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1 Introduction

In software $1^{\cdot}$eliability engineering, it has become one of the main issues in this area to assess the software relia-

bility quantitatively. Among over hundreds ofsoftware reliability models (SRMs) [11, 12, 14], non-homogeneous

Poisson process (NHPP) based SRMs have gained much popularity in actual software testing phases. People are
interested in estimating the software intensityfunction ofNHPP-based SRMs from software fault count data that

can be collected in the software testing phases. The software intensity function in discrete time denotes the number

of software faults detected per unit time. From the estimated software intensity function, it is possible to predict

the number of remaining software faults and the quantitative software reliability, which is defined as the proba-

bility that software system does not fail during a specified time period under a specified operational environment.

Therefore, we are interested in developing a high-accuracy estimation method for the software intensity function.

We proposed wavelet shrinkage estimation (WSE) as non-parametric estimation method for NHPP-based SRMs

([15, 16, 17 The WSE does not require solving any optimization problem, so that the implementation of es-
timation algorithms is rather easy than the other non-parametric methods. We compared our method with the

conventional maximum likelihood estimation (MLE) and the least squares estimation (LSE) through goodness-of-

fit test. It has been shown that WSE could provide higher goodness-of-fit performance than MLE and LSB in many

cases, in spite of its non-parametric nature, through numerical experiments with real software fault count data.

The fundamental idea ofWSE is to remove the noise included in the observed software fault count data to get a

noise-free estimate ofthe software intensity function. It is performed through the following three-step procedure.

First, the noise variance is stabilized by applying the variance-stabilizing transformation to the data. This produces

a time-series data in which the noise can be treated as Gaussian white noise. Second, the noise is removed using

threshold methods. Third, an inverse variance-stabilizing transformation is applied to the denoised time-series

data, obtaining the estimate ofthe software intensity function. This paper focuses on the first and the third steps

ofWSE and aims at identifying and emphasizing the influence that the data transformation exerts on the accuracy

of WSE. The remaining part of this paper is planmed as follows. In Section 2, we give a preliminary on wavelet

analysis, especially focusing on multiresolution representation. Section 3 describes the WSE for NHPP-based

SRMs in details. In Section 4, we carry out the real project data analysis and examine the effectiveness of eight

data transformations. Finally, the paper is concluded in Section 5.
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2 Multiresolution Representation

Let $f(t\rangle$ denote the target function on continuous time $t$. In multiresolution representation, target function is

usually expressed by the linear combination of its approximation component and detail component, i. e.,

$f(t) = f_{jc!}(t)+ \sum_{j=j(}^{+\infty}g_{j}(t)$ , (1)

where $f_{j)}(t)$ and $g_{j}(t)$ are the level-jo approximation component and level-j detail component of$f(t)$, respectively.

Here, parameter $j(\geq 0)$ is called resolution level, and $jo$ is primary resolution level. The levei-j approximation

component $f_{j}(t)$ and level-j detail $g_{j}(t)$ component are defined as follows.

$f_{j}(t) \sum_{k=-\infty}^{+\infty}a_{jf}\phi_{JJ}(t\rangle,$ (2)

$g_{j}(t) = \sum_{k=-\infty}^{+\infty}\beta_{j,k}\psi_{ノ^{}a,k}(t\rangle$ . (3)

Here, $\alpha_{j\lambda}$ and $\beta_{j.k}$ are the so-called scaling coefficients and wavelet coefficients, respectively. $\phi_{j,k}(t)$ and $\psi_{J^{1k}},(t)$ are
wavelet bases that are generated fromfather wavelet and mother wavelet, respectively. Ifwe choose Haar wavelet,

ofwhich the father wavelet and mother wavelet are given by

$\phi(t)$ $=$ $\{\begin{array}{ll}1 (0\leq t\leq 1)0 (otherwise),\end{array}$ $\langle$4)

and

$\psi(t)$ $=$ $\{\begin{array}{ll}1 (0\leq t<1/2)-f (1/2\leq t<1) ,0 (otherwise)\end{array}$ $\langle 5\rangle$

then $\phi_{j,k}(t)$ and $\psi_{j,k}(t)$ can be generated by introducing a scaling parameter $j$ and a shift parameter $k$ as

$\phi_{J^{k}}(t\rangle$ $=$ $2^{j/2}\phi(2^{j}t-k)=\{\begin{array}{ll}2^{j/2} (2^{-j}k\leq t\preceq 2^{-j}(k+1))0 (otherwise),\end{array}$ (6)

and

$\psi_{j_{i}}k(t\rangle$ $=$ $2^{J/2}\psi(2^{j}t-k\rangle=\{\begin{array}{ll}2^{j/2} (2^{-j}k\leq t<2^{-j}(k+1/2)\rangle-2^{j/2} (2^{-j}(k+1/2)\leq t<2^{-j}(k+1))0 (otherwise).\end{array}$

