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ABSTRACT. The first part of this article is a general introduction to the the theory
of representation spaces of discrete groups into $SL_{n}(\mathbb{C})$ . Special attention is paid to
knot groups, In Section 2 we discuss the difference between the tangent space at the
representation variety, and the representation scheme. We give an example of Lubotzky
and Magid of a non scheme reduced ::epresentation (see Example 2.18).

In the second part recent results about the representation and character varieties of
knot groups into $SL_{n}(\mathbb{C})$ with $n\geq 3$ are presented. This second part concerns mostly
joint work with L. Ben Abdelghani, O. Medjerab, V. Munos and J. Porti.

1. INTRODUCTION

Since the foundational work of Thurston [61, 62] and Culler and Shalen [13], the va-
rieties of representations and characters of three-manifold groups in $SL_{2}(\mathbb{C})$ have been
intensively studied, as they reflect geometric and topological properties of the three-
manifold. In particular they have been used to study knots $k\subset S^{3}$ , by analysing the
$SL_{2}(\mathbb{C})$ -character variety of the fundamental group of the knot complement $S^{3}-k$ (these
are called knot groups).

Much less is known about the character varieties of three-manifold groups in other Lie
groups, notably for $SL_{n}(\mathbb{C})$ with $n\geq 3$ . There has been an increasing interest for those in
the last years. For instance, inspired by the $A$-coordinates in higher Teichm\"uller theory
of Fock and Goncharov [22], some authors have used the so called Ptolemy coordinates
for studying spaces of representations, based on subdivisions of ideal triangulations of the
three-manifold. Among others, we mention the work of Dimofty, Gabella, Garoufalidis,
Goerner, Goncharov, Thurston, and Zickert [17, 18, 25, 27, 26]. Geometric aspects of
these representations, including volume and rigidity, have been addressed by Bucher,
Burger, and Iozzi in [11], and by Bergeron, Falbel, and Guilloux in [7], who view these
representations as holonomies of marked flag structures. We also recall the work Deraux
and Deraux-Falbel in [15, 14, 16] to study CR and complex hyperbolic structures.
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2. BACKGROUND

Definition 2.1. Let $k\subset S^{3}$ be a knot. The knot group is $\Gamma_{k}:=\pi_{1}(S^{3}\backslash k)$ . The knot

exterior is the compact manifold $C_{k}=S^{3}\backslash V(k)$ where $V(k)$ is a tubular neighborhood
of $k.$

In what follows we will make use of the following properties of knot groups:
$\bullet$ We have $H_{1}(C_{k};\mathbb{Z}\rangle\cong \mathbb{Z}$ . A canonical surjection $\varphi:\Gamma_{k}arrow \mathbb{Z}$ is given by $\varphi(\gamma)=$

$1k(\gamma, k)$ where lk denotes the linking number in $S^{3}$ $(see [12, 3.B])$ .
$\bullet$ The knot exterior is aspherical: we have $\pi_{n}(C_{k})=0$ for $n>1$ i.e. $C_{k}$ is
an Eilenberg-MacLane space $K(\Gamma_{k}, 1)$ $(see [12, 3.F])$ . As a cosequence, the
(co-)homology groups of $\Gamma$ and $C_{k}$ are naturally identified, and for a given $\Gamma_{k^{-}}$

module $M$ we have $H^{*}(C_{k};M)\cong H^{*}(\Gamma_{k};M)$ , and $H_{*}(C_{k};M)\cong H_{*}(\Gamma_{k)}\cdot M)$ .
It follows that every abelian representation factors through $\varphi:\Gamma_{k}arrow \mathbb{Z}$ . Here we call $\rho$

abelian if its image is abelian. We obtain for each non-zero complex number $\eta\in \mathbb{C}^{*}$ an
abelian representation $\eta^{\varphi}:\Gamma_{k}arrow GL(1,$ $\mathbb{C}\rangle=\mathbb{C}$ given by $\gamma\mapsto\eta^{\varphi(\gamma)}.$

2.1. Representation varieties. The general reference for representation and character
varieties is Lubotzky’s and Magid’s book [47]. Let $\Gamma=\langle\gamma_{1}$ , . .. , $\gamma_{m}\rangle$ be a finitely generated
group.

Definition 2.2. A $SL_{n}(\mathbb{C})$ -representation is a homomorphism $\rho:\Gammaarrow SL_{n}(\mathbb{C})$ . The
$SL_{n}(\mathbb{C})$ -representation variety is

$R_{m}(\Gamma)=Hom(\Gamma, SL_{n}(\mathbb{C}))cSL_{n}(\mathbb{C})^{m}\subseteq M_{n}(\mathbb{C})^{m}\cong \mathbb{C}^{n^{2}m}$

The representation variety $R_{m}(\Gamma)$ is an affine algebraic set. It is contained in $SL_{n}(\mathbb{C})^{m}$

via the inclusion $\rho\mapsto(\rho(\gamma_{1}),$
$\ldots,$

$\rho(\gamma_{fn}\rangle)$ , and it is the set of solutions of a system of
polynomial equations in the matrix coefficients.

2.1.1. Affine algebraic sets. Let $k$ be a field and let $F_{\lambda}=F_{\lambda 1}(x_{1}, \ldots, x_{n})\in k[x_{\rangle}\ldots,x_{n}],$

$\lambda\in\Lambda$ , be a family of polynomials. The set of all common zeros of this family of polynomials
is denoted by

$\mathcal{V}(\{F_{\lambda}, \lambda\epsilon\Lambda\})=\{v\in k^{n}|F_{\lambda}(v)=0$ for all $\lambda\epsilon\Lambda\}.$

It is clear that $\nu(\{F_{\lambda}, \lambda\in\Lambda\})=\mathcal{V}(I)$ where $I=(\{F_{\lambda}, \lambda\in\Lambda\})$ is the ideal generated by the
family $\{F_{\lambda}\}_{\lambda\epsilon\Lambda}$ . Recall that, by Hilbert’s basis theorem, each ideal $I\subset k[x_{1}, . .., x_{n}]$ has
a finite set of generators. An (affine) algebraic subset in $k^{n}$ is a subset $V\subset k^{n}$ consisting
of all common zeros of finitely many polynomials with coefficients in $k$ . It is easy to see
that arbitrary intersections and finite unions of affine algebraic sets are affine algebraic.

$NoW_{\}}$ given an algebraic subset $V\subset k^{n}$ a function $f:Varrow k$ is called regular if there
exists $F\in k[x_{1}, . . . , x_{n}]$ such that $f(v)=F(v)$ for all $v\in V$ . All regular functions on
$V$ form the coordinate ring $\mathcal{O}(V)$ $($or $k[V])$ of the variety $V$ . Notice that $\mathcal{O}(V)$ is a
finitely generated $k$ algebra since there is a surjection $k[x_{1}, . .., x_{n}]arrow \mathcal{O}(V)$ . The kernel
of this surjection is called the ideal of $V$ and is denoted by $\mathcal{I}(V)$ , hence

$\mathcal{I}(V)=\{F\in k[x_{1}$ , $\cdots$ , $x_{n}]|F(v)=0$ for all $v\in V\}$ and $\mathcal{O}(V)\cong k[x_{1}, \cdots, x_{n}]/\mathcal{I}(V)$ .

Notice that in general $\mathcal{I}(\mathcal{V}(I))\supset I$ but $\mathcal{I}(\mathcal{V}(I)\rangle\neq I$ is possible. For example, if $V\subseteq k$

is given by the equation $x^{2}=0$ then $I=(x^{2})g(x)=\mathcal{I}(\{O\})$ . If $k$ is algebraically closed

then Hilbert’s Nullstellensatz implies that $\mathcal{I}(\mathcal{V}(I))$ is equal to the radical $\sqrt{I}$ of $I$

$\mathcal{I}(\mathcal{V}(I))=\sqrt{I}=\{F\in k[x_{1}$ , . .., $x_{n}]|\exists m\in \mathbb{Z},$ $m>0$ , such that $F^{rn}\in I\}.$
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Now, two affne algebraic sets $Vck^{m}$ and $Wck^{n}$ are isomorphic if and only if there is
an algebra isomorphism between $O(V)$ and $O(W)$ (see [55] for more details).

Example 2.3. If $V=\{v=(v_{1}, \ldots, v_{n})\}\subset k^{n}$ is a point then $\mathcal{I}(\{v\})=(x_{1}-v_{1}, . ., ,x_{n}-v_{n})$

and $O(V)\cong k$ . In general, $O(V\rangle$ is finite dimensional as a $k$ -vector space if and only if
$y$ is finite, and in this case $\dim_{k}(\mathcal{O}(V)\rangle=\# V.$

In the next example we investigate sone very special representation varieties:

Example 2.4. A homomorphism of $\mathbb{Z}$ is determined by the image of the generator 1 $\epsilon \mathbb{Z}$

and hence $B_{n}(\mathbb{Z})\cong SI_{n}\lrcorner(\mathbb{C})$ . Similar, for a free group $F_{k}$ of rank $k$ we have $R_{m}(F_{k}\rangle\cong$

$SL_{n}(\mathbb{C})^{k}.$

For the cyclic group $\mathbb{Z}/2\mathbb{Z}$ of two elements we have $R_{2}(\mathbb{Z}/2\mathbb{Z})=\{\pm I_{2}\}$ consists only
of two points the identity matrix $I_{2}$ and $-I_{2}$ . Hence, $R_{2}(\mathbb{Z}/2\mathbb{Z}\rangle$ is not irreducible as an
algebraic variety. Even more concretely, a representation $\rho:\mathbb{Z}/2\mathbb{Z}arrow SL_{2}(\mathbb{C})$ is determined
by the image $X$ of a generator. Now, considering $X=(_{x_{21}^{11}x_{22}^{12}}^{xx}\rangle\in M_{2}(\mathbb{C}[x_{11},x_{12},x_{21},x_{22}])$

the relation $X^{2}=(_{0\lambda}^{10}$ ) and $\det X=1$ give the equations $x_{11}x_{22}-x_{12}x_{21}=1$ , and

$x_{11}^{2}+x_{12}x_{21}=1,$ $x_{11}x_{12}+x_{12}x_{22}=0,$ $x_{11}x_{21}+x_{21}x_{22}=0,$ $x_{12}x_{21}+x_{22}^{2}=1.$

The ideal $I$ has a much simple $r$ set of generators: $I=(x_{22}^{2}-1,x_{11}-x_{22},x_{12},x_{21})$ , and
hence

$\mathbb{C}[x_{11},x_{12}, x_{2i},x_{22}]/I\cong \mathbb{C}[x]/(x^{2}-\downarrow)\cong \mathbb{C}[x]/(x-1)$ ee $\mathbb{C}[x]/(x+1)\cong \mathbb{C}\oplus \mathbb{C}$

is the coordinate ring of the union of two points.

2.1.2. General facts. Given two representations $\rho_{1}:\Gammaarrow GL_{m}(\mathbb{C})$ and $\rho_{2}:\Gammaarrow GL_{n}(\mathbb{C}\rangle$

we define the direct sum $\rho_{1}\oplus p_{2}:\Gammaarrow GL_{rn+n}(\mathbb{C})$ md the tensor product $\rho_{1}\otimes p_{2}:\Gammaarrow$

$GL_{mn}(\mathbb{C}\rangle$ by

$( \rho_{1}\oplus\rho_{2})(\gamma)=(\frac{\rho_{1}(\gamma)|0}{0|\rho_{2}(\gamma\rangle})$ and $(p_{1}\otimes\rho_{2})(\gamma)=\rho_{1}(\gamma\rangle\otimes\rho_{2}(\gamma)$ , $\forall\gamma\in\Gamma,$

respectively. Here, $A\otimes B$ denotes the Kronecker product of $A$ $\epsilon GL_{m}(\mathbb{C})$ and $B\in GL_{n}\langle \mathbb{C}$).
The dual representation $\rho^{*}:r^{1}arrow GL(n)$ of $\rho:rarrow GL(n)$ is defined by $\rho^{*}(\gamma)=tp(\gamma)^{-1}$

where $tA$ is the transpose of the matrix A. (See also Lemme 4.7.)

Definition 2.5. We call a $rep_{1}’$esentation $\rho:\Gammaarrow GL_{n}(\mathbb{C})$ reducible if there exists a
nontrivial subspace $Vc\mathbb{C}^{n},$ $0\neq V\neq \mathbb{C}^{n}$ , such that $V$ is $p(\Gamma)$ -stable. The representation
$p$ is called irreducible if it is not reducible. A semisimple representation is a direct sum
of irreducible representations.

The group $SL_{n}(\mathbb{C}\rangle$ acts by conjugation on $R_{m}(\Gamma)$ . More precisely, for $A$ $\epsilon SI_{J}n(\mathbb{C})$ and
$\rho\in R_{m}(r)$ we define $(A.p)(\gamma)=Ap(\gamma)A^{-1}$ for all $\gamma\in\Gamma$ . Moreover, we let $O(p)=\{A.p|$

$A$ $\epsilon SL_{n}(\mathbb{C})\}$ denote the orbit of $p$ . In what follows we will write $p\sim\rho’$ if there exists
$A$ $\epsilon SI_{d}n(\mathbb{C})$ such that $\rho’=A.\rho$ , and we will call $p$ and $p’$ equivalent. For $p\in R_{\eta}(r\rangle$ we
define its character $x_{\rho}:rarrow \mathbb{C}$ by $\chi_{p}(\gamma)=tr(p(\gamma))$ . We have $\rho\sim p’\Rightarrow\chi_{\rho}=\chi_{\rho’}.$

Lemma 2.6. Let $\rho\in R_{m}(\Gamma)$ be a representation. The orbit $O(p)$ is closed if and only if
$\rho$ is semisimple. Moreover, $tet\rho,\rho’$ be semisimple. Then $p\sim\rho’$ if and only if $\chi_{\rho}=\chi_{\rho’}.$

Proof. See Theorems 1.27 and 1.28 in Lubotzky’s and Magid’s book [47]. $\square$
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Example 2.7. We give two examples of a non-semisimple representations:

(1) Let $\rho:\mathbb{Z}arrow SL_{2}(\mathbb{C})$ be given by $\rho(n)=(_{01}^{1n}$ ). The representation $p$ is reducible

but not semisimple. Notice that the orbit $O(\rho)$ is not closed, $\overline{O(\rho)}$ contains the
trivial representation: $\lim_{tarrow 0}(_{0t}^{t\underline{0}_{1}}$ ) $(_{01}^{1n}$ ) $(t^{-1}00t)=(_{01}^{10}$ ) $\cdot$

(2) Let $\Gamma=\langle S,$ $T|STS=TST\rangle$ be the group of the trefoil knot, and let $\zeta\in \mathbb{C}$ be a
primitive 12-th root of unity, $\zeta^{4}-\zeta^{2}+1=0$ . We define $\rho:\Gammaarrow SL_{2}(\mathbb{C}\rangle$ by $\rho(S)=$

$(\begin{array}{l}0\zeta 01/\zeta\end{array})$ , and $\rho(T)=(\begin{array}{ll}\zeta 101/\zeta \end{array})$ . The representation is reducible but not semisimple.

Again the orbit $O(\rho)$ is not closed, $\overline{O(\rho)}$ contains the diagonal representation
$\rho_{d}=\zeta^{\varphi}\oplus\zeta^{-\varphi}.$

2.2. Character varieties. The algebraic quotient or $GIT$ quotient for the action of
$SL_{n}(\mathbb{C})$ on $R_{m}(\Gamma)$ is called the character variety. This quotient will be denoted by
$X_{n}(\Gamma)=R_{m}(\Gamma)\parallel SL_{n}(\mathbb{C})$ . The character variety is not necessary an irreducible affine
algebraic set.

