient expression with as. (Below, original citation omitted.)
(\S 47.) Of the point $M$ as $cex\iota ter$ and a radius equal to the linear unit, we describe a spherical
surface ; were $ds$ the differential element of this surfaee, to which gets, the radius of which the
direction is that of $MM’$ , we will have $dv’=r^{2}drds$ ; and according to the value of the sum
$\sum$ , the equation (5) will turn out

(4) $c \frac{du}{dt}=\int\int R(u’-u)drds$ ; (6)

We put here, for abridgement, $\frac{du}{dt}$ , instead of $tJ$ ; however, we $w$ remember that this differential
coefficient needs to be taken with relation to $t_{\theta t1}d$ to all this that depend ; so that it needs to
replace $\frac{dc\iota}{dt}$ with the formula (2), when the coordinates $x,$ $y,$ $z$ , of the point $M$ will vary with
the time.

The limit relative to $r$ of the integral contains in this equation (6) won’t be the same, according
to the distance of the point $M$ to the surface of $A$ will surpass $l$ or $wiX$ be shorter than this
small segment. In this chapter we will suppose that this were the primary case which holds ;
the integral relative to $r$ will come to be hence taken from $r=0$ to $r=l$ , in all the direction
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around $M$ ; we will be able hence to describe the equation (6) under the form

(5) $c\frac{du}{dt}=\int_{0}^{\ell}[\int R(u’-u)ds]dr$ ; (7)

where, the integral in respecting to $ds$ will come to be extended to all the element $ds$ from the
spherical surface, and with the reduction in series, we will obtain easily the approximate value.

(\S 48.) For these things, I designate with $\alpha,$
$\beta,$

$\gamma$ , the angles which the segment $MM’$ makes
with the parallels to the axes $x,$ $y,$ $z$ , traced through the point $M$ . Because of $MM’=r$, then
it will result

$x’-x=r\cos\alpha, y’-y=r\cos\beta, z’-z=r\cos\gamma$ ;

and, according to the theory of Taylor, we will have

$u’-u=$ $\frac{du}{dx}r\cos\alpha+\frac{du}{dy}r\cos\beta+\frac{du}{dz}r\cos\gamma$

$1 d^{2}u 2 1d^{2}u 2 1d^{2}u 2$
$+ \overline{2}\overline{dx^{2^{r}}} \cos 2\alpha+\overline{2}\overline{dy^{2^{r}}} \cos 2\beta+\overline{2}\overline{dz^{2}}r \cos^{2}\gamma$

$+$ $\frac{d^{2}u}{dxdy}r^{2}cos$ $a$
$\cos\beta+\frac{d^{2}u}{dxd\approx}r^{2}\cos$ a $\cos\gamma+\frac{d^{2}u}{dydz}r^{2}\cos\beta\cos\gamma$

If we develop similarly $R$ in accordance with the power and the products of $u’-u,$ $x’-x_{\rangle}y’-$

$y,$ $z’-z$ , we will have also

$R=V+( \frac{dR}{du})(u’-u)+(\frac{dR}{dx})(x’-x)+(\frac{dR}{dy})(y’-y)+(\frac{dR}{dz’})(z’-z)+\cdots$ ;

where, the parentheses indicating here that it needs to put $u’=u,$ $x’=x,$ $y’=y,$ $z’=z$
according to the differentiation which supposes $r$ invariable, and $V$ designating this which comes
at the same time from the function $\Phi$ of the (no. 45), so that we have

$V=\Phi(r, u, u, x, y\}z, x, y, z)$ . (8)

(Below, original citation omitted.)

(\S 49.) (General equation of the motion of heat) 6

In this hypothesis, we will stop the development of $R$ at the terms dependent on the square
of $r$ exclusively. By reason of the system of $R$ in respect to $u$ and $u’,$ $x$ and $x’,$ $y$ and $y’,$ $z$ and
$z’$ , and of this one which $V$ represents, we have evidently

$( \frac{dR}{du})=\frac{1}{2}\frac{dV}{du}, (\frac{dR}{d\alpha})=\frac{1}{2}\frac{dV}{dx}, (\frac{dR}{dy})=\frac{1}{2}\frac{dV}{dy}, (\frac{dR}{dz’})=\frac{1}{2}\frac{dV}{dz}$ ;

then, it will result hence

$R=V+ \frac{1}{2}\frac{dV}{du}(u’-u)+\frac{1}{2}\frac{dV}{dx}(x’-x)+\frac{1}{2}\frac{dV}{dy}(y’-y)+\frac{1}{2}\frac{dV}{dz}(z’-z)$ ;

and of this value jointed to that of $u’-u$ , we will conclude

$H_{2}=$ $\frac{1}{2}[V\frac{d^{2}u}{dx^{2}}+(\frac{dV}{du}\frac{du}{dx}+\frac{dV}{dx})\frac{du}{dx}]\int c\circ s^{2}\alpha ds+\frac{1}{2}[V\frac{d^{2}u}{dy^{2}}+(\frac{dV}{du}\frac{du}{dy}+\frac{dV}{dy})\frac{du}{dy}]\int\cos^{2}\beta ds$