Because $\phi_{j,k}(l)$ and $\psi_{ノ,k}(t)$ are orthonormal bases, their coefficients can be found by calculating the inner product

ofthe target function and themselves. Therefore, the scaling coefficients and wavelet coefficients are defined as

$\alpha_{jJ} = \int_{\infty}^{\infty}f(t)\phi_{ノ,k}^{*}(t)dt$ , (7)

$\beta_{i^{k}}, = \int_{\infty}^{\infty}f(t)\psi_{j,k}^{*}(t)dt$, (8)

where notation $*$ means complex conjugation.

In practice, the highest resolution level $J$ depends on the length of observed data, say $n(=2^{J})$ . Additionally,

the primary resolution level $j_{0}$ is often set to be O. Therefore, the level-J multiresolution representation of $f(t)$ is
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given by

$f_{J}(t \rangle = f_{0}(t)+\sum_{j=\mathfrak{o}}^{J-1}g_{j}(t)$ , (9)

$f_{j}(t)= \sum_{\succ-0}^{2^{j}-1}\alpha_{jJ}\phi_{j,k}(t)$, (10)

$g_{j}(t)= \sum_{k=\mathfrak{o}}^{2^{J}-1}\beta_{j,k}\psi_{J^{4}}f(/)$ . (11)

In other words, the level-J multiresolution representation of$f(t)$ on continuous time $t$ is given by

$f_{J}(t) = \alpha 0.0\phi_{0,0}(t)+\sum_{j=0}^{J-1}\sum_{k4}^{2^{j}-1}\beta_{jJ}\psi_{J\grave{J}}(t\rangle$ . (12)

$\circ n$ the other hand, in discrete time case, target function $f_{f}$ $(i=1,2, \cdots, n)$ can be expanded in a similar fasion:

$f^{J},, = u0, \mathfrak{o}\phi_{0.0}(i)+\sum^{J-1}\sum_{-j=0\succ \mathfrak{o}}^{2^{J}-1}v_{j,k}\psi_{j,k}(l)$ , (13)

where $u_{j,k}$ and $v_{jJ}$ are discrete scaling coefficients and discrete wavelet coefficients, respectively. Because the

approximation error between continuous and discrete coefficients can be adjusted by factor $\sqrt{n}$ ([1]), we have

$u_{j}J = \frac{1}{\sqrt{n}}\sum_{j=1}^{n}f_{f}\phi_{jf}^{*}(i)$ , (14)

$v_{jJ}$
$=$ $\frac{1}{\sqrt{n}}\sum_{1=1}^{n}f\psi_{jj}^{*}\langle\iota)$ . $(1S)$

The mapping from function $f_{i}$ to coefficients $(u_{j\prime}, v_{j_{t}k})$ is called the discrete Haar wavelet transform (DHWT),

while the reconstruction of function from coefficients $(u_{\dot{j}}J, v_{Jt})$ is called the inverse discrete Haar wavelet

transform (IDHWT).

From inherence property ofHaar wavelet, $u_{\dot{j}}.k$ and $v_{y.k}$ can be calculated easily as follows.
For $j=J(J=\log_{2}n)$ , $k=0$, 1, $\cdots,$ $n-1,$

$u_{j,k} = \frac{1}{\sqrt{n}}f_{k+1}$ . (16)

For $j=J-1,$ $J-2,$ $\cdots,$
$0,$ $k=0$, 1, $\cdots,$

$2^{j}-1,$

$u_{r\acute{J}} = \frac{1}{\sqrt{2}}(u_{j+1.2k}+u_{j+1,2k+1})$, (17)

$v_{j.k} = \frac{1}{\sqrt{2}}(u_{j+1,2k}-u_{j+1,2k+1})$ . (18)

Furthermore, for $j=0$, 1, $\cdots,$ $J-1,$ $k=0$, 1, $\cdots,$
$2^{j}-1$ , the IDHWT is achieved by

$u_{J+Ip_{k}} = \frac{1}{\sqrt{2}}(u_{j,2k}+v_{j.2k+1})$, (19)

$u_{j+1,2k+1} = \frac{1}{\sqrt{2}}(u_{J2k}-v_{jlk+}$ (20)