For an introduction to algebraic invariant theory see Dolgachev’s book [19]. Roughly
speaking, geometric invariant theory is concerned with an algebraic action of a group $G$

on an algebraic variety $V$ . Classical invariant theory addresses the situation when $V$ is
a vector space and $G$ is either a finite group, or one of the classical Lie groups that acts
linearly on $V$ . The action of $G$ on $V$ induces an action of $G$ on the coordinate algebra
$\mathcal{O}(V)$ of the variety $V$ given by $g\cdot f(v)=f(g^{-1}v)$ , for all $g\in G$ , and $v\in V.$

The invariant functions of the $G$ -action on $V$ are

$\mathcal{O}(V)^{G}=\{f\in \mathcal{O}(V)|g\cdot f=f$ for all $g\in G\}.$

The invariant functions $\mathcal{O}(V)^{G}$ form a commutative algebra, and this algebra is inter-
preted as the algebra of functions on the $GIT$ quotient $V\parallel G$ . The main problem is to
prove that the algebra $\mathcal{O}(V)^{G}$ is finitely generated. This is necessary if one wantes the
quotient to be an affine algebraic variety. We are only interested in affine varieties $V$ and
in reductive groups $G$ , and in this situation Nagata’s theorem applies (see [19, Sec. 3.4]).
Reductive groups include all finite groups and all classical groups (see [19, Chap. 3
Geometrically, the GIT quotient $V\parallel G$ parametrizes the set of closed orbits (see [19,
Corollary 6.1]). For a point $v\in V$ the orbit $Gv$ will be denoted by $O(v)$ . If $f_{1}$ , $\cdots$ , $f_{N}$

generate the algebra $\mathcal{O}(V)^{G}$ then a model for the quotient is given by the image of the
map $t:Varrow V\parallel G\subset \mathbb{C}^{N}$ given by $t(v)=(f_{1}(v), \ldots, f_{N}(v))$ .

Example 2.8. We will give three basic examples of GIT quotients:

(1) Let $\mathbb{C}^{*}$ act on $\mathbb{C}^{2}$ by $\lambda.(z_{1}, z_{2})=(\lambda z_{1}, \lambda z_{2})$ . The topological quotient $\mathbb{C}^{2}/\mathbb{C}^{*}$ is a
non-Hausdorff topological space. More precisely, only the orbit $O(O, 0)=\{(0, O)\}$

is closed, and $(0,0)$ is contained in the closure of every orbit. The algebra $\mathcal{O}(\mathbb{C}^{2})$

is isomorphic to the polynomial ring in two variables $\mathbb{C}[x_{1}, x_{2}]$ , and $\mathbb{C}[x_{1}, x_{2}]^{C^{*}}$

consist only of the constant functions i.e. $\mathbb{C}[x_{1}, x_{2}]^{\mathbb{C}^{*}}\cong \mathbb{C}$ . The GIT quotient
$\mathbb{C}^{2}\parallel \mathbb{C}^{*}\cong\{*\}$ is just one point, and $\dim(\mathbb{C}^{2}\parallel \mathbb{C}^{*})<\dim(\mathbb{C}^{2})-\dim(\mathbb{C}^{*})$ .

(2) Let $\mathbb{C}^{*}$ act on $\mathbb{C}^{2}$ by $\lambda.(z_{1}, z_{2})=(\lambda z_{1},1/\lambda z_{2})$ . The topological quotient $\mathbb{C}^{2}/\mathbb{C}^{*}$

is again non-Hausdorff topological space. More precisely, $O(1,0)$ and $O(O, 1)$ are
not closed and disjoint, but the closed orbit $\{(0,O)\}$ is contained in the closure of
both orbits. Now, in order to determine $\mathbb{C}[x_{1}, x_{2}]^{\mathbb{C}^{*}}$ we consider the space $R_{m}\subset$

$\mathbb{C}[x_{1}, x_{2}]$ of homogeneous polynomials of degree $n$ . The set $R_{m}$ is a vector space of
dimension $n+1$ with basis $xix_{2}^{j},$ $i+j=n$ , and it is stable by thc action of $\mathbb{C}^{*}$ . Now,
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$\lambda\cdot(x_{1}^{i}x_{2}^{i})=\lambda^{i-j}x_{1}^{i}x_{2}^{j}$ , and the algebra of invariant functions is generated by $x_{1}x_{2}.$

Hence $\mathbb{C}[x_{1}, x_{2}]^{\mathbb{C}^{*}}=\mathbb{C}[x_{1}x_{2}]\cong \mathbb{C}[x]$ . It follows that GIT quotient $\mathbb{C}^{2}\parallel \mathbb{C}^{*}\cong \mathbb{C}.$

The quotient map $t:\mathbb{C}^{2}arrow \mathbb{C}$ is given by the invariant functions $t(z_{1}, z_{2})=z_{1}z_{2}.$

The whole “non-hausdorff‘ part $0(1,0)\cup\{(0,0)\}\cup O(0,1)\cong \mathbb{C}x\{0\}\cup\{0\}\cross \mathbb{C}$ is
identified, and mapped by $l$ onto $0\in \mathbb{C}.$

(3) $SL_{n}(\mathbb{C})$ acts on itself by conjugation. Two matrices are conjugate if and only if
they have the same Jordan normal forms. As we already saw in Example 2.7,
the orbit of an unif otent element is in general not closed. The GIT quotient
$SL_{n}(\mathbb{C}\rangle\parallel SL_{n}(\mathbb{C})$ is isomorphic to $\mathbb{C}^{n-1}$ . The coordinates are the coefficients of
the characteristic polynomial (see [19, Example 1.2]).

Work of C. Procesi [53] implies that there exists a finite number of group elements
$\{\gamma_{i}|1\leq i\leq M\}c\Gamma$ such that the image of $t:R_{m}(\Gamma)arrow \mathbb{C}^{M}$ given by

$t(\rho)=(\chi_{p}(\gamma_{1}), \ldots, \chi_{\rho}(\gamma_{M}))$

can be identified with the affine algebraic set $X_{n}(f’)\cong t(R_{m}(\Gamma))$ , see also [47, p. 27]. This
justifies the name character variety.

Example 2.9. (1) Let $F_{2}$ be the free group on the two generators $x$ and $y$ . Then

it is possible to show that $X_{2}(F_{2})\cong \mathbb{C}^{3}$ and $t:R_{2}(F_{2})arrow\cong \mathbb{C}^{3}$ given by $t(\rho)\simeq$

$(\chi_{p}\langle x)$ , $\chi_{\rho}\langle y\rangle,$ $\chi_{\rho}(xy))$ . See Goldman’s article [52, Chap. 15] and the article of
Gonz\‘alez Acuna and Montesinos-Amilibia [29] for more details.

(2) We obtain $X_{3}(\mathbb{Z})\cong \mathbb{C}^{2}$ More precisely, $R_{3}(\mathbb{Z}\rangle\cong SL_{3}(\mathbb{C})$ and $t:R_{3}(\mathbb{Z})arrow\cong \mathbb{C}^{2}$ is
given by $t(A)=(tr(A),tr(\mathcal{A}^{-1}))$ .

(3) Explicit coordinates for $X_{3}(F_{2})$ are also known: $X_{3}(F_{2})$ is isomorphic to a degree
6 affine hyper-surface in $\mathbb{C}^{9}$ (see Lawton [46]).

(4) If $\Gamma$ is a finite group then $X_{n}(\Gamma)$ is finite for all $n$ . This follows since $\Gamma$ has up
to equivalence only finitely many irreducible representations, and every represen-
tation of a finite group is semisimple (see [54]).

2.3. Tangent spaces and group cohomology. The general reference for group coho-
mology is Brown’s book [10]. In order to shorten notation we will sometimes wr\’ite $SL(n\rangle$

and $z\mathfrak{l}(n)$ instead of $SL_{n}(\mathbb{C})$ , and $s\mathfrak{l}_{n}(\mathbb{C})$ .
The following construction was presented by A. Weil [65]. For $p\in R_{m}(r)$ the Lie

algebra $\epsilon \mathfrak{l}(n)$ turns into a -module via Ad $\circ p$ , i.e. for $X\in z1(n\rangle$ and $\gamma\in\Gamma$ we have
$\gamma\cdot X=Ad_{\rho(\gamma\rangle}(X)=\rho(\gamma)X\rho(\gamma)^{-1}$ . In what follows this $\Gamma$ -module will be denoted }}$y$
$\mathfrak{g}\mathfrak{l}(n)_{A\‘{a}\rho}$ . We obtain an inclusion $T^{Zar}R_{\eta)}(\Gamma)\mapsto Z^{1}(r,zt(n)_{Adp}\rangle$ : for a smooth family of
representations $p_{t}$ with $\rho_{0}=p$ we obtain a map $u:\Gammaarrow sl(n)$ given by

(1) $u( \gamma)=\frac{d\rho_{t}(\gamma)}{dt}|_{t=0}\rho(\gamma)^{-1}$

The map $u$ verifies: $u(\gamma_{1}\gamma_{2}\rangle=u(\gamma_{1})+\gamma_{1}\cdot u(\gamma_{2})$ i.e. $u\in Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n\rangle_{A_{t}i\rho}\rangle$ is a cocycle or
derivation in group cohomology. If $\rho_{t}=Ad_{A_{f}}\circ p$ is contained in $O(\rho)$ where $A_{t},$ $A_{0}=I_{n},$

is a path of matrices, then the corresponding cocycle is a coboundary i.e. there exists
$X\epsilon \mathfrak{s}t(n)$ such that $u(\gamma)=(1-\gamma\rangle\cdot X=X-Ad_{p(\gamma\rangle}(X)$ .
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Attention! The inclusion $T^{Zar}R_{m}(\Gamma)\mapsto Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ might be strict (see Exam-
ple 2.18). More precisely, the space $Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ is the Zariski tangent space to the
scheme $\mathcal{R}(\Gamma, SL_{n}(\mathbb{C}))$ at $\rho$ (see Section 2.4).

Definition 2.10. Let $\rho:\Gammaarrow SL(n)$ be a representation. A derivation $u\in Z^{1}(\Gamma_{1\mathfrak{s}}\mathfrak{l}(n\rangle_{Ad\rho})$

is called integrable if there exists a family of representations $\rho_{t}$ : $\Gammaarrow SL(n)$ such that $\rho_{0}=\rho$

and (1) holds.

2.3.1. Detecting smooth points. The following is a quite useful observation [47, $p$ . iv] for
detecting smooth points of the representation variety. In general not every cocycle is
integrable and there are different reasons for this. We have the following inequalities

(2) $\dim_{\rho}R_{n}(\Gamma)\leq\dim T_{\rho}^{Zar}R_{m}(\Gamma)\leq\dim Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$

where $\dim_{\rho}R_{n}(\Gamma)$ denotes the local dimension of $R_{m}(\Gamma)$ at $\rho$ i.e. the maximum of the
dimensions of the irreducible components of $R_{m}(\Gamma)$ containing $\rho.$

In what follows, will call $\rho$ a regular or scheme smooth point of $R_{m}(\Gamma)$ if the equality
$\dim_{\rho}R_{n}(\Gamma)=\dim Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ holds. In this case every derivation is integrable, and
we obtain the following:

Lemma 2.11 (see [38, Lemma 2.6]). Let $\rho\epsilon R_{m}(\Gamma)$ be a representation. If $\rho$ is regular,
then $\rho$ is a smooth point of the representation variety $R_{m}(\Gamma)$ , and $\rho$ is contained in a
unique component of $R_{m}(\Gamma)$ of dimension $\dim Z^{1}(\Gamma;\mathfrak{s}\downarrow(n)_{Ad\rho})$ .

Example 2.12. Central representations are smooth points of $R_{m}(\Gamma_{k})$ . Let $\Gamma_{k}$ be a knot
group and $\rho_{0}\in R_{m}(\Gamma_{k})$ be a central representation i.e. $\rho_{0}(\gamma)=\zeta^{\varphi(\gamma)}Id_{n}$ where $\zeta\in \mathbb{C}^{z},$

$\zeta^{n}=1$ . Then $\mathfrak{g}\mathfrak{l}(n)$ is a trivial $\Gamma_{k}$ -module and

$Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n))=H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n))=H^{1}(\Gamma,\mathbb{Z})\otimes \mathfrak{s}t(n)$

has dimension $n^{2}-1.$

On the other hand the surjection $\varphi:\Gamma_{k}arrow \mathbb{Z}$ induces an injection $\varphi^{*}:R_{m}(\mathbb{Z})arrow R_{m}(\Gamma_{k})$

where $R_{m}(\mathbb{Z})\cong SL_{n}(\mathbb{C})$ . Therefore, $n^{2}-1\leq\dim_{\rho 0}R_{m}(\Gamma_{k})\leq\dim Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n))=n^{2}-1,$

and $\rho_{0}\in R_{m}(\Gamma_{k})$ is a regular point which is contained in an unique $(n^{2}-1)$ -dimensional
component of $R_{m}(\Gamma_{k})$ (the component consist of abelian representations).

We give an example where the first inequality of (2) is strict, and the second is an
equality. In this case the representation $\rho$ is a singular point of the representation variety,
but we will see that in our example $\chi_{\rho}\in X_{2}(I^{\tau})$ is a smooth point.

Example 2.13. Let $\Gamma=D(3,3,3)=\langle a,$ $b,$ $c|a^{3},$ $b^{3},$ $c^{3},$ $abc\rangle\cong\langle a,$ $b|a^{3},$ $b^{3},$ $(ab)^{3}\rangle$ be the van
Dyck group. We consider the representation $\rho_{0}:\Gammaarrow SL(2)$ given by

$\rho_{0}(a)=\rho_{0}(b)=A=(\omega 0^{\frac{0}{\omega}})$

where $\omega$ is a primitive third root of unity.
Let $F(a,b)$ denote the free group of rank two and consider the canonical surjection

$\kappa:F(a,b\ranglearrow\Gamma. We$ consider $sl(2)$ as a $F(a,b)$ -module via Ad $\circ\rho_{0}\circ\kappa$ . Now, for every
$X,$ $Y\in \mathfrak{g}\mathfrak{l}(2)$ we obtain a cocycle $z:F(a,b)arrow \mathfrak{s}\mathfrak{l}(2)$ such that $z(a)=X$ and $z(b)=Y$ . By
using Fox-calculus [12, Chapter 9], we obtain for $w\in F(a, b)$

$z(w)= \frac{\partial w}{\partial a}\cdot X+\frac{\partial w}{\partial b}\cdot Y.$

This cocycle factors through $\kappa$ if and only if $z(a^{3})=z(b^{3})=z((ab)^{3}\rangle=$ O. Writing
$X=(\begin{array}{ll}x_{11} x_{12}x_{21} - x_{11}\end{array})$ and $Y=(_{y^{11}-y_{11}}^{y_{21}y_{12}})$ the equation $z(a^{3})=0$ gives $0=(1+a+a^{2})\cdot X=$
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$X+Ad_{A}(X)+Ad_{A}^{2}(X)$ and hence $x_{11}=0$ . Similar $z(b^{3})=0$ gives $y_{11}=0$ . The equation
$zく (ab)^{3})=0$ gives no further restrictions. Hence the space of cocycles $Z^{1}(r,s\mathfrak{l}(2)_{At\rho 0}()$ is
4-dimensional. The space $B^{1}(\Gamma,\mathfrak{s}i(2)_{Ad\rho 0})$ is 2-dimensional and generated by $b_{1}$ and $b_{2}$

which are given by
$b_{1}:a,$ $brightarrow(_{00}^{01})$ and $b_{2}:a,b\vdash\succ(_{10}^{00}$ ).