$+$ $\frac{1}{2}[V\frac{d^{2}u}{dz^{2}}+(\frac{dV}{du}\frac{du}{dz}+\frac{dV}{dz})\frac{du}{dz}]\int\cos^{2}\gamma ds,$

$6(\Downarrow)$ This article is the most frequently referred from other article, such as 52, 58, 64, 68, 70, 76, 85, 89, 117,
119, 120, 137, 162. (These are the article numbers, referred to the no. 49, and in the bold numbers, the another
equations are expressed.)
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or more simply

$H_{2}= \frac{1}{2}[V\frac{d^{2}u}{dx^{2}}+\frac{dV}{dx}\frac{du}{dx}]\prime\cos^{2}\alpha ds+\frac{1}{2}[V\frac{d^{2}u}{dy^{2}}+\frac{dV}{dy}\frac{du}{dy}]\prime\cos^{2}\beta ds$

$+ \frac{1}{2}[V\frac{d^{2}u}{dz^{2}}+\frac{dV}{dz}\frac{du}{dz}]\prime\cos^{2}\gamma ds$ ;

the partial differences 7 of $V$ with $1’$espect to $x,$ $y,$ $z$ , being taken in considering $u$ as a function
of these three coordinates, and without varying $r.$

We have additionally

$\int\cos^{2}\alpha ds=\int\cos^{2}\beta ds=\prime\cos^{2}\gamma ds.$

Moreover, if we call $\psi$ the angle which $ma1_{\iota^{r}}es$ the plane of the segment $MM’$ and of a parallel
to the axis of $x$ traced through the point $M$ , with a fixed plane traced through this parallel, we
will have $ds=\sin\alpha d\alpha d\psi$ ; and the integral relative to $ds$ will come to be extended to all the
spherical surface, to which this element belongs, then it will result

$\int\cos^{2}\alpha ds=\int_{0}^{\prime/r}\cos^{2}\alpha\sin\alpha d\alpha\int_{0}^{2pr}d\psi=\frac{4\pi}{3}.$

$8Hence_{\}}$ in reducing the value of $\int R(u’-u)$ at the primary telm $H_{2}r^{2}$ of the series $($ ?? $)$ , the
equation (7) will come to be

$c \frac{du}{dt}$ $=$ $\frac{2\pi}{3}(\frac{d^{2}u}{dx^{2}}I_{0}^{l_{Vr^{2}dr}}+\frac{du}{dx}\int_{0}^{l}\frac{dV}{dx}r^{2}dr)+\frac{2rr}{3}(\frac{d^{2}u}{dy^{2}}\int_{\zeta)}^{l}Vr^{2}dr+\frac{du}{dy}\int_{0}^{l}\frac{dV}{dy}r^{2}dr)$

$+ \frac{2\pi}{3}(\frac{d^{2}u}{dz^{2}}\prime_{0^{l}}Vr^{2}dr+\frac{du}{dz}\int_{0}^{l}\frac{dV}{d_{\tilde{\rho}}}r^{2}dr)$ . (9)

The function $V$ be\’ing zero for all the value of $r$ longer than $l$ , we will be able to nvw extend
the integral relative to $r$ beyond this limit, and if we want to be until $r=\infty$ . If we put also

$\frac{2\pi}{3}\int_{0}^{\infty}Vr^{2}dr\equiv k$ , (10)

where, $k$ will be a $f\iota$mction of $u,$ $x,$ $y,$ $z$ , and we will have

$\frac{2\pi}{3}\int_{0}^{\infty}\frac{dV}{dx}r^{2}dr=\frac{dkarrow}{dx},$ $\frac{2_{7}r}{3}\int_{0}^{\infty}\frac{dV}{dy}r^{2}dr=\frac{dk}{dy},$ $\frac{2\pi}{3}\int_{0}^{\infty}\frac{dV}{dz}r^{2}dr=\frac{dk}{dz}$ ;

in consequence, the general equation of the motion of the heat will come to be finally 9

(7) $c \frac{du}{dt}=\frac{d.k\frac{du}{dx}}{dx}+\frac{d.k\frac{du}{dy}}{dy}+\frac{d.k\frac{d\prime u}{dz}}{dz}$ . (21)

When all the point of $A$ gets to a stationary state, we will have $\frac{du}{dt}=0$ , an$(i$ then it will result

$\frac{d.k\frac{du}{dx}}{dx}+\frac{d.k\frac{d\uparrow x}{dy}}{dy}+\frac{d.k\frac{du}{dz}}{dx}=0,$

$\fbox{Error::0x0000}r_{(\Downarrow)}$ id.
$8(\Downarrow)$ According to [9, p.41, no.277],