Let $s_{i}$ be the observation of $f(i=1,2, \ldots.n)$ . Then, the empirical discrete scaling coefficients $c_{j\lambda}$ and

empirical $discre/e$ wavelet coefficients $d_{J\lambda}$ can be calculated using equations (14) and (15) with replaced by $s_{i}.$
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Coefficients $c_{j,k}$ and $d_{j\cdot k}$ are called the empirical ones because it is considered that observation errors are included
inside. That is, the noises ofthe data are $considel\cdot ed$ to be involved in empirical discrete wavelet coefficients $d_{j,k},$

and the threshold methods can be used for denoising. Up to now, although a broad class ofthresholding schemes

are available in the literature, the common choices include hard thresholding and soft thresholding, where hard

thresholding is a keep’ or kill’ rule, while soft thresholding is a $shri\alpha$ or kill’ rule. The hard thresholding is

defined as

$\delta_{\tau}(d\rangle = d1_{|d|>\tau},$ (21)

and soft thresholding is defined as

$\delta_{\tau}(d) = s\mathfrak{R}(d)(|d|-\tau)_{+}$ , (22)

for a fixed threshold level $r(>0)$ , where $1_{A}$ is the indicator function of an event $A,$ $sg\mathfrak{n}(d)$ is the sign function of
$d$, and $(d)_{+}= \max(O, d)$ . Letting $d_{j,k}’$ denote the denoised empirical discrete wavelet coefficients, the estimates of

target function can be obtained by applying IDHWT to $c_{j,k}$ and $d_{j,k}’.$

3 Wavelet Shrinkage Estimation for NHPP-based SRMs

Suppose that the number of software faults detected through a system test is observed at discrete time $i=$

$O$ , 1, 2, $\cdots$ Let $Y_{i}$ , and $N_{i}= \sum_{k=0}^{i}Y_{k}$ respectively denote the number of software faults detected at testing date $i,$

and its cumulative value, where $Y_{0}=N_{0}=0$ is assumed without any loss of generality. The stochastic process
$\{N_{i}:i=0, 1, 2, \cdots\}$ is said to be a discrete non-homogeneous Poisson process ($D$-NHPP) ifthe probability mass
function at time $i$ is given by

$Pr\langle N_{l}=m\} = \frac{\{\Lambda_{f}^{m}}{m}!\exp\{-A_{i}\}, m=0, 1, 2, \cdots$ , (23)

where $\Lambda_{i}=E[N_{i}J$ is the expected cumulative number of software faults detected by testing date $i$. The fUmction
$\lambda_{j}=\Lambda_{i}-\Lambda_{i-1}(i\geq 1\rangle$ is called the discrete intensity function, and i:nplies the expected number of faults $de\{$ecied

at testing date $i$, say $\lambda_{i}=E[Y_{i}]$ . In ether words,

$Y, = \lambda_{i}+\eta_{7}, i=0, 1, 2\ldots$ . (24)

The wavelet-based techniques have been well established especially in several areas such as non-parametric

regression, probability density estimation, time-series analysis, etc. Considel$\cdot$ the following non-parametric regres-

sion model:

$S, = z_{i}+\epsilon_{i}, i=1, 2, \cdots, n$, (25)

where $z_{\dot{f}}$ are arbitrary target functions of discrete-time index ; and $\epsilon$, are independent Gaussian random variables

with $N(O, \sigma^{2})$ and $\sigma(>0)$ . One ofthe basic approaches to the Gaussian non-parametric regression is to consider

the unknown function $z_{i}$ expanded as a wavelet series and to transform the original problem to an estimation of

the wavelet coefficients from the data. Donoho and Johnstone $\mathfrak{l}6$ , 7, 8] and Donoho et al. [9] proposed non-linear

wavelet estimators of $z_{i}$, and suggested the extraction ofthe significant wavelet coefficients by thresholding, where

wavelet coefficients are set to $O$ if their absolute value is below a certain threshold level. Then, application of the

inverse wavelet transform ofdenoised coefficients by thresholding leads to an estimator of the underlying target

function $z_{l}.$

This standard wavelet-based technique can be applied to a non parametric estimation ofthe discretized NHPP.

The basic idea is to pre-process the Poisson count data using normalizing and variance-stabilizing transforms
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Table 1: Representative Data Transformaions (the case ofvariance equals to 1/4).

Table 2: Representative Data Transformaions (the case ofvariance equals to 1).

([3,4,2,10 Table 1 and Table 2 show representive variance-stabilizing transforms with different variances. By

using either of them, the sottware fault count data, say $y_{l}$ , which is the observation of $Y_{i}(i=1,2, \ldots, n)$ , is

approximately transformed to the Gaussian data. That is, the transformed realizations $s_{j}(i=1,2,$
$\ldots,$

$n\rangle$ by data

transformations can be regarded as the ones from the normally distributed random variables:

$S_{f} = \lambda_{i}’+v_{i}, i=1, 2, \cdots, n$ , (26)

where $\lambda_{i}’$ is the transformed software intensity nation, and $v_{t}$ is the Gaussian white noise with constant variance.
Then, $\lambda_{j}’$ is the target function to be expanded by multiresolution representation introduced in Section 2.