Two non-principal derivations are given by

$z_{1}(a)=(_{00}^{00})$ , $z_{1}(b)=(_{00}^{01})$ , and $z_{2}(a)=(_{00}^{00}$ ), $z_{2}(b)=(_{10}^{00}$ ).

These two derivations are integrable, more precisely the two families $\rho_{i}(t):\Gammaarrow SL(2)$

are given by $\rho_{i}(t)(\gamma)=(I_{2}+tz_{i}(\gamma\rangle\rangle\rho(\gamma)$ , or explicitly by

$\rho_{1}(t):\{\begin{array}{l}a \vdash*(\omega) ,b \vdash>(_{01}^{1t})(\omega 0\frac{0}{},)\vec{-}(\omega t\overline{\omega}0\overline{\omega}))\end{array}$ $p_{2}(t):\{\begin{array}{l}a \mapsto(\omega 0^{\frac{0}{\omega}}) ,b \mapsto(_{t1}^{10})(\omega 0^{\frac{0}{\omega}})=(\omega) .\end{array}$

lt follows that &m $T_{p0}^{Zar}R_{m}(r^{1}\rangle=\dim Z^{1}(\Gamma,zl(n)_{Adp0})$ .
Now notice that if $A$ $\epsilon SL(2)$ verifies $A^{8}=I_{2}$ and $A\neq I_{2}$ , then $A$ is conjugate to $(\omega 0^{\frac{0}{\omega}})$

where $\omega$ is a third root of unity, $\omega^{2}+\omega+1=0$ . Hence we have for all $\mathcal{A}\epsilon SL(2)$ :

$A^{3}=I_{2}$ $\infty$ $A=I_{2}$ or tr $A=$

Lemma 2.14. $\mathcal{A}lt$ representation $\rho:D(3,3,3)arrow Sl_{d}(2)$ are reducibie. More precisely,

if $\rho(a\rangle=I_{2}$ or $\rho(b)=I_{2}$ or $\rho(ab)\rangle=I_{2}$ is trivial then $\rho$ is conjugate to a diagonal
representation. If tr $\rho(a)=tr\rho(b)=trp(ab\rangle=-1$ then $\chi_{\rho}=\chi_{\rho 0}$ , and $\rho$ is conjugate to an
upper/lower triangular representation.

Proof Let $p:D(3,3,3)arrow SL(2)$ be a representation. Then $\rho$ is trivial if and only if
$\rho(a\rangle=\rho(b)=I_{2}$ . If $\rho(a)=I_{2}$ and $\rho(b)\neq I_{2}$ then up to conjugation we may assume that
$\rho(b\rangle=(\omega 0^{\frac{0}{\omega}})$ . We obtain that $p$ is a diagonal representation. A similar argument applies
if $\rho(b)=I_{2}$ or $\rho(ab)=I_{2}.$

Now suppose that tr $\rho(a)=tr\rho(b)=tr\rho(ab)=-1$ . Up to conjugation we obtain that
$\rho(a\rangle=(\omega 0^{\frac{0}{\omega}})$ and $\rho(b)=(_{b_{21}^{11}b_{22}^{12}}^{bb})$ where $b_{11}+b_{22}=-1$ and $b_{11}b_{22}-b_{12}b_{21}=1$ . The

equation $tr\rho(ab)=-1$ then implies $(_{(\beta}^{\}} \frac{1}{\omega}$ ) $(_{b_{22}^{11}}^{b}$ ) $=$ $(-1-1)$ . This system has the unique

solution $(b_{11},b_{22})=(\omega,\overline{\omega})$ . Finally, $b_{11}b_{22}-b_{12}b_{21}=1$ implies that $b_{12}b_{21}=0$ and $\rho$ is a
triangular representation. $\square$

Notice that a cocycle $z=c_{1}z_{1}+c_{2}z_{2},$ $c_{1_{\rangle}}c_{2}\in \mathbb{C}$ , is integrable if and only if $c_{1}c_{2}=0$ i.e.
only multiples of $z_{1}$ and multiples of $z_{2}$ are integrable.

It follows from Lemma 2.14 that the families $\rho_{1}(t\rangle$ and $\rho_{2}(t)$ together form a slice etale
$\mathcal{S}_{0}$ through the representation $\rho_{0}$ (see [3] for more details). The slice $S_{0}$ is isomorphic to
the union of the two coordinate axes in $\mathbb{C}^{2},$

$\mathcal{S}_{0}\cong \mathbb{C}\cross\{0\}u\{0\}\cross \mathbb{C}c\mathbb{C}^{2}, p_{1}(s)|arrow\langle s,0)and\rho_{2}(t)\mapsto(0,t)$ .

It follows form [3, Prop. 2.8] that $H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2)_{Ad\rho 0})$ is isomorphic to the tangent space
$T_{\rho 0}^{Zar}S_{0}$ , and that $T_{\chi_{\rho_{0}}}^{Zar}X_{2}(\Gamma\rangle$ is isomorphic to $T_{\chi_{p_{0}}}^{Zar}(S_{0}\parallel Stab(\rho_{0}))$ . Now, Stab$(\rho_{0})\cong \mathbb{C}^{*}$

consits of diagonal matrices, and $\lambda\in \mathbb{C}$ acts as follows
$\lambda\cdot p_{1}(s\rangle=\rho_{1}(\lambda^{2}s)$ and $\lambda\cdot\rho_{2}(t)=\rho_{1}(\lambda^{-2}t)$

(see Example 2.8.2). It follows that $S_{0}\parallel Stab(\rho_{0})\cong\{O\}$ isjust a point, and that $T_{\chi_{\rho_{0}}}^{Zar}X_{2}(\Gamma\rangle$

vanishes. Notice that all representations $\rho_{i}(t\rangle$ are equivalent to $p_{i}(1\rangle$ . On the other
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hand $\rho_{1}(1)$ and $\rho_{2}(1)$ are not equivalent. Again, $0(\rho_{i}(t))$ is not closed, but $O(\rho_{0})=$

$O(\rho_{1}(t))\cap O(\rho_{2}(l))$ . All representations $\rho_{0},$ $\rho_{1}(t\rangle, and p_{2}(t)$ have the same character.
Notice also that $H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2)_{Ad\rho 0})$ is isomorphic to the tangent space of the slice \’etale,

and that $H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2)_{Adp0})\parallel Stab(\rho)\cong \mathbb{C}$ . This shows that in [58, Theorem 53] the
hypothesis scheme smooth can not be omitted.

Remark 2.15. Example 2.13 can be generalized to a representation of the fundamental
group of the closed 3-dimensional Seifert fibred manifold $M$ which is an oriented Seifert-
bundle over the orbifold $S^{2}(3,3,3)$ . The fundamental group $\pi_{1}(M)$ is a central extension
of $D(3,3,3)$ with presentation

$\pi_{i}M=\langle a,b,$ $c,$ $z|a^{3}=b^{3}=c^{3}=abc=z,$ $[a, z],$ $[b, z],$ $[c, z]\rangle\cong\langle a,b,$ $c|a^{3}=b^{3}=c^{3}=abc\rangle.$

It is easy to see that a diagonal representation $\rho_{t}:\pi_{1}Marrow SL(2)$ given by $\rho_{t}:a,$ $b,$ $c\mapsto$

$(\begin{array}{l}0t0t^{-1}\end{array})$ is a singular point of the representation variety if and only if $1+t^{2}+t^{4}=0.$

2.4. The scheme $\mathcal{R}_{n}(\Gamma)$ . Let $R$ be a commutative and unitary ring. A radical ideal is
an ideal $I\subset R$ such that $I=\sqrt{I}=$ {$r\in R|r^{k}\in I$ for some positive integer $k$}. Notice that
$I\subset R$ is radical if and only if the quotient ring $R/I$ is reduced i.e. $R \int I$ has no non-zero
nilpotent elements. By virtue of Hilbert’s Nullstellensatz there is a bijection between
algebraic subsets in $\mathbb{C}^{N}$ and radical ideals of $\mathbb{C}[x_{1}, \cdots, x_{N}]$ (see [55, 56 Recall that
over $\mathbb{C}$ a vanishing ideal $\mathcal{I}(V)$ is always radical (see Section 2.1.1).

Now, the ideal generated by the algebraic equations defining the representation variety
may be non-radical (see Example 2.18). Therefore, one considers the underlying afine
scheme $\mathcal{R}_{n}(\Gamma):=\mathcal{R}(\Gamma, SL_{n}(\mathbb{C}))$ with a possible non-reduced coordinate ring. Weil’s
construction gives an isomorphism

$T_{\rho}^{Zar}\mathcal{R}(\Gamma, SL_{n}(\mathbb{C}))\cong Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ .

Each $d\in Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}_{n}(\mathbb{C}))$ gives the infinitesimal deformation $\gamma\mapsto(1+\epsilon d(\gamma))\rho(\gamma)$ , $\forall\gamma\in\Gamma,$

which satisfies the defining equations for $\mathcal{R}_{n}(\Gamma)$ up to terms in the ideal $(\epsilon^{2})$ of $\mathbb{C}[\epsilon],$

i.e. a Zariski tangent vector to $\mathcal{R}_{n}(\Gamma)$ (see [47, Prop. 2.2] and [3]).

2.4.1. The difference between a scheme and a variety-heuristics and examples. We start
with some heuristics. For more details see Shafarevich’s book [56, 5.1]. Here we are only
interested in affine schemes which correspond to rings of the form $R=\mathbb{C}[x_{1}, \cdots, x_{N}]/I,$

for an ideal $I\subseteq \mathbb{C}[x_{1}, \cdots, x_{N}]$ . It may happen that $R=\mathbb{C}[x_{1}, . .., x_{N}]/I$ is not reduced. In
this case can consider the reduced ring $R_{nd}=\mathbb{C}[x_{1}, . .., x_{N}]/\sqrt{I}$ which is the coordinate
ring of the variety $V=\nu(I)\subset \mathbb{C}^{N}$ . The underlying space of the scheme corresponding to
$R$ is Spec R the set of prime ideals of $R$ . Since the kcrncl of $\pi:Rarrow R_{red}$ is the nilradical,
it follows that $\pi^{*}:$ Spec R $arrow$ Spec R is a homeomorphism of topological spaces (the two
spectra are equipped with the Zariski-topology, see [56, 5.1.2]). Now, the points of $V$

correspond to the maximal ideals of $Roed$ which in turn correspond to the maximal ideals
in $R.$

On the other hand, the regular functions on Spec R and Spec R are different: a non-
zero nilpotent element $f\in R$ gives a non-zero function on Spec R, but $\pi(f)$ is zero in
$R_{red}$ . This means that there are non-zero functions on Spec R which take the value zero
on every point of $V$ . These functions may affect the calculation of the tangent space. One
can visualize the scheme corresponding to $R$ as containing some extra normal material
which is actually not tangent to a dimension present in the variety.
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Example 2.16. The ring $R=\mathbb{C}[T]/(T^{2})$ is not reduced, $R_{red}=\mathbb{C}[T]/(T)$ . Both rings
have only one maximal ideal (T) $cR$ , and (O) $cR_{md}\cong \mathbb{C}$ . The zero locus of $(T^{2})$ and
(T) is the same, it is just the point $\{0\}\in \mathbb{C}$ . The projections $\mathbb{C}[T]arrow \mathbb{C}[T]/(T^{2}\rangle$ and
$\mathbb{C}[T]arrow \mathbb{C}[T]/(T)$ give inclusions $Sp_{\mathfrak{X}}R\mapsto \mathbb{C}$ , and Spec R $\mapsto \mathbb{C}.$ $Now_{\}}$ the restriction
of a function $f\in \mathbb{C}[T]$ vanishes on $R_{red}$ if and only if $f\in(T)\Leftrightarrow f(O\rangle=0$ . On the other
hand, the restriction of $f$ onto Spec R vanishes if and only if $f\in(T^{2})rightarrow f(0)=0$ and
$f’(O)=0$ . Hence there are non-zero regular functions on Spec R which are zero on every
point of Spec R. This affect the calculation of the Zariski tangent space:

$T_{0}^{Zar}$Spec R $=0$ , but $T_{0}^{Zar}$Spec R $\cong \mathbb{C}.$

Notice that $Spec\mathbb{C}[x]/(x^{2})$ appears natura:ly if we intersect the parabola $\mathcal{V}(y-x^{2})$

with the coordinate axis $\mathcal{V}(y\rangle$ in $\mathbb{C}^{2}$ . See [20, II.3] for a detailed discussion.

Remark 2.17. There is also an associated character scheme

$X(r, SL_{n}(\mathbb{C}))=\mathcal{R}(\Gamma, SL_{n}(\mathbb{C})\rangle\parallelSL_{n}(\mathbb{C})$ .

In general the relation between the cohomology group $H^{1}(r,\mathfrak{s}\mathfrak{l}(n)_{Adp})$ and the tangent
space $T_{\chi_{\rho}}^{Zar}\mathcal{X}(\Gamma, SL_{n}(\mathbb{C}))$ is more complicate. However, if $\rho$ is an irreducible regular
representation then we have for the character variety

$T_{\chi_{\rho}}^{Zar}X_{n}(\Gamma)\cong H^{1}(\Gamma,s\mathfrak{l}(n)_{Adp})\cong T_{\chi_{\rho}}^{Zar}\mathcal{X}(\Gamma, SL_{n}(\mathbb{C})\rangle.$

(See [47, Lemma 2.18], and [58, Section 13] for a generalisation to completely reducible
regular representations.)

The next example is a representation $p:\Gamma$ $arrow$ $SL(2)$ such that $\dim_{p}R_{2}(\Gamma)$ $=$

$\dim T_{\rho}^{Zar}R_{2}(\Gamma)$ and $di\alpha xT_{\rho}^{Zar}R_{2}(r\rangle<\dim Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2)_{Adp})$ . Hence the coordinate ring
of the associated scheme has nilpotent elements.

Example 2.18. Following Lubotzky and Magid [47, pp. 40-43] we give an example of a
finitely pxesented group $\Gamma$ and a representation $\rho:\Gammaarrow SI_{I}(2)$ with non reduced coordinate
ring.