$\int\cos^{m}x\sin xdx=-\frac{\cos^{rn+1}x}{m+1}.$

$9(\Downarrow)$ The expression (9) is reduced into

$c \frac{du}{dt}=(\frac{d^{2}u}{dx^{2}}k+\frac{du}{dx}\frac{dk}{dx})+(\frac{d^{2}u}{dy^{2}}k+\frac{du}{dy}\frac{dk}{dy})+(\frac{d^{2}u}{dz^{2}}k+\frac{du}{dz}\frac{dk}{dz})$ $\Rightarrow$ (11).
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for the equation relative to this stationary state.
(\S 50.) The equation (11) coincides with that which I found in years ago for the case of a
heterogeneous $corps^{1\fbox{Error::0x0000}}$ , however, in never supposing hence that the quantity $k$ depended on the
temperature $u.$

If $A$ is a corps heterogeneous,
$\bullet$ $k$ will depend only on $u,$

$\bullet$ and the equation (11) will be changed as follows : 11

(8) $c \frac{du}{dt}=k(\frac{d^{2}u}{dx^{2}}+\frac{d^{2}u}{dy^{2}}+\frac{d^{2}u}{dz^{2}})+\frac{dk}{du}(\frac{du^{2}}{dx^{2}}+\frac{du^{2}}{dy^{2}}+\frac{du^{2}}{dz^{2}})$ . (12)

In supposing that this quantity $k$ were independent of $u$ , we could have the equation

(9) $c \frac{du}{dt}=k(\frac{d^{2}u}{dx^{2}}+\frac{d^{2}u}{dy^{2}}+\frac{d^{2}u}{dz^{2}})$ , (13)

12 which we give it ordinarily, and which is reduced, in the case of the stationary state, to an
equation independent of two quantities $c$ and $k$ , viz.,

$\frac{d^{2}u}{dx^{2}}+\frac{d^{2}u}{dy^{2}}+\frac{d^{2}u}{dz^{2}}=0$ . (14)

13

Poisson puts also the another heat equations :

(1) $\frac{du}{dt}=a^{2}(\frac{d^{2}u}{dx^{2}}+\frac{d^{2}u}{dy^{2}}+\frac{d^{2}u}{dz^{2}})$ , $\frac{k}{c}=a^{2}$ , (15)

where, $u$ is the heat, $k$ and $c$ are the conductibility and the specific heat of the material.

4. CONCLUSIONS

Fourier doesn’t show the pricise deduction of the heat equation (1), while Poisson takes 9
pages to descrive it from \S 44 to \S 50. The diffefrence between Fourier and Poisson is the common
kernel function of molecular distance, which Poisson considers and manipulates in both fluid
motion and heat motion. Additionally, we concludes as follows :

$\bullet$ He presents the
$\langle$

two constant theory’, which we assert, (id. cf. [7]) as visible in the
Navier-Stokes equations in 1831. After this, Stokes follows Poisson’s equation in 1849,
and Prandtl [18, 19] declears these equations as the ‘Navier-Stokes equations’ in the top
of the twenty century.

$\bullet$ He presents the heat kernel function in [16], which is equivalent, however more complex
than the fluid kernel function with the distance of fluid molecule : $f(r)$ .

$\bullet$ He proposes the alternative method of the definite integral, 14 instead of making the
universal method of it, since by Euler, Lagrange and Laplace.

$\bullet$ He shows the heat equation by deducing precisely, although Fourier’s series is the first,
however, its introduction isn’t deducing such as $Poisson^{\rangle}s$ or without demonstration.

$\bullet$ Although his approach dues to the rivarly to the $Fourier’s$ theory, it brings up the de-
rivative productions of the another solutions or thinking in making many breakthroughs
to $Fourier^{)}s$ method.

$10_{sic}$ . Journal de l’\’Ecole Polytechnique, 19e cahier, page 87. $(\Downarrow$ $)$ Poisson [11], [15, p. 677].
$11(\Downarrow)$ The second term of the right hand-side of the equation (12) is for $k=k(u)$ , in sic.
$12(\Downarrow)$ The equation (13) means $c \frac{du}{d{\}}=k\Delta u$ , where $\Delta$ meaning the Laplacian.
$13(\Downarrow)$ This function $u$ satisfying the equation (14) is called harmonic function. Poisson doesn’t mention the

harmonic function, however, Poincar\’e [17, p.237] calls it so.
$14(\Downarrow)$ cf. [10], [15, pp.347-367].
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5. EPILOGUE

Poisson [16, pp.411-415] expects the earth warming before the Industorial Revolution
$1|i$ up

to 17 years after. According to his speculation, in using this average rate of the increment per a
year is $0.22^{o}C$ , then we can estimate with this incretnent rate up to this year 2015, just at the
COP21, the temperature rises between 198 years, $2.447^{c)}C$ as follows :

$\frac{11.980-11.730}{17\frac{7}{1-}}\cross 198=\frac{0.22}{17.58333}\cross 198=2.477^{0}C.$

This is what $is$ called the reason of the consensus about the increment of the earth $warmi_{1}\mathfrak{B}$ in
the world.
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