For thresholding, too large threshold may cut off important parts of the original function, whereas too small

threshold retains noise in the selective reconstruction. Hence, the choice ofthreshold is also a significant problem.

In fact many methods to determine the threshold level have been proposed (e.g. see [5]). In WSE ([15, 16, 17

We use the universal threshold [6], and the’leave out-half cross validation threshold [13]:

$\tau = \frac{v}{\sqrt{n}}\sqrt{2\log n}$, (27)

$\tau = (1-\frac{\log 2}{\log n})^{-1/2}\tau(\frac{n}{2})$ , (28)

where $v$ is the standard variation of empirical wavelet coefficients, and $n$ is the length ofthe observation $y_{1}$ . Refer
to [13] for details of $\tau(n/2)$ .

4 Real Data Analysis

Although eight kinds of variance-stabiliz\’ing transformations were used in WSE, the most appropriate one for

NHPP-based SRMs was not be identified. In this experiment, we look into this problem. We use six sets of soft-

ware fault count data (group data) collected from real project data sets ([11 Let $(K,$ $n,$ $x_{n}\rangle$ denote the triple of

the software size, the final testing date and the total number of detected fault. Then these data sets $(DS1 \sim DS6)$
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are presented by $(14kloc, 62weeks, 133)$, $(15kloc, 41weeks, 351)$, $(103kloc, 73weeks, 367)$, $(null, 46days, 266)$,

$(300kb, 81days, 463\rangle, (2$ookloc, $11 ldays, 481)$, respectively. The MSE (mean squares error) and LL $(\log$ likeli-

hood) are employed as the goodness-of-fit measures, where

MSE$i$
$=$

$\frac{\sqrt{\sum_{i=(}^{n}(\Lambda_{i}-x;\rangle^{2}}}{n}$ , (29)

$MSE_{2} = \frac{\sqrt{\sum_{j=1}^{n}(\lambda_{i}-y_{j})^{2}}}{n}$ , (30)

$LL$ $=$ $\sum_{:=1}^{n}(x_{i}-x_{i-i})\ln[\Lambda_{;}-\Lambda\vdash 1]-\Lambda_{n}-\sum_{j=1}^{/\iota}\ln[(x_{i}-x_{i-1})!].$ $(31\rangle$

We apply the WSE with two threshelding techniques (hard thresholding (h) v.s. soft thresholding (s)), and

two thresholds (universal threshold (ut) v.s. cross-validation threshold (cvt$\rangle$). Table 3 presents the goodness-of-fit

results of DS1, based on the four threshold methods for DS1 with different variance-stabilizing transformations.

Due to page limit, the results shown here are ofthe case where the highest resolution level $i$ is set to be 3.

For all the variance-stabilizing transformations, it is observed that when universal threshold is used, the accura-
cies are the same between hard thresholding and soft thresholding. While in the case ofcross-validation threshold,
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the accuracy of the case of $l=1/4$ is the same with or better than that of the case of $\nu^{2}=1$ in most cases. The

reasons are considered to be as follows. For the case of universal threshold, because the magnitude relationships

between transformed data and the universal threshold are the same, the same empirical discrete wavelet coeffi-

cients $d_{JJ}$ are set to be O. Therefore, the accuracies are the same from both theoretical and experimental points
of view. That is, the variance of the variance-stabilizing transforms does not affect the accuracy of WSE when

universal threshold is preferred. $\circ n$ the other hand, the same magnitude relationship does not exist in the case of
cross-vaiidation threshold. Hence, the accuracies are different when different variance-stabilizing transformations

are used from theoretical point ofview. However, it is observed in all the six data sets ofour experiments that, the
accuracy ofthe case of$l=1/4$ is the same with or better than that ofthe case of $f=1$ in most cases. Therefore,
a variance-stabilizing transformation with smaller variance is preferred.

5 Conclusion

In this paper, the effectiveness of variance-stabilizing transformations to wavelet shrinkage estimation was in-
vestigated. From the numerical evaluation, we found that the accuracy of the case of $l=1/4$ was the same with

or better than that of the case of $l=1$ in most cases. Therefore, we concluded that such variance-stabilizing

transformations that transform original variance to 1/4 should be used in wavelet shrinkage estimation to assess
software reliability.
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