For motivation we start with the dihedral group $D_{3}=\langle a,$ $s|a^{3},$ $s^{2},$ $sas^{-1}=a^{-1}\rangle$ , and a
representation $r:D_{3}arrow Iso(\mathbb{C})$ . Recall that a transformation $\sigma\in Iso(\mathbb{C})$ is of the form

$\sigma:z\mapsto\zeta z+\alpha$ or $\sigma:z\mapsto\zeta\overline{z}+\alpha$

where $\alpha\in \mathbb{C}$ , and $\zeta\in \mathbb{C}^{*},$ $|\zeta|=1$ , is a complex number of norm 1. A homomorphism
$r:D_{3}arrow Iso(\mathbb{C})$ is given by

$r(a):z\vdash*\omega z$ and $r(s):zkarrow\overline{z}$

where $\omega$ is a third root of unity $(v^{2}+\omega+1=0$ . The image $r(D_{3})$ is contained in $Iso(\mathbb{C})_{0}:=$

$\{\sigma\in Iso(\mathbb{C})|\sigma(0)=0\}$ . Notice also that $\mathbb{C}xIso(\mathbb{C})_{0}=Iso(\mathbb{C})$ where $\mathbb{C}$ is identified with
the subgroup of translations. Let us considel$\cdot$ the two translations $\tau_{1},$

$\tau_{2}:\mathbb{C}arrow \mathbb{C}$ given by

$\tau_{1}:z\succ>z+(1+\eta)$ and $\tau_{2}:z\infty z+(1+\overline{\eta})=z+(2-\eta)$

where $\eta$ is a primitive 6-th root of unity, $\eta^{2}=\omega$ . An elementary calculation shows that

$r(s\rangle\tau_{1}r(s)^{-1}=\tau_{2}, r(a)\tau_{1}r(c\iota)^{-1}=\tau_{2}^{-1}$

$r(s\rangle\tau_{2}r(s)^{-1}=\tau_{1_{\rangle}} r(a)\tau_{2}r(a)^{-1}=\tau_{1}\tau_{2}^{-1}$
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Finally we define the group $\Gamma=(\mathbb{Z}x\mathbb{Z})rDic_{3}$ where $Dic_{3}=\langle a,$ $s|a^{6},$ $s^{2}=a^{3}$ , sa$s^{- l}=a^{-1}\rangle$

is the binary dihedral group of $01’ der12$ . The group $\Gamma$ has the following presentation:

$\langle a,$ $s,$ $t_{1},t_{2}|a^{6},$ $s^{2}=a^{3},$ $sas^{-1}=a^{-1},$ $[t_{1},t_{2}],$ $\mathcal{S}t_{1}s^{-1}=t_{2},$ $st_{2}s^{-1}=t_{1},at_{1}a^{-1}=t_{2}^{-1},at_{2}a^{-1}=t_{1}t_{2}^{-1}\rangle.$

A homomorphism $\rho:\Gammaarrow SL(2)$ is given by

$\rho(a\rangle=(_{0\eta}^{\eta 0}$ $\rho(s)=(01)$ , and $\rho(t_{1})=\rho(t_{2})=I_{2}.$

An elementary but tedious calculation shows that $z:\Gammaarrow sl(2)$ given by

$z(a)=z(s)=0$, and $z(t_{1})=(\begin{array}{ll}0 1+\eta-(1+\overline{\eta}\rangle 0\end{array}),$ $z(t_{2})=(\begin{array}{ll}0 1+\overline{\eta}-(1+\eta\rangle 0\end{array})$

is a derivation. The derivation $z$ is non-principal since for each principal derivation
$b:\Gammaarrow \mathfrak{g}\mathfrak{l}(2)$ we have $b(t_{1})=b(t_{2})=0$ since $\rho(t_{1})=p(t_{2})=I_{2}$ are trivial. Hence,
$H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2)_{Ad\rho}\rangle$ is non-trivial. More precisely, $H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2)_{Ad\rho})\cong \mathbb{C}$ is generated by the
cohomology class of $z.$

On the other hand, it can be shown directly that each representation of $\Gamma$ into SL(2)
factors through the finite group $\Gamma’=\Gamma/\langle\langle t_{1}t_{2}\rangle\rangle\cong(\mathbb{Z}/3\mathbb{Z})\rangle Dic_{3}$ . More generally, this follows
also from [47, Example 2.10]. Therefore, $X_{2}(\Gamma)$ is finite and $\chi_{\rho}\in X_{2}(r)$ is an isolated
point. It follows that the coordinate ring $O(\mathcal{R}_{2}(\Gamma))$ is non-reduced.

More concretely, we can use SageMath [60] to compute the ideal $I$ generated by alge-
braic equations of the $SL(2)$ -representation variety $R_{2}(\Gamma)\subset \mathbb{C}^{16}[32]$ . It turns out that
$\sqrt{I}$ is generated by $I$ and the equations given by the relation $t_{1}t_{2}=1$ . Therefore, we
obtain $\mathcal{O}(\mathcal{R}_{2}(\Gamma))_{red}\cong \mathcal{O}(\mathcal{R}_{2}(\Gamma’))\cong \mathcal{O}(R_{2}(\Gamma’))$ .
If we impose the corresponding relations i.e. if we consider the representation $\rho’$ : $\Gammaarrow$

$SL(2)$ given by

$\rho’(a)=(_{0\eta}^{\eta 0}$ $\rho’(s)=(01)$ , $\rho(t_{1})=(0^{\frac{0}{\omega}}\omega)$ and $\rho(t_{2}\rangle=(\tilde{\omega}00\omega)$

then we obtain $H^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(2\rangle_{Ad\rho’})=0.$

Remark 2.19. M. Kapovich and J. Millson proved in [41] that there are essentially
no restrictions on the local geometry of representation schemes of 3-manifold groups to
$SL_{2}(\mathbb{C}\rangle.$

3. DEFORMATIONS OF REPRESENTATIONS

One way to prove that a certain representation $\rho\in R_{m}(\Gamma)$ is a smooth point of the
representation variety is to show that every cocycle $u\in Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ is integrable (see
Lemma 2.11). In order to do this, we use the classical approach, i.e. we first solve the
corresponding formal problem, and then apply a theorem of Artin [1].

The formal deformations of a representation $\rho:\Gammaarrow SL_{n}(\mathbb{C})$ are in general deter-
mined by an infinite sequence of obstructions (see [28, 2, 38 In what follows we let
$C^{1}(\Gamma;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho}):=\{c:\Gammaarrow \mathfrak{s}\mathfrak{l}(n)_{Ad\rho}\}$ denote the 1-cochains of $\Gamma$ with coefficients in

$\mathfrak{s}\mathfrak{l}(n)$ (see [10, p.59]).
Let $\rho:\Gammaarrow SL(n)$ be a representation. A formal deformation of $\rho$ is a homomorphism

$\rho_{\infty}:\Gammaarrow SL_{n}(\mathbb{C}[tJ)$

$\rho_{\infty}(\gamma)=\exp(\sum_{i=1}^{\infty}t^{i}u_{i}(\gamma))\rho(\gamma) , u_{i}\epsilon C^{1}(\Gamma;sl(n))$

such that $ev_{0}\circ\rho_{\infty}=\rho$ . Here $ev_{0}:SL_{n}(\mathbb{C}[tJ$ ) $arrow SL_{n}(\mathbb{C}\rangle$ is the evaluation homomorphism
at $t=0$ , and $\mathbb{C}[tJ$ denotes the ring of formal power series.
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We will say that $p_{\infty}$ is a formal deformation up to order $k$ of $\rho$ if $p_{\infty}$ is a homomorphism
modulo $t^{k+1}.$

An easy calculation gives that $\rho_{\infty}$ is a homomorphism up to first order if and only
if $u_{1}\in Z^{1}(\Gamma;\mathfrak{s}\mathfrak{t}(n\rangle_{Ad\rho}\rangle$ is a cocycle. We call a cocycle $u_{1}\in Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ formally
integrable if there is a formal deformation of $\rho$ with leading term $u_{1}.$

Lemma 3.1. Let $u_{1},$ $\rangle u_{k}\epsilon C^{1}(\Gamma;z1(n))$ such that

$p_{k}( \gamma)=\exp(\sum_{i=1}^{k}t^{i}u_{t}(\gamma))p(\gamma)$

is a homomorphism into $SL_{n}(\mathbb{C}[t{\}/(t^{k+1}))$ . Then there exists an obstruction class $\zeta_{k+1}:=$

$\zeta_{k+1}^{(u_{1},\ldots,u_{k}\rangle}\in H^{2}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ with the following properties:

(i) There is a cochain $u_{k+1}:\Gammaarrow \mathfrak{s}\mathfrak{l}(n)$ such that

$\rho_{k+1}(\gamma)=\exp(\sum_{i=1}^{k+1}t^{i}u_{i}(\gamma))p(\gamma)$

is a homomorphism modulo $t^{k+2}$ if and only if $\zeta_{k+1}=0.$

(ii) The obstruction $\zeta_{k+1}$ is natural i.e. if $f:\Gamma_{1}arrow\Gamma$ is a homomorphism then $f^{*}\rho_{k}:=$

$\rho_{k}\circ f$ is also a homomorphism modulo $t^{k+1}$ and $f^{*}(\zeta_{k+1}^{(u_{1},\ldots,u_{k})})=\zeta_{k+1}^{(f^{*}u_{1},\ldots,f^{*}u_{k}\rangle}\epsilon$

$H^{2}(\Gamma_{1};\mathfrak{s}\mathfrak{l}(n\rangle_{Acif^{*}\rho})$ .

Proof. The proof is completely analogous to the proof of Proposition 3.1 in [38]. We
replace SL(2) and $z1(2)$ by $SL(n)$ and $\mathcal{B}\mathfrak{l}(n)$ respectively. ur

The following result streamlines the arguments given in [36] and [6]. It is a slight
generalization of Proposition 3.3 in [34].

Proposition 3.2. Let $M$ be a connected, compact, orientable 3-manifold with toroidal
boundary $\partial M=T_{1}\cup$ $\cup T_{k}$ , and let $\rho:\pi_{1}Marrow SL(n)$ be a representation.

If $\dim H^{1}(\pi_{1}M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho}\rangle=k(n-1\rangle$ then $p$ is a smooth point of the $SL(n)-$

representation variety $R_{w}(7r_{1}M)$ . Moreover, $p$ is contained in a unique component of
dimension $n^{2}-1+k(n-1)-\dim H^{0}(\pi_{1}M;\mathfrak{s}((n\rangle_{Ad\rho})$ .

Proof. First we will show that the map $\iota$ : $H^{2}(\pi_{1}M;\mathfrak{s}t(n)_{Adp}\ranglearrow H^{2}(\pi_{1}\partial M;s\mathfrak{l}(n)_{Ad\rho}\rangle$

induced by the inclusion $\iota:5Marrow M$ is injective.
Recall that for any CW-complex $X$ with $7r_{1}(X\rangle\cong\pi_{1}(M)$ and for any $\pi_{1}M$ -module $A$

there are natural morphisms $H^{i}(\pi_{1}M;A\ranglearrow H^{i}(X;A)$ which are isomorphisms for $i=0,1$

and an injection for $i=2$ (see [36, Lemma 3.3]). Note also that $T_{j}\cong S^{1}\cross S^{1}$ is aspherical
and hence $H^{*}(rr_{1}T_{j};A\ranglearrow H^{*}(T_{j},$ $A\rangle$ is an isomorphism.

For every representation $\rho\epsilon R_{m}(\mathbb{Z}\oplus \mathbb{Z})$ we have

(3) $\dim H^{0}(\mathbb{Z}\oplus \mathbb{Z};\epsilon \mathfrak{l}(n)_{Ad\rho}\rangle=\frac{1}{2}\dim H^{1}(\mathbb{Z}\oplus \mathbb{Z};\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})\geq n-1,$

and $\rho\epsilon R_{m}(\mathbb{Z}\oplus \mathbb{Z}\rangle$ is regular if and only if equality holds in (3). A prove of this statement
can be found in the of Proposition 3.3 in [34].
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Now, the exact cohomology sequence of the pair $(M,\partial M)$ gives

$arrow H^{1}(M, \partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$

$arrow H^{1}(M_{1\mathfrak{s}}\mathfrak{l}(n)_{Ad\rho})arrow\alpha H^{1}(\partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})arrow H^{2}(M, \partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})\beta$

$arrow H^{2}(M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})arrow H^{2}(\partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})\iota^{*}arrow H^{3}(M, \partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})arrow 0.$

Poincar\’e-Lefschetz duality implies that $\alpha$ and $\beta$ are dual to each other. Therefore, we
have rk $\alpha=rk\beta$ , and from the exactness it follows that 2 rk $\alpha=\dim H^{1}(\partial M;\mathfrak{s}\mathfrak{l}(n\rangle_{Ad\rho})$ .
Moreover, we have $H^{1}(\partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho}\rangle\cong\oplus_{j=1}^{k}H^{1}(T_{j};\mathfrak{s}\mathfrak{l}(n)_{Ad\iota_{j}^{*}\rho})$ where $\iota_{j}:T_{j}arrow M$ de-

notes the inclusion. Equation (3) implies that $\dim H^{0}(T_{j};\mathfrak{s}((n)_{Ad\rho})\geq n-1$ for all
$\rho\in R_{n}(\pi_{1}T_{j})$ . Hence

(4) $k(n-1)=\dim H^{1}(M$ ; sl $(n)_{Ad\rho}) \geq rk(\alpha)=\frac{1}{2}\dim H^{1}(\partial M,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$

$= \sum_{j=1}^{k}\frac{1}{2}\dim H^{1}(T_{j};\mathfrak{s}\mathfrak{l}(n)_{Ad\iota_{j}^{*}\rho})=\sum_{j=1}^{k}\dim H^{0}(T_{j};\mathfrak{s}\mathfrak{l}(n)_{Ad\iota_{j}^{*}\rho})\geq k(n-1)$ .

Therefore, equality holds everywhere in (4). This implies that $\alpha$ is injective, hence $\beta$ is
surjective, and

$\iota^{*}:H^{2}(M;\mathfrak{s}\mathfrak{l}(n)_{Adp}\ranglearrow H^{2}(\partialM;\mathfrak{s}\mathfrak{l}\langle n)_{Ad\rho}\rangle\cong\bigoplus_{j=1}^{k}H^{2}(T_{j};\mathfrak{s}\mathfrak{l}(n\rangle_{Ad\iota_{j}^{*}\rho})$

is injective. Moreover, Equation (4) implies that $\dim H^{0}(T_{j};\mathfrak{s}\mathfrak{l}(n)_{Ad\iota_{j}^{*}\rho})=n-1$ holds
for all $j=1$ , . .., $k$ , and consequently $\iota_{j}^{*}\rho=\rho\circ\iota_{j\#}\in R_{n}(\pi_{1}T_{j})$ is regular. We obtain the
following commutative diagram:

$H^{2}(M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})| \underline{\iota^{k}} \}\cong$

$H^{2}(\partial M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$

$H^{2}(\pi_{1}M,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})arrow^{\oplus_{j-1}^{k}\iota_{j}^{*}}\oplus_{j=1}^{k}H^{2}(\pi_{1}T_{j};\mathfrak{s}\mathfrak{l}(n)_{Ad\iota_{j}^{*}\rho})$ .

In order to prove that $\rho\in R_{n}(\pi_{1}M)$ is regular, we first show that all cocycles in
$Z^{1}(\pi_{1}M,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ are formally integrable. We will prove that all obstructions vanish, by
using the fact that the obstructions vanish on the boundary. Let $u_{1}$ , . .., $u_{k}:\pi_{1}Marrow s1(n)$

be given such that

$\rho_{k}(\gamma)=\exp(\sum_{i=1}^{k}t^{i}u_{i}(\gamma))\rho(\gamma)$

is a homomorphism modulo $t^{k+1}$ . Then the restriction $\iota_{j}^{*}\rho_{k}:\pi_{1}T_{j}arrow SL_{n}(\mathbb{C}[tJ$ ) is also
a formal deformation of order $k$ . Since $\iota_{j}^{*}\rho$ is a regular point of the representation
variety $R_{n}(\pi_{1}T_{j})$ , the formal implicit function theorem gives that $\iota_{j}^{*}p_{k}$ extends to a
formal deformation of order $k+1$ (see [38, Lemma 3.7]). Therefore, we have that

$0=\zeta_{k+1}^{(\iota_{g’}^{*}u),\ldots,\iota_{\tilde{j}}u_{k})}=\iota_{j}^{*}\zeta_{k+1}^{(uu_{k})}1,\ldots,$

Now, $\oplus_{j=1}^{k}\iota_{j}^{*}$ is injective and the obstruction $\zeta_{k+1}^{(u_{1},\ldots,u_{k})}$ vanishes.
Hence all cocycles in $Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Adp})$ are formally integrable. By applying $Artin^{)}s$

theorem [1] we obtain from a formal deformation of $\rho$ a convergent deformation (see [38,
Lemma 3.3] or [2, \S 4.2]).
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Thus $p\in R_{n}(rr_{1}M)$ is a regular point, and $\dim H^{1}(\pi_{1}M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})=k(n-1)$ . The
exactness of

$0arrow H^{0}(\pi_{1}M;\mathfrak{s}\mathfrak{l}(n)_{Ad\rho}\ranglearrow \mathfrak{s}\mathfrak{l}(n)arrow B^{1}(\pi_{1}M;st(n)_{Ad\rho})arrow 0,$

and the regularity of $p\epsilon R_{m}(\pi_{1}M)$ imply:

$dim,R_{n}(\pi_{1}M)=\dim Z^{1}(\pi_{1}M,st(n)_{Ac1\rho})$

$=\dim H^{1}(rr_{1}M;\mathfrak{s}t(n)_{Aci\rho})+\dim B^{1}(\pi_{1}M,\mathfrak{s}t(n)_{Ac1\rho})$

$=k(n-1)+n^{2}-1-\dim H^{0}(7r_{1(ig}M;z\mathfrak{l}(n)_{A})$ .

Finally, the proposition follows from Lemma 2.11. $\square$

Definition 3.3. Let $M$ be a connected, compact, orientable 3-manifold with toroidal
boundary $\partial M=T_{1}\cup$ $\cup T_{k}$ . We call a representation $\rho:\pi_{1}Marrow SL_{n}(\mathbb{C})$ infinitesimally
regular if $\dim H^{1}(\pi_{1}M;\mathfrak{s}\mathfrak{l}(n)_{Adp})=k(n-1)$ .

Remark 3.4. It follows from Proposition 3.2 that infinitesimally regular representations
are regular points on the representation variety.

Example 3.5. Let $\Gamma_{k}$ be a knot group and let $D=diag(\lambda_{1}, \ldots, \lambda_{n})\in SL(n\rangle$ be a diagonal
matrix. We define the diagonal representation $\rho_{fj)}$ by $p_{D}(\gamma\rangle=D^{\varphi(\gamma\rangle}/$ . Now, $\rho_{D}$ is the
direct sum of the one-dimensional representations $\lambda_{i}^{\varphi}$ , and the $r_{k}$ -module $z\mathfrak{l}(n)_{A\ddagger\rho_{D}}($

decomposes as:
$\mathfrak{s}\mathfrak{l}(n)_{Ad\rho_{A}}=\oplus \mathbb{C}_{\lambda_{i}/\lambda_{j}}\oplus \mathbb{C}^{n-1}$

$i*i$

$Now_{\}}$ for all $\alpha\in \mathbb{C}^{*}$ we have $H^{1}(\Gamma_{k};\mathbb{C}_{\alpha})=0$ if and only if $a\neq 1$ and $\Delta_{k}(\alpha\rangle\neq 0$ (see [5,
Lemma 2.3]). Here, $\triangle_{k}(t)$ denotes the Alexander polynomial of the knot $k$ . Hence, $\rho_{D}$

is infinitesimally regular if and only if $\lambda_{i}\neq\lambda_{j}$ for $i$ $Pt$ $j$ and $\Delta_{k}(\lambda_{i}/\lambda_{j}\rangle\neq 0$ for $1\leq i,j\leq n.$

In this case it follows that $\dim H^{1}(\Gamma_{k}\cdot s\mathfrak{l}(n)_{Ad\rho p})=n-1$ , and $\rho_{D}\in R_{m}(\Gamma_{k})$ is a regular
point. The representation $\rho_{D}$ is contained in an unique component of dimension $n^{2}-1.$

This component is exactly the component of abelian representations $\varphi^{*}:R_{m}(\mathbb{Z})\llcorner>R_{m}(r_{k}^{t})$

(see Example 2.12).

4. EXISTENCE OF IRREDUCIBLE $REPRESENTA^{r}I’ 1ONS$ OF KNOT GROUPS

Let $kcS^{3}$ be a knot, and let $\Gamma_{k}$ be the knot group. Given representations of $\Gamma_{k}$ into
SL(2) there are several constructions which give higher dimensional representations. The
most obvious is probably the direct sum of two representatios.

4.1. Deformations of the direct sum of two representations. Starting from two
representations $\alpha\prime\Gamma_{k}arrow SL_{a}(\mathbb{C})$ and $\beta:\Gamma_{k}arrow SL_{b}(\mathbb{C}\rangle$ such that $a+b=n$ , we obtain a
family of representations $p_{\lambda}\in R_{m}(\Gamma_{k})$ , $\lambda\in \mathbb{C}^{*}$ , by $\rho_{\lambda}=(\lambda^{b\varphi}\otimes\alpha)\oplus(\lambda^{-a\varphi}\otimes\beta)\in R_{m}(\Gamma_{k})$

i.e. for all $\gamma\in\Gamma_{k}$

(8) $p_{\lambda}(\gamma)=(\begin{array}{ll}\lambda^{b\varphi(\gamma\rangle}\alpha(\gamma) 00 \lambda^{- a\varphi(\gamma\rangle}\beta(\gamma\rangle\end{array}).$

Recall that $\lambda^{\varphi}:\Gamma_{k}arrow \mathbb{C}^{*}$ is given by $\gamma\vdash\succ\lambda^{\varphi(\gamma)}.$

Throughout this section we will assume that $\alpha$ and $\beta$ are both irreducible and infini-
tesimal regular.

The natural question which arises is if $p_{\lambda}$ can be deformed to irreducible representations,
and if this would be possible what could we say about the local structure of $X_{n}(\Gamma_{k})$ at
$\chi_{\rho_{\lambda}}$ ?
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4.1.1. The easiest case. A very special case is $\alpha=\beta:\Gamma_{k}arrow SL_{1}(\mathbb{C})=\{1\}$ are trivial. Then
$\rho_{\lambda}=\lambda^{\varphi}\oplus\lambda^{-\varphi}\in R_{2}(\Gamma_{k})$ i.e. for all $\gamma\in\Gamma_{k}$

$(6\rangle$ $\rho_{\lambda}(\gamma)=(\begin{array}{ll}\lambda^{\varphi(\gamma\rangle} 00 \lambda^{-\varphi(\gamma)}\end{array}).$

Example 4.1. Let us consider the trefoil knot $k=3_{1}$ . The knot group of the trefoil knot
is given by

$\Gamma_{3_{1}}=\langle S,T|STS=TST\rangle=\langle x,y|x^{2}=y^{3}\rangle$

where $x=STS$ and $y=TS$ . A meridian is $m=S=xy^{-1}$ . For every irreducible
representation $\rho\in R_{2}(\Gamma_{3_{1}})$ there exists a unique $s\in \mathbb{C}$ such that $\rho\sim\alpha_{s}$ , where

$\alpha_{s}(x)=(\begin{array}{ll}i 0\mathcal{S} -i\end{array})$ and $\alpha_{s}(y)=(\begin{array}{ll}\eta \overline{\eta}-\eta 0 \overline{\eta}\end{array}),$

and $\eta^{2}-\eta+1=0$ is a primitive 6-th root of unity. Moreover, $\alpha_{8}$ is irreducible if and only
if $\mathcal{S}\neq 0,$ $2i$ (see [37, Lemma 9.1] for a proof).

Now, if $s=0$ then the one parameter group $P(t)=diag(t,t^{-1})$ , $t\in \mathbb{C}^{*}$ , verifies that
$hm_{tarrow 0}P(t).\alpha_{0}$ exists, and is the diagonal representation $\rho_{\zeta}$ where $\zeta=i\eta$ is a primitive
12-th root of unity. If $s=2i$ we can take $P(t)=(t^{-1}-t^{-1}t0)$ , $t\in \mathbb{C}^{*}$ , and we obtain
$\lim_{tarrow 0}P(t\rangle.\alpha_{2i}=\rho_{-\zeta}$ . Therefore, the two diagonal representations $\rho_{\pm\zeta}$ are limit of irre-
ducible representations. Notice also that $(\pm\zeta)^{2}=\eta$ is a primitive 6-th roof of unity and
that $\Delta_{3_{1}}(\eta)=0.$

This examples shows a general phenomena which goes back to work of E. Klassen [44].

Theorem 4.2. If the diagonal representation $p_{\lambda}\in R_{2}(\Gamma_{k})$ can be deformed to irreducible
$repre\mathcal{S}$entations then $\Delta_{k}(\lambda^{2})=0.$

Proof. In general the function $R_{m}(\Gamma)arrow \mathbb{Z}$ given by $\rho\mapsto\dim Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})$ is upper-semi
continuous which means that for every $k\in \mathbb{Z}$ the set $\{\rho\in R_{m}(\Gamma)|\dim Z^{1}(\Gamma,\mathfrak{s}\mathfrak{l}(n)_{Ad\rho})\geq$

$k\}$ is closed. Notice that $Z^{1}(\Gamma,s\mathfrak{l}(n)_{Ad\rho})$ is the kernel of a linear map which depends
algebraically on $\rho.$

Moreover, if the representation $\rho_{\lambda}\in R_{2}(\Gamma_{k})$ can be deformed into irreducible represen-
tations then $\dim Z^{1}(\Gamma_{k},\mathfrak{s}\mathfrak{l}(2)_{Ad\rho_{\lambda}})\geq 4$ (see [37, Lemma 5.1]). The $\Gamma_{k}$ -module $\mathfrak{s}\mathfrak{l}(2)_{Ad\rho_{\lambda}}\cong$

$\mathbb{C}\oplus \mathbb{C}_{\lambda^{2}}\oplus \mathbb{C}_{\lambda^{-2}}$ decomposes into one-dimensional modules (see Example 3.5). Now,
$H^{1}(\Gamma_{k}, \mathbb{C})\cong \mathbb{C}$ and for $\lambda^{2}\neq 1$ we have $B^{1}(\Gamma_{k},\mathbb{C}_{\lambda^{2}})\cong \mathbb{C}$ . Hence, $\dim Z^{1}(\Gamma_{k},\mathfrak{s}\mathfrak{l}(2)_{Ad\rho_{\lambda}})\geq 4$

imphes that $H^{1}(\Gamma_{k},\mathbb{C}_{\lambda^{\pm 2}})\neq 0$ or $H^{1}(\Gamma_{k_{\rangle}}$ $\mathbb{C}\lambda$-2 $)$ $\neq$ 0.
Finally, $H^{1}(\Gamma_{k},\mathbb{C}_{\lambda^{\pm 2}})\neq 0$ and $\lambda^{\pm 2}\neq 1$ implies that $\triangle_{k}(\lambda^{\pm 2})=0$ (see Example3.5). $\square$

Remark 4.3. Notice that $\Delta_{k}(t)=\Delta_{k}(t^{-1})$ is symmetric and hence $H^{1}(\Gamma_{k},\mathbb{C}_{\lambda^{-2}})\neq 0$ if
and only if $H^{1}(\Gamma_{k},\mathbb{C}_{\lambda^{2}})\neq$ O. Here $p=q$ means that $p,$ $q\in \mathbb{C}[t^{\pm 1}]$ are associated elements,
i.e. there exists some unit $ct^{k}\in \mathbb{C}[t^{\pm 1}]$ , with $c\in \mathbb{C}^{\star}$ and $k\in \mathbb{Z}$ , such that $p=ct^{k}q.$

In general, it is still a conjecture that the necessary condition in Theorem 4.2 is also
sufficient i.e. infinitesimal deformation implies deformation. Nevertheless, we have the
following result [38].

Theorem 4.4. Let $k\subset S^{3}$ be a knot and let $\lambda\in \mathbb{C}^{*}$ . If $\lambda^{2}$ is a simple root of $\Delta_{k}(t)$ then
$\rho_{\lambda}$ is the limit of irreducible representation.

More precisely, the character $\chi_{\lambda}$ of $\rho_{\lambda}$ is contained in exactly two components. One
component $Y_{2}\cong \mathbb{C}$ only contains characters of abelian (diagonal representations), and the
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second component $X_{\lambda}$ contains characters of irreducible representations. Moreover, $we$

have $Y_{2}$ and $X_{\lambda}$ intersect transversally at $\chi_{\rho}$ , and $\chi_{\lambda}$ is a smooth point on $Y_{2}$ and $X_{\lambda}.$

Remark 4.5. Related results, also for other Lie groups are: Shors [57], &ohman-Klassen
[23], Herald [31], Heusener-Kroll [33], Ben Abdelghani [2, 4], Heusener-Porti [36].

4.1.2. The general case. Let us go back to the representation $p_{\lambda}=(\lambda^{b\varphi}\otimes\alpha)\oplus(\lambda^{-a\varphi}\otimes\beta)\epsilon$

$R_{m}(r_{k}\rangle$ given by Equation (5):

$p_{\lambda}(\gamma)=(\begin{array}{ll}\lambda^{b\varphi(\gamma)}\alpha\langle\gamma\rangle 00 \lambda^{-a\varphi(\gamma\rangle}\beta(\gamma)\end{array}).$

The following generalization of Theorem 4.2 was proved in [37]:

Theorem 4.6. Let $\alpha:\Gamma_{k}arrow SL_{a}(\mathbb{C})$ and $\beta:\Gamma_{k}arrow SL_{b}(\mathbb{C})$ be $irreducible_{y}a+b=n$ , and
assume that $\alpha$ and $\beta$ are infinitesimal regular. If $p_{\lambda}\in R_{n}(\Gamma_{k})$ is a limit of irreducible
representations then $\Delta_{1}^{\alpha\emptyset\beta^{*}}(\lambda^{n})=\Delta$ $*\langle\lambda^{-n}$ ) $=0.$

Let us recall some facts about the twisted Alexander polynomial. For more details see
[63, 43, 42, 64, 37]. Let $V$ be a complex vector space, and $\rho:r_{k}arrow GL(V)$ a represen-
tation. We let $C_{\infty}arrow C_{k}$ denote the infinite cyclic covering of the knot exterior. The
$twi_{\mathcal{S}}ted$ Alexander module is the $\mathbb{C}[\mathbb{Z}]\cong \mathbb{C}[t^{\pm\lambda}]$ -module $H_{i}(C_{\infty}, V)$ . A generator $\Delta_{i}^{\rho}(t)$

of its order ideal is called the twisted Alexander polynomial $\Delta_{i}^{\rho}(t)\in \mathbb{C}[t^{\pm}1]$ . Notice that
$H_{i}\langle C_{\infty},$ $V)\cong H_{i}(C_{k_{\rangle}}V[\mathbb{Z}])\cong H_{i}(\Gamma_{k_{\rangle}}V[\mathbb{Z}])$ where $V[\mathbb{Z}]=V\otimes_{\mathbb{C}[r]}\mathbb{C}[\mathbb{Z}]$ is a $\Gamma_{k}$ module
via $\rho\otimes t^{\varphi}.$

The dual rcpresentation $\rho^{*}:\Gammaarrow GL(V^{*})$ is given by $\rho^{*}(\gamma)(f\rangle=f\circ\rho(\gamma)^{-1}$ for $f\in V^{*}=$

$Hom(V, \mathbb{C})$ and $\gamma\in\Gamma$ . In particular, if $p:rarrow GL(n)$ then $\rho^{*}(\gamma)=tp(\gamma)^{-1}$ for all $\gamma\epsilon r_{k}^{1}.$

Lemma 4.7. The representations $\rho$ and $\rho^{*}$ are equivalent if and only if there exists a
$\Gamma$ -invariant, non-degenerated bilinear form $V\otimes Varrow \mathbb{C}.$

Example 4.8. If $\rho,$ $f’arrow O\langle n$ ) or $\rho:\Gammaarrow SL_{2}(\mathbb{C})$ then $\rho$ and $\rho^{*}$ are equivalent.

The following theorem is $f\rangle$roved in [37]:

Theorem 4.9. If $p:\Gamma_{k}arrow GL(V\rangle$ is a semisimple representation then $\Delta_{i}^{\rho^{*}}(t)=\Delta_{i}^{\rho}(t^{-1})$ .

Now, the proof of Theorem 4.6 follows the proof of Theorem 4.2. First, we have to
understand the $\Gamma_{k}$ -module $\mathfrak{s}\mathfrak{l}(n)_{Ad\rho_{\lambda}}$ . Let $M_{a,b}(C)$ the vector space of $a$ $xb$ matrices
over the complex numbers. The group $r_{k}$ acts on $M_{a,b}(\mathbb{C})$ via $\alpha\otimes\beta^{*}$ i.e. for all $\gamma\in\Gamma_{k}$

and $X\in M_{a,b}(\mathbb{C}\rangle$ we have

$\alpha\otimes\beta^{*}(\gamma)(X)=\alpha(\gamma)X\beta(\gamma^{-1})$ .
Similarly, we obtain a representation $\beta\otimes\alpha^{*}:\Gamma_{k}arrow M_{b,a}\langle \mathbb{C}\rangle$ . The proof of the following
lemma is given in [37]:

Lemma 4.10. If $\alpha:r_{k}arrow SL_{a}(\mathbb{C})$ and $\beta:\Gamma_{k}arrow SL_{b}(\mathbb{C})$ are irreducible then the represen-
tation $\alpha^{*}:r_{k}arrow SL_{a}\langle \mathbb{C}\rangle\dot{u}$ also iweducible. Moreover, $\alpha\otimes\beta$ and $\beta\otimes\alpha^{*}$ are semisimple.

In what follows we let $\mathcal{M}_{t}^{+}$ and $\mathcal{M}_{t}^{-}$ denote the $\Gamma_{k}$ -modules

$\mathcal{M}_{t}^{+}=M_{a,b}(\mathbb{C})\otimes \mathbb{C}[t,t^{-1}]$ and $\mathcal{M}_{\overline{t}}=M_{b,a}(\mathbb{C})\otimes \mathbb{C}[t,t^{-1}]$

where $\Gamma_{k}$ acts via $\alpha\otimes\beta^{*}\oplus t^{\varphi}$ and $\beta\otimes\alpha^{*}\otimes t^{\varphi}$ repectively.
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Corollary 4.11. If $\alpha:\Gamma_{k}arrow SL_{a}(\mathbb{C})$ and $\beta:\Gamma_{k}arrow SL_{b}(\mathbb{C})$ are iweducible then

$\Delta_{\iota’}^{\alpha\theta\beta^{*}}(t)=\Delta_{i}^{\beta\otimes\alpha^{*}}(t^{-1}\rangle.$

Now the $\Gamma_{k}$ -module $\mathfrak{s}\mathfrak{l}(n)_{Ad\rho_{\lambda}}$ decomposes into a direct sum:

(7) $\mathfrak{s}\mathfrak{l}(n)_{Ad\rho_{\lambda}}=\mathfrak{s}\mathfrak{l}_{a}(\mathbb{C})_{Ad\alpha}\oplus \mathfrak{s}\mathfrak{l}_{b}(\mathbb{C})_{Ad\beta}\oplus \mathbb{C}\oplus \mathcal{M}_{\lambda^{n}}^{+}\oplus \mathcal{M}_{\lambda^{-n}}^{-}.$

This can be visualized as

$\mathfrak{s}\mathfrak{l}(n)_{Ad\rho_{\lambda}}=(^{\mathfrak{s}\mathfrak{l}(a)_{Ad\alpha}}\mathcal{M}_{-n}^{\frac{}{\lambda}}\mathfrak{s}\mathfrak{l}(b)_{Ad\beta}\mathcal{M}_{\lambda^{n})\oplus \mathbb{C}}^{+}(b Id_{a}0 o_{Id_{b^{-a}}}).$

For every $\lambda\in \mathbb{C}^{*}$ we have a non-degenerate $\Gamma_{k}$ -invariant bilinear form: $\Psi:\mathcal{M}_{\lambda^{-n}}^{-}\cross$

$\mathcal{M}_{\lambda^{n}}^{+}arrow \mathbb{C}$ given by $\Psi(Y,X)\mapsto tr(YX)$ . As an immediate consequence, we have Poincar\’e

and Kronecker dualities:

$H_{i}(C;\mathcal{M}_{\lambda^{\pm n}}^{\pm}) \cong H_{3-i}(C, \partial C;\mathcal{M}_{\lambda^{*n}}^{\mp})^{*}$ ;

(8) $H^{t}(C;\mathcal{M}_{\lambda^{\pm n}}^{\pm}) \cong H^{3-i}(C, \partial C;\mathcal{M}_{\lambda^{*n}}^{\mp})^{*}$ ;
$H_{i}(C;\mathcal{M}_{\lambda^{\neq n}}^{\pm}) \cong H^{i}(C;\mathcal{M}_{\lambda^{*n}}^{\mp})^{*}$

Lemma 4.12. If $\alpha:\Gamma_{k}arrow SL_{a}(\mathbb{C})$ and $\beta:\Gamma_{k}arrow SL_{b}(\mathbb{C})$ are iweducible then $\alpha^{*}:\Gamma_{k}arrow$

$SL_{a}(\mathbb{C})$ is irreducible, and $\alpha\otimes\beta$ is semisimple.

Proof of Theorem 4.6. As in the proof of Theorem 4.2 it follows from Lemma 5.1 in [37]

that if $\rho_{\lambda}$ is limit of irreducible representations then

$\dim Z^{1}(\Gamma_{k},\mathfrak{s}\mathfrak{l}(2)_{Ad\rho_{\lambda}})\geq n^{2}+n-2.$

Now, consider the decomposition (7) of $\mathfrak{s}\mathfrak{l}(n)_{Ad\rho_{\lambda}}.$

Claim: If $\alpha$ and $\beta$ are infinitesimal regular and irreducible then

$\dim H^{1}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+})>\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+})$ or $\dim H^{1}(\Gamma_{k_{\rangle}}\mathcal{M}_{\overline{\lambda}^{-n}})>\dim H^{0}(\Gamma_{k}\rangle \mathcal{M}_{\overline{\lambda}^{-n}})$ .

Proof of the Claim. For each $\Gamma$ -module $m$ , we use the formula

$\dim Z^{1}(\Gamma;\mathfrak{m})=\dim H^{1}(\Gamma;\mathfrak{m})+\dim B^{1}(\Gamma;\mathfrak{m})$

(9) $=\dim H^{1}(\Gamma;\mathfrak{m})+\dim \mathfrak{m}-\dim H^{0}(\Gamma;m)$ .

Ordering the terms as they appear in (9):

$\dim Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}_{a}(\mathbb{C})_{Ad\alpha}) = (a-1)+(a^{2}-1)-0,$

$\dim Z^{1}(\Gamma;\mathfrak{s}\mathfrak{l}_{b}(\mathbb{C})_{Ad\alpha}) = (b-1)+(b^{2}-1)-0,$

$\dim Z^{1}(\Gamma;\mathbb{C}) = 1+1-1,$

$\dim Z^{1}(\Gamma;\mathcal{M}_{\lambda^{\pm n}}^{\pm}) =\dim H^{1}(\Gamma_{1}\mathcal{M}_{\lambda^{\pm n}}^{\pm})+ab-\dim H^{0}(\Gamma;\mathcal{M}_{\lambda^{\pm n}}^{\pm})$ .

Hence the decomposition (7) together with $n^{2}+n-2\leq\dim Z^{1}(\Gamma_{k},\mathfrak{s}\mathfrak{l}(2)_{Ad\rho_{\lambda}})$ gives:

$n^{2}+n-2\leq n^{2}+n-3+(\dim H^{1}(\Gamma_{k}, \mathcal{M}_{\lambda^{-n}}^{-})-\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{-n}}^{-}))$

$+(\dim H^{1}(\Gamma_{k}, \mathcal{M}_{\lambda^{n}}^{+})-\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+}))$ . $\square$

Now, it follows from Kronecker duality (8) that

$\dim H^{1}(\Gamma_{k}, \mathcal{M}_{\lambda^{-n}}^{-})>\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{-n}}^{-})$ $rightarrow$ $\dim H_{1}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+})>\dim H_{0}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+})$ .
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The short exact sequence of $\Gamma_{k}$ -modules $0arrow \mathcal{M}_{t}^{+}arrow \mathcal{M}_{t}^{+}(t-\lambda^{n})\cdotarrow \mathcal{M}_{\lambda^{n}}^{+}arrow 0$ gives a long
exact homology sequence [10, III.\S 6]:

$\cdotsarrow H_{1}(I^{\gamma};\mathcal{M}_{t}^{+}\ranglearrow H_{1}(\Gamma,\mathcal{M}_{t}^{+})(t-\lambda^{-n}\rangle\cdot.arrow$

$H_{1}(r;\mathcal{M}_{\lambda^{n}}^{+})arrow H_{0}(\Gamma;\mathcal{M}_{f}^{+})\partialarrow H_{0}(\Gamma;\mathcal{M}_{t}^{+})(t-\lambda^{-n})\cdotarrow H_{0}(\Gamma_{\rangle}\mathcal{M}_{\lambda^{n}}^{+})arrow 0.$

This implies that $\dim H_{1}(\Gamma;\mathcal{M}_{\lambda^{n}}^{+})\geq rk(\partial)=\dim H_{0}(r;\mathcal{M}_{\lambda^{n}}^{+})$ with equality if and only if
$H_{1}(\Gamma;\mathcal{M}_{\lambda^{n}}^{+})$ has no $(t-\lambda^{n})$ -torsion. This in turn is equivalent to $\Delta_{1}^{\alpha\Phi\beta^{*}}(\lambda^{n})\neq$ O.

Hence we have:

$\Delta_{i}^{\alpha\Phi\beta^{*}}(\lambda^{n})=0\Leftrightarrow\dim H^{1}(r_{k},\mathcal{M}_{\lambda^{-n}}^{-})>\dim H^{0}(r_{k},\mathcal{M}_{\lambda^{-n}}^{-}\rangle.$

A similar argument applies if $\dim H^{1}(\Gamma_{k}\rangle \mathcal{M}_{\lambda^{n}}^{+}\rangle>\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+})$ . $\square$

Remark 4.13. Notice that $\Delta_{1}^{\alpha\otimes\beta^{*}}(t\rangle=\Delta_{1}^{\beta\otimes\alpha^{*}}(t^{-1})$ , and hence

$(\dim H^{1}(\Gamma_{k},\mathcal{M}_{\lambda^{-n}}^{-})>\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{-n}}^{-}))\Leftrightarrow\Delta_{1}^{\alpha\otimes\beta^{*}}(\lambda^{n})=0rightarrow$

$\Delta *(\lambda^{-n})=0\Leftrightarrow(\dim H^{1}(\Gamma_{k}, \mathcal{M}_{\lambda^{n}}^{+})>\dim H^{0}(\Gamma_{k},\mathcal{M}_{\lambda^{n}}^{+}\rangle)$ .

There is a partial converse of Theorem 4.6 which was proved in [37]:

Theorem 4.14. Let $\alpha:\Gamma_{k}arrow SL_{a}(\mathbb{C}\rangle$ and $\beta:\Gamma_{k}arrow SL_{b}(C\rangle$ be irreducible, $a+b=n$ , and
assume that $\alpha$ and $\beta$ are infinitesimal regular.
Assume that $\Delta_{0}^{\alpha\otimes\beta^{*}}(\lambda^{n})*O$ and that $\lambda^{n}$ is a simpte root of $\triangle_{1}^{\alpha\otimes\beta}(t)$ . Then $\rho_{\lambda}\in R_{\phi}(\Gamma_{k})$

can be deformed to irreducible representations. Moreover, the character $\chi_{\lambda}\in X_{n}(\Gamma_{k})$

belongs to precisely two irreducible components $Y$ and $Z$ of $x_{n}(r)$ . Both components $Y$

and $Z$ have dimension $n-1$ and meet transversally at $\chi_{\lambda}$ along a subvariety of dimension
$n-2$ . The component $Y$ contains characters of irreducible representations and $Z$ consists
only of characters of reducible ones.

Sketch of proof. Use Luna’s Slice Theorem, and study the quadratic cone of the represen-
tation $\rho_{\lambda}$ by identifying the second obstruction to integrability. This relies heavily on the
hypothesis about the simple root of the Alexander polynomial. $O$

4.2. Deformation of reducible metabelian representations. In this subsection we
will consider certain reducible metabelian representations and their deformations. The
general assumption will be that $\alpha\in \mathbb{C}^{\star}$ is a zero of the Alexander polynomial of $k$ , and
hcnce $H_{1}(C_{\infty};\mathbb{C})$ has a direct summand of the form $\mathbb{C}[t^{\pm 1}]/(t-\alpha\rangle^{n-1},$ $n\in \mathbb{Z},$ $n>1.$

Recall that a knot group $r$ is isomorphic to the semi-direct product $\Gamma\cong r\prime\cross \mathbb{Z}$ . Every
metabelian representation of $\Gamma$ factors through the metabelian group $(r\prime/r^{r;})x\mathbb{Z}$ . Notice
that $H_{1}(C_{\infty};\mathbb{C})\cong \mathbb{C}\otimes\Gamma’/\Gamma"$ . Hence we obtain a homomorphism

$\Gammaarrow(r’/\Gamma")x\mathbb{Z}arrow(\mathbb{C}\otimes r’/\Gamma")\rangle\langle \mathbb{Z}arrow \mathbb{C}[t^{\ 1}]/(t-\alpha)^{n-1}*\mathbb{Z}.$

The multiplication on $\mathbb{C}[t^{\pm 1}]/(t-\alpha)^{n-1_{\aleph}}\mathbb{Z}$ is givcn by $(p_{1}, n_{1})(p_{2},n_{2})=(p_{1}+t^{n_{1}}p_{2},n_{1}+n_{2})$ .
Let $I_{n}\in SL(n)$ and $N_{n}\in GL(n)$ denote the identity matrix and the upper triangular

Jordan normal form of a nilpotent matrix of degree $n$ respectively. For later use we note
the following lemma which follows easily from the Jordan normal form theorem:
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Lemma 4.15. Let $\alpha\in \mathbb{C}^{k}$ be a nonzero complex number and let $\mathbb{C}^{n}$ be the $\mathbb{C}[t^{\pm 1}]$ -module
with the action of $t^{k}$ given by

(10) $t^{k}a=\alpha^{k}$
$a$ $J_{n}^{k}$

where $a\epsilon \mathbb{C}^{n}$ and $J_{n}=I_{n}+N_{n}$ . Then $\mathbb{C}^{n}\cong \mathbb{C}[t^{\pm 1}]/(t-\alpha\rangle^{n}$ as $\mathbb{C}[t^{\pm 1}]$ -modules.

There is a direct method to construct a reducible metabelian representation of the
group $\mathbb{C}[t^{\pm 1}]/(t-\alpha)^{n-1}x\mathbb{Z}$ into $GL(n)$ (see [8, Proposition 3.13]). A direct calculation
gives that

$(a, 0)\mapsto(\begin{array}{ll}1 a0 I_{n- 1}\end{array}), (0,1)\}arrow(\begin{array}{ll}\alpha 00 J_{n- 1}^{-1}\end{array})$

defines a faithful representation $\mathbb{C}[t^{\pm 1}]/(t-\alpha)^{n-1}\rangle\triangleleft \mathbb{Z}arrow GL(n)$ .
Therefore, we obtain a reducible, metabelian, non-abelian representation $\tilde{\rho}:\Gammaarrow GL(n)$

if the Alexander module $H_{1}(C_{\infty},\mathbb{C})$ has a direct summand of the form $\mathbb{C}[t^{\pm 1}]/(t-\alpha)^{s}$

with $s\geq n-1\geq 1$ :

$\tilde{\rho}:\Gammaarrow \mathbb{C}[t^{\pm 1}]/(t-\alpha)^{s}\cross \mathbb{Z}arrow \mathbb{C}[t^{\pm 1}]/(t-a)^{n-1}\cross \mathbb{Z}arrow GL(n)$

given by

(11) $\tilde{\rho}(\gamma)=(\begin{array}{ll}l \tilde{z}(\gamma)0 I_{n- 1}\end{array})(\begin{array}{ll}\alpha^{\varphi(\gamma)} 00 J_{n- 1}^{-\varphi(\gamma)}\end{array}).$

It is easy to see that a map $\tilde{\rho}:\Gammaarrow GL(n)$ given by (11) is a homomorphism if and only
if $\tilde{z}:\Gammaarrow \mathbb{C}^{n-1}$ is a cocycle i.e. for all $\gamma_{1},$

$\gamma_{2}\in\Gamma$ we have

(12) $\tilde{z}(\gamma_{1}\gamma_{2})=\tilde{z}(\gamma_{1})+\alpha^{\varphi(\gamma_{1})}\tilde{z}(\gamma_{2})J_{n-1}^{\varphi(\gamma_{1})}$

The unipotent matrices $J_{n}$ and $J_{\overline{n}}^{1}$ are similar: a direct calculation shows that $P_{n}J_{n}P_{\overline{n}}^{1}=$

$J_{n}^{-1}$ where $P_{n}=(p_{ij})$
)

$p_{ij}=(-1)^{j}(\begin{array}{l}ji\end{array})$ . The matrix $P_{n}$ is upper triangular with $\pm 1$ in the

diagonal and $P_{n}^{2}$ is the identity matrix, and therefore $P_{n}=P_{n}^{-1}.$

Hence $\tilde{\rho}$ is conjugate to a representation $\rho:\Gammaarrow GL(n)$ given by

(13) $\rho(\gamma)=(^{\alpha_{0}^{h(\gamma)}} J_{n-1}^{h(\gamma))=}z(\gamma)(^{\alpha_{0}^{h.\cdot...(\gamma)}}0 z_{1}.(\gamma)1.. h_{1}.\cdot.(\gamma)z_{2}(.\gamma) 01^{\cdot}. h_{n-2}(\gamma)z_{n-1}.(\gamma)h_{1}(\gamma)1:)$

where $z=(z_{1}, \ldots, z_{n-1}):\Gammaarrow \mathbb{C}^{n-1}$ satisfies

$z(\gamma_{1}\gamma_{2})=\alpha^{h(\gamma_{1}\rangle}z(\gamma_{2})+z(\gamma_{1})J_{n-1}^{h(\gamma_{2}\rangle}$

It follows directly that $z(\gamma)=\tilde{z}(\gamma)P_{n-1}J_{n-1}^{h(\gamma)}$ and in particular $z_{1}=-\tilde{z}_{1}.$

We choose an n-th root $\lambda$ of $\alpha=\lambda^{n}$ and we define a reducible metabelian representation
$\rho_{\lambda}:\Gammaarrow SL(n)$ by

(14) $\rho_{\lambda}(\gamma)=\lambda^{-\varphi(\gamma)}\rho(\gamma)$ .

The following theorem generalizes the results of [6] where the case $n=3$ was investi-
gated. It also applies in the case $n=2$ which was studied in [2] and [38, Theorem 1.1].
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Theorem 4.16. Let $k$ be a knot in the 3-sphere $S^{3}$ . If the $\langle t-\alpha$ ) -torsion $\tau_{\alpha}$ of the
Alexander module $H_{1}(C;\mathbb{C}[t^{\pm 1}])$ is cyclic of the form $\mathbb{C}[t^{\pm 1}]/(t-\alpha)^{n-1},$ $n\geq 2$ , then for
each $\lambda\in \mathbb{C}^{1}$ such that $\lambda^{n}=\alpha$ there exists a reducible metabelian representation $\rho_{\lambda}:\Gamma_{k}arrow$

$SL(n)$ . Moreover, the representation $\rho_{\lambda}$ is a smooth point of the representation variety
$R_{n}(\Gamma\rangle$ . It is contained in a unique ($n^{2}+n-2\rangle$ -dimen ional component $R_{e\lambda}$ of $R_{m}(\Gamma\rangle$

which contains irreducible non-metabelian representations which deform $\rho_{\lambda}.$

The main part of the proof of this theorem is a cohomological calculation [5]: for the
representation $\rho_{\lambda}:rarrow SL(n\rangle$ we have $H^{0}(\Gamma;\mathfrak{s}t(n)_{Ad\circ\rho_{\lambda}})=0$ and

$\dim H^{1}(r;s\mathfrak{l}(n)_{Ad\circ\rho\lambda}\rangle=\dim H^{2}(\Gamma;\mathfrak{s}\mathfrak{l}(n)_{Ad\circ\rho_{\lambda}})=n-1.$

Then we apply Proposition 3.2.

Remark 4.17. Let $\rho_{\lambda}:rarrow SI_{-i}(n\rangle$ be the diagonal representation given by $\rho_{\lambda}(m)=$

$diag(\lambda^{n-1}, \lambda^{-1}, \ldots, \lambda^{-1}\rangle\in SL(n)$ where $m$ is a meridian of $k$ . The orbit $O(p_{\lambda})$ of $\rho_{\lambda}$

under the action of conjugation of $SL(n)$ is contained in the closure $\mathcal{O}(\rho_{\lambda})$ . Hence $\rho_{\lambda}$

and $\rho_{\lambda}$ project to the same point $\chi_{\lambda}$ of the variety of characters $X_{n}(\Gamma_{k})=R_{\eta}(\Gamma_{k}\rangle\parallel SL(n)$ .
It would be natural to study the local picture of the variety of characters $x_{n}(r_{k})=$

$R_{m}\langle\Gamma_{k})\parallel S(n)$ at $\chi_{\lambda}$ as done in [36, \S 8]. Unfortunately, there arc much more technical
difficulties since in this case the quadratic cone $Q(\rho_{\lambda})$ coincides with the Zariski tangent
space $Z^{1}(\Gamma;s\mathfrak{l}(n)_{Ad\rho_{\lambda}}\rangle$ . Therefore the third obstruction has to be considered.

4.3. The irreducible representation $r_{n}:SL(2)arrow SL(n)$ . It is interesting to study
the behavior of representations $\rho\in R_{2}(\Gamma)$ under the composition with the $n$ -dimensional,
irreducible, rational representation $r_{n}:SI_{J}(2)arrow SL(n\rangle$ . The representation $r_{n}$ is equiva-
lent to $(n-1)$ -fold symmetric power $Sym^{-1}$ of the standard representation (see [59, 24]

and [34] $fo1^{\cdot}$ more details). In particular, $r_{1}$ is trivial, $r_{2}$ is equivalent to the standard
representation, and $r_{3}$ is equivalent to Ad: $SL(2)arrow O(xt(2\rangle)\subset SL(3)$ . If $k$ is odd then
$r_{h}$ is not injective since it factors trough the projection $SL(2)arrow PSL(2\rangle$ . W. M\"uller [51]
studied the case where $p:\pi_{1}(M\ranglearrow SL(2)$ is the lift of the holonomy representation of a
compact hyperbolic manifold. This study was extended by P. Menal-Ferrer and J. Porti
[48, 49] to the case of non-compact finite volume hyperbolic manifolds. (For more details
see Section 5.1.)

In [34] the authors studied the case related to Theorem 4.4. Let $r_{k}$ be a knot group.
We define $p_{n,\lambda}:\Gamma_{k}arrow SI_{I}(n)$ by $\rho_{n,\lambda}:=r_{n}\circ\rho_{\lambda}$ where $\rho_{\lambda}$ is given by Equation (6).

Proposition 4.18. Let $kcS^{i\}}$ be a knot, and $as\mathcal{S}ume$ that $p_{0}:r_{k}arrow SL(2)$ is irreducible.
Then $R_{n}(\Gamma_{k})$ contains irreducible representations.

Proof It was proved by Thurston that there is at least a 4-dimensional irreducible com-
ponent $R_{0}cR_{2}(r_{k})$ which contains the irreducible representation $\rho_{0}$ (see [13, 3.2.1]).

Let $\Gamma$ be a discrete group and let $\rho:I^{\urcorner}arrow SL(2)$ be an irreducible representation. By
virtue of Burnside’s Theorem on matrix algebras, being irreducible is an open property
for representations in $R_{m}(f’)$ . If the image $\rho(r)cSL(2)$ is Zariski-dense then the rep-
resentation $\rho_{n}:=r_{n}\circ\rho\in R_{n}(\Gamma)$ is irreducible. In order to prove the proposition we will
show that there is a neighborhood $U=U(\rho_{0})\subset R_{0}\subset R_{2}(\Gamma_{k}\rangle$ such that $\rho(\Gamma\rangle\subset SL(2)$ is
Zariski-dense for each irreducible $\rho\epsilon U.$

Let now $\rho:\Gamma_{k}arrow SL(2)$ be any irreducible representation and let $G\subseteq SL(2\rangle$ denote the
Zariski closure of $\rho\langle\Gamma_{k}\rangle$ . Suppose that $G*SL(2\rangle$ . Since $p$ is ireducible it follows that
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$G$ is, up to conjugation, not a subgroup of upper-triangular matrices of SL(2). Then by
[45, Sec. 1.4] and [39, Theorem 4.12] there are, up to conjugation, only two cases left:

$\bullet$ $G$ is a subgroup of the infinite dihedral group

$D_{\infty}=\{(\begin{array}{ll}\alpha 00 \alpha^{-1}\end{array})|\alpha\epsilon \mathbb{C}^{*}\}\cup\{(_{-\alpha^{-1}0}0\alpha)|\alpha\epsilon \mathbb{C}^{*}\}.$

$\bullet$ $G$ is one of the groups $A_{4}^{SL(2)}$ (the tetrahedral group), $S_{4}^{SL(2)}$ (the octahedral
group) or $A_{5}^{SL(2)}$ (the icosahedral group). These groups are the preimages in
SL(2) of the subgroups $A_{4},$ $S_{4},$ $A_{5}\subset PSL(2, \mathbb{C})$ .

By a result of E. Klassen [44, Theorem 10] there are up to conjugation only finitely
many irreducible representations of a knot group into $D_{\infty}$ . Moreover, the orbit of each of
those irreducible representation is 3-dimensional. Therefore, there exists a Zariski-open
subset $U\subset R_{0}$ which does not contain representations of $\Gamma_{k}$ into $D_{\infty}.$

For the second case there are up to conjugation only finitely many irreducible represen-
tations of $\Gamma_{k}$ onto the subgroups $A_{4}^{SL(2)},$ $S_{4}^{SL(2)}$ and $A_{5}^{SL(2)}$ As in the dihedral case these
finitely many orbits are closed and 3-dimensional. Hence all the irreducible $\rho\in R_{0}$ such
that $r_{n}\circ\rho$ is reducible are contained in a Zariski-closed subset of $R_{0}$ . Hence generically
$\rho_{n}=r_{n}\circ p$ is irreducible $\mathring{f}r\rho\epsilon R_{0}.$ $\square$

Remark 4.19. Recall that a finite group has only finitely many irreducible representa-

tions (see [54, 24 Hence, the restriction of $r_{n}$ to the groups $A_{4}^{SL(2)},$ $S_{4}^{SL(2)}$ and $A_{5}^{SL(2)}$

is reducible, for all but finitely many $n\in N.$

Let $k\subset S^{3}$ be a knot, and let $\lambda^{2}\in \mathbb{C}$ a simple root of $\Delta_{k}(t)$ . We let $R_{\lambda}\subset R_{m}(\Gamma_{k})$

denote the -dimensional component which maps onto the component $X_{\lambda}\subset X_{2}(\Gamma_{k})$ under
$t:R_{m}(\Gamma)arrow X_{n}(\Gamma)$ (see Theorem 4.4). We obtain:

Corollary 4.20. Let $k\subset S^{3}$ be a knot, and $\lambda^{2}\in \mathbb{C}$ a simple root of $\triangle_{k}(t)$ . Then the
diagonal representation $\rho_{\lambda,n}=r_{n}\circ\rho_{\lambda}:\Gamma_{k}arrow SL(n)$ is the limit of irreducible representations
in $R_{m}(\Gamma_{k}\rangle$ . More precisely, generically a representation $\rho_{n}=r_{n}\circ\rho,$ $\rho\in R_{\lambda}$ , is irreducible.

Corollary 4.20 can be made more precise (see [34]):

Theorem 4.21. If $\lambda^{2}$ is a simple root of $\triangle_{k}(t)$ and if $\Delta_{k}(\lambda^{2i})\neq 0$ for all $2\leq i\leq n-1$ then
the reducible diagonal representation $\rho_{\lambda,n}=r_{n}\circ\rho_{\lambda}$ is a limit of irreducible representations.
More precisely, there is a unique $(n+2)(n-1)$ -dimensional component $R_{\lambda,n}\subset R_{m}(\Gamma_{k})$

which contains $p_{\lambda,n}$ and irreducible representations.

Remark 4.22. Under the assumptions of Corollary 4.20 it is possible to study the tangent
cone of $R_{m}(\Gamma_{k})$ at $p_{\lambda,n}$ , and thereby to determine the local structure of $R_{n}(\Gamma)$ . There
are $2^{n-1}$ branches of various dimensions of $R_{m}(\Gamma_{k})$ passing through $\rho_{\lambda}$ . Nevertheless,
only the component $R_{\lambda,n}$ contains irreducible representations. This will be studied in a
forthcoming paper.

5. THE GLOBAL STRUCTURE OF CHARACTER VARIETIES OF KNOT GROUPS

Not much is known about the global structure of the character varieties of knot groups.
In this section we will present some facts and some examples.

Example 5.1 (Diagonal representations). The characters of diagonal representations of a
knot group $\Gamma_{k}$ form an algebraic component of $X_{n}(\Gamma_{k})$ . A represcntation $\rho:\Gamma_{k}arrow SL(n)$
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which is the direct sum of one-dimensional representations is equivalent to a diagonal rep-
resentation. The image of a diagonal representation is abelian. Hence it factors through
$\varphi:r_{k}arrow \mathbb{Z}$ . Therefore, the characters of diagonal representations coincide with the char-
acters $X_{n}(\mathbb{Z})arrow X_{n}(\Gamma_{k})$ . Recall that $X_{n}(\mathbb{Z}\rangle\cong \mathbb{C}^{n-1}.$

5.1. The distinguished components for hyperbolic knots. Let $kcS^{3}$ be a hy-
perbolic knot i.e. $S^{3}\backslash k$ has a hyperbolic metric of finite volume. Then there exists,

up to complex conjugation, a unique one-dimensional component $X_{0}\subset X(\Gamma_{k}, PSL_{2}(C))$

which contains the character of the holonomy representation (see [40, Theorem 8.44]).
The holonomy representation lifts to a representation $\rho:\Gamma_{k}arrow SL(2)$ (not unique) since
$H^{2}(\Gamma_{k};\mathbb{Z}/2\mathbb{Z})=0$ . By composing any lift with the rational, irreducible, $r$ -dimensional
representation $Sym^{r-1}:SI_{I}(2)arrow SL(r\rangle$ we obtain an irreducible representation $\rho_{r}:\Gamma_{k}arrow$

$SL(r\rangle$ . It follows from work of Menal-Ferrer and Porti [48] that $\chi_{\rho_{r}}\in X_{r}(\Gamma_{k}\rangle$ is a
scheme smooth point contained in a unique $(r-1)$ -dimensional component of $X_{r}(\Gamma_{k})$ .
We will call such a component a distinguished component of $X_{r}(\Gamma_{k})$ . For odd $r$ , as
$Syxn^{r-1}:SL(2)arrow SL(r)$ factors through PSL(2), there is a unique distinguished compo-
nent in $x_{r}(r)$ up to complex conjugation.

5.2. Examples. The aim of this subsection is to describe the components of the $SL(3)-$

character varieties of the trefoil knot and the figure eight knot, see [37, 35].

5.2.1. Irreducible SL(3) -representations of the trefoil knot group. Let $kcS^{3}$ be the trefoil
knot and $r^{t}=I_{3_{1}}^{\urcorner}$ . We use the presentation

$\Gamma\cong\langle x,y|x^{2}=y^{3}\rangle.$

The center of $\Gamma$ is the cyclic group generated by $z=x^{2}=y^{3}$ . The abelianization map
$\varphi:\Gammaarrow \mathbb{Z}$ satisfies $\varphi(x)=3,$ $\varphi(y\rangle=2, and a m\langle\}$ridian $of the$ trefoil $is$ given $\})ym=xy^{-1}.$

Let $\omega$ denote a primitive third root of unity, $\omega^{2}+\omega+1=0.$

For a given representation $\rho\in R_{3}(r)$ we put

$\rho(x)=A$ and $\rho(y)=B.$

If $\rho$ is irreducible then it follows from Schur’s Lemma that the matrix $A^{2}=\mathcal{B}^{3}\in$

$\{id_{3},\omega id_{3},\omega^{2}id_{3}\}$ is a central element of $SL(3\rangle.$

Lemma \’o.2. If $\rho:\Gammaarrow SL(3)$ is irreducible then $A^{2}=B^{3}=id_{3}.$

Proof. The matrix $A$ has an eigenvalue of multiplicity two, and hence $A$ has a two-
dimensional eigenspace. Therefore, $B$ has only one-dimensional eigenspaces, otherwise $\rho$

would not be irreducible. This implies that $B$ has three different eigenvalues: $\lambda,$ $\lambda\omega,$

$\lambda\omega^{2}$ where $\lambda^{3}\in\{1,\omega,\omega^{2}\}$ . We obtain $\det(\mathcal{B}\rangle=1=\lambda^{3}$ . Therefore $B^{3}=Id_{3}.$ $\square$

Lemma 5.2 implies that the matrices $A$ and $B$ are conjugate to

$A\sim(^{1}-1_{-1})$ and $B\sim(l \omega \omega^{2}).$

The corresponding eigenspaces are the plane $E_{A}(-1)$ , and the lines $E_{A}(1)$ , $E_{B}(1)$ ,
$E_{B}(\omega)$ , and $E_{B}(\omega^{2})$ .

Now, these eigenspaces determine the representation completely, as they determine the
matrices $A$ and $B$ , that have fixed eigenvalues. Of course we have $E_{A}(1)\cap E_{A}(-1)=0$

and $E_{B}(1)$ , $E_{B}(\omega)$ , and $E_{B}(\omega^{2})$ are also in general position. Since $p$ is $irreducible_{\}}$

the five eigcnspaces are in general position. For instance $E_{A}(1\rangle\cap(E_{B}(1)\oplus E_{B}(\omega\rangle)=0,$
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because otherwise $E_{B}(1)\oplus E_{B}(\omega)=E_{A}(1)\oplus(E_{A}(-1)\cap(E_{B}(1)\oplus E_{B}(\omega)))$ would be a
proper invariant subspace.

We now give a parametrization of the conjugacy classes of the irreducible represen-
tations. The invariant lines correspond to fixed points in the projective plane $\mathbb{P}^{2}$ , and
$E_{A}(-1)$ determines a projective line.

$\bullet$ The first normalization: the line $E_{A}(-1\rangle$ corresponds to the line at infinity:

$\mathbb{P}^{1}=E_{A}(-1)=\langle[0:1:0], [0:0:1]\rangle$

The four invariant lines $E_{A}(1)$ , $E_{B}(1)$ , $E_{B}(\omega)$ , and $E_{B}(\omega^{2})$ are points in the affine plane
$\mathbb{C}^{2}=\mathbb{P}^{2}\backslash \mathbb{P}^{1}$ . They are in general position.

$\bullet$ We fix the three fixed points of $B$ , corresponding to the following affine frame.

$E_{B}(1)=[1:0:0],$ $E_{B}(\omega)=[1:1:0]$ , and $E_{B}(\omega^{2})=[1:0:1].$

$\bullet$ The fourth point (the line $E_{A}(1)$ ) is a point in $\mathbb{C}^{2}$ which does not lie in the affine
lines spanned by any two of the fixed points of $B:E_{A}(1)=[2:s:t]$ where $s\neq 0,$

$t\neq 0$ , or $s+t\neq 2$

This gives rise to the subvariety $\{\rho_{8},t\in R(\Gamma, SL(3)\rangle|(\mathcal{S},t)\in C^{2}$ }, where

$\rho_{s,t}(x)=(\begin{array}{lll}1 0 0s -1 0t 0 -1\end{array})$ and $\rho_{s,t}(y)=(\begin{array}{lll}1 \omega-1 \omega^{2}-10 \omega 00 0 \omega^{2}\end{array}).$

We obtain the following lemma:

Lemma 5.3. Every irreducible representation $\rho:\Gamma_{3_{1}}arrow SL(3)$ is equivalent to exactly one
representation $\rho_{s,t}$ . Moreover, $\rho_{s,t}$ is reducible if and only if $(s,t)$ is contained in one of
the three affine lines given by $s=0,$ $t=0$ , and $s+t=2$ . If $(s,t)\in\{(0,0), (0,2), (2, O)\}$

is the intersection point of two of those lines then $\rho_{s,t}$ fixes a complete flag, and has the
character of a diagonal representation.

The following theorem follows from the above considerations (see [37, Theorem 9.10]
for more details). We let $R_{n}^{irr}(\Gamma)\subset R_{m}(\Gamma)$ denote the Zariski-open subset of irreducible
representation

Theorem 5.4. The $GIT$ quotient $X=\overline{R_{3}^{in}(\Gamma)}\parallel SL(3)$ of the trefoil knot group $\Gamma$ is
isomorphic to $\mathbb{C}^{2}$ . Moreover, the Zariski open subset $R$ ( $\Gamma$ ) is SL(3) -invariant and its

$\mathbb{C}^{2}GIT$

quotient is isomorphic to the complement of three affine lines in general position in

Remark 5.5. The same arguments as above apply to torus knots $T(p, 2)$ , $p$ odd, to
prove that the variety of irreducible $SL_{3}(\mathbb{C})$ -characters consist of $(p-1)(p-2)/2$ disjoint
components isomorphic to $\mathbb{C}^{2},$ $(p-1)/2$ components of characters of partial reducible
representations, and the component of characters of diagonal representations.

In general, the SL(3)-character variety for torus knots was studied by Munoz and
Porti [50]. In the general case $T(p,q)$ , $p,q>2$ there are -dimensional components in
$X_{3}(\Gamma_{T(p,q\rangle})$ corresponding to the configuration of 6 points in the projective plane.
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5.2.2. The $SL(3)$ -character variety of the figure eight knot. Let $\Gamma=\Gamma_{4_{1}}$ be the group of
the figure eight knot. The figure eight knot has genus one, and its complement fibres
over the circle [12]. Hence the commutator group of $\Gamma$ is a free group of rank two, and a
presentation is given by

$\Gamma\cong\langle t, a, b|tat^{-1}=ab, tbt^{-1}=bab\rangle.$

A peripheral system is given by $(m,l)=(t,$ $[a,b]\rangle$ . The amphicheirality of the figure eight
knot implies that its group has an automorphism $h:\Gammaarrow\Gamma$ which maps the peripheral

system $(m,P\rangle to (m^{-1},\ell)$ up to conjugation. Such an automorphism is explicitly given
by

$h(t)=ta^{-l}t^{-l}at^{-1}\sim t^{-1}, h(a)=a^{-l}tab^{-l}a^{-l}t^{-l}a\sim b^{-1}, h(b)=a^{-1}tat^{-l}a\sim a$

Notice that we obtain $h(m\rangle=ta^{-1}m^{-1}t^{-1}a$ and $h(l)=h([a,b])=a^{-1}ta[b^{-1},a]a^{-1}t^{-l}a.$

The relation $t^{-1}a^{-1}i=ba^{-2}$ gives that the peripheral system $(h(m), h\langle P)$ ) is conjugated
to $(m^{-1},\ell)$ as desired.

The structure of the SL(3)-character variety of the figure eight knot had been studied
in detail in [35], see also [22]. The character variety $X_{3}(\Gamma_{4_{1}})$ has 5 components:

$\bullet$ the component containing the characters of abelian representations;
$\bullet$ one component containing the characters of the representations $p_{\lambda}=\alpha\otimes\lambda^{\varphi}\oplus\lambda^{-2\varphi}$

where $\alpha\in R_{2}(\Gamma_{4_{1}}\rangle$ is irreducible (compare Equation 5 with $\beta$ trivial);
$\bullet$ $thl\cdot ee$ components $V_{0},$ $V_{1}$ and $V_{2}$ containing characters of irreducible representa-
tions. The component $V_{0}$ is the distinguished component (see Section 5.1). The
two other components which come from a surjection $\Gamma_{4_{1}}arrow\nu D\langle 3$ , 3, $4\rangle$ onto a tri-
angle group.

Let us describe the components $V_{1}$ and $V_{2}$ without going too much into the technical
details. An epimorphism $\phi:\Gammaarrow D(3,3,4\rangle=\langle k,l|l^{3}, k^{3}, (kl)^{4}\rangle$ is given by

$\phi(a)=k^{-1}l^{-l}kl,$ $\phi(b\rangle=kl$ and $\phi(t\rangle=ktk.$

It satisfies $\phi(b)^{4}=1$ and $\phi(m^{3}\ell)=1$ . Notice that the surjection $\phi$ induces an injection

$\phi^{*}:X_{3}(D(3,3,4))t*X_{3}(\Gamma)$ .

Remark 5.6. The surjection $\phi:\Gammaarrow*D(3,3,4)$ is related to an exceptional Dehn filling
on the figure-eight knot $K$ (see [30]). In particular, the Dehn filling manifold $K(\pm 3)$ is a
small Seifert fibered manifold, and $K(\pm 3)$ fibers over $S^{2}(3,3,4)$ . The orbifold fundamen-
tal group $\pi_{1}^{\mathcal{O}}(S^{2}(3,3,4\rangle)$ is isomorphic to the von Dyck group $\pi_{1}^{\mathcal{O}}(S^{2}(3,3,4))\cong D(3,3,4)$ .
Hence the surjection $rarrow\pi_{1}(K(\pm 3\rangle)arrow\pi_{1}\langle K(\pm 3)\rangle/$center $\cong D(3,3,4)$ is Jzatural.

The center of $\pi_{1}(K(\pm 3)\rangle$ is generated by a regular fibre. Any irreducible representation
of $\pi_{1}(K(\pm 3)\ranglearrow SL(3)$ maps the fibre to the center of SL(3). By using the description of
$X_{3}$ ( $F_{2}\rangle$ given by Lawton [46]) it quite elementary to determine $X_{3}(D(3,3,4)\rangle$ explicitly.
The proof of the next lemma can be found in [35, Lemma 10.1]:

Lemma 5.7. The variety $\overline{X^{\dot{n}rr}(D(3,3,4),SL(3,\mathbb{C}))}$ has a component $\mathcal{W}$ of dimension 2
and three isolated points. The variety $\mathcal{W}$ is tsomorp $hic$ to the hypersurface in $\mathbb{C}^{3}$ given

by the equation
$\zeta^{2}-(v\overline{\nu}-2)\zeta+\nu^{3}+\overline{v}^{3}-5\nu\overline{\nu}+5=0.$

Here, the parameters are $\nu=\chi(k^{-1}l)$ , $\overline{\nu}=\chi(kt^{-1})$ and $\zeta=\chi([k,l])$ . For every $\chi\in \mathcal{W},$

$\chi(k^{\pm 1})=\chi(l^{\pm 1})=0$ and $\chi((kt)^{\pm 1})=1,$
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Moreover, all characters in $\mathcal{W}$ are characters of irreducible representations except for
the three points $(v,\overline{\nu},\zeta)=(2,2,1)$ , $(2w,2\varpi^{2},1)$ , $(2\varpi^{2},2\varpi, 1)$ , $\varpi=e^{2\pi i/3}.$

Now, the components $V_{1}$ and $V_{2}$ are given by

$V_{1}=\phi^{*}(\mathcal{W})\subseteq X_{3}(\Gamma_{4_{1}})$ and $V_{2}=(\phi\circ h)^{*}(\mathcal{W})$ .

The components $V_{1}$ and $V_{2}$ are swapped by $h^{*}:X_{3}(\Gamma_{4_{1}})arrow X_{3}(\Gamma_{4_{1}})$ , and $V_{0}$ is preserved.
Further details in the proof of Lemma 5.7 allow to describe those three isolated points.

Composing with $\phi^{*}$ , they correspond to the three characters of irreducible metabelian
representations in $X_{3}(\Gamma_{4_{1}})$ that do not lie in $V_{2}$ . Altogether, there are five characters
of irreducible metabelian representations (see [8]). All these metabelian characters are
scheme smooth (see [9]). The character corresponding to a point of $V_{0}$ comes from a
surjection $\Gamma_{4_{1}}arrow A_{4}$ composed with the irreducible representation $A_{4}arrow SL(3)$ .

Proposition 5.8. The components $V_{1}$ and $V_{2}$ are characters of representations which
factor through the $su7$jections $\Gamma-*\pi_{1}(K(\pm 3))$ respectively. These components are iso-
morphic to the hypersurface

$\zeta^{2}-(\nu\overline{\nu}-2)\zeta+\nu^{3}+\overline{\nu}^{3}-5\nu\overline{\nu}+5=0.$

Here, the parameters are

$\nu=\{\begin{array}{ll}\chi(t) for V_{2},\chi(t^{-1}) for V_{1},\end{array}$ $\overline{\nu}=\{\begin{array}{ll}\chi(t^{-1}) for V_{2_{2}}\chi(t) for V_{1},\end{array}$ $\zeta=\{\begin{array}{ll}\chi(a) for V_{2},\chi(b^{-1}) for V_{1}.\end{array}$

All characters are irreducible except for the three points $(\nu,\overline{\nu}, \zeta)$

$(2, 2, 1)$ , $(2\varpi,2\varpi^{2},1)$ , $(2\varpi^{2},2\varpi, 1)$ , with $\varpi=e^{2\pi i/3}$ , that correspond to the inter-
section $V_{1}\cap V_{2}=V_{0}\cap V_{1}\cap V_{2}.$
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