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ADDENDUM TO “COMMENSURABILITY BETWEEN
ONCE-PUNCTURED TORUS GROUPS AND ONCE-PUNCTURED
KLEIN BOTTLE GROUPS”

MIKIO FUROKAWA

1. INTRODUCTION

The main purpose of this addendum to [4] is to present a proof to [4, Proposition
3.7] which gives a classification of elliptic generator triples of the fundamental group of
the quotient orbifold of the once-punctured Klein bottle (see Definition 2.1 and Proposi-
tion 2.2). We also prove the “converse” of [4, Theorem 5.1], namely, we give a condition
for a faithful type-preserving PSL(2, C)-representation of the fundamental group of the
once-punctured torus to be “commensurable” with that of the once-punctured Klein bot-
tle by using Proposition 3.7 and Theorem 5.1 in the original paper (see Definitions 3.1, 3.2
and Theorem 3.13).

The rest of this paper is organized as follows. In Section 2, we give a proof to [4, Propo-
sition 3.7] (see Proposition 2.2). In Section 3, we prove the “converse” of [4, Theorem 5.1]
(see Theorem 3.13).

2. CLASSIFICATION OF ELLIPTIC GENERATOR TRIPLES

In this section, we give a proof to [4, Proposition 3.7). To this end, we first introduce
some notations and recall the definition of elliptic generators.

Let N, ; be the once-punctured Klein bottle and let ¢y, , : Noy — Nz, be the involution
illustrated in Figure 1. Then we denote the quotient orbifold Ny1/en,, by On,, and
denote the covering projection from Ny; to On,, by pw,,. We identify 7 (Nz;) with
the image of the inclusion 71(Na,) — m1(Op,,) induced by the projection py,,. Then
m1(Na,1) is regarded as a normal subgroup of 71(Ou,, ) of index 2,

Wl(NZ,l) = <Y'1,Yv2 I ""> <'7'1-1((,)1\&,1) = (QO? Qla Q2 ‘ Q(z) - Q? = Qg = 1>>

such that ¥ = Qo@; and Y3 = QoQs. Set Kn,, = (ViY2¥;'V2)™!, Ko = QY and
Ky = QlQZ, where AP = BAB~!. Then K N, is represented by the puncture of N1, and
K, and K, are represented by the reflector lines which generate the corner reflector of
order co. By the identification, we also obtain Ky, , = K2Kp.
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F1GURE 1. The involution ty,, of Na;
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Definition 2.1. An ordered triple (Qo, @1, Q2) of elements of m1 (O, , ) is called an elliptic
generator triple of m1(Op,, ) if its members generate m; (O, , ) and satisfy Q3 = Q} = Q3 =
1 and Q%1% = K,Ko. A member of an elliptic generator triple of m(Oy,,,) is called
an elliptic generator of m (O, , ).

Now we introduce Proposition 3.7 in the original paper.

Proposition 2.2. The elliptic generator triples of m,(On,,) are characterized as follows.
(1) For any elliptic generator triple (Qo, Q1,Q2) of m(Oh,,), the following hold:
(1.1) The triples in the following bi-infinite sequence are also elliptic generator triples
of 7(1(01\/211).

ceey (QUKDKzanKOKza Q2K0K2)7 (Q2K0a Q1K07 Q0K0)7 (QO» Ql, Q2),
(QQKZa Qley QOKZ)) (QOK2K07 Q1K2K0) Q2K2K0)7 s

To be precise, the following holds. Let {Q;} be the sequence of elements of my (O, ,)
obtained from (Qo, @1, Q2) by applying the following rule:

K K
Q7% = Q-j-1, Q;° = Q_jus.

Then the triple (Qak, Qak+1, @ak+2) 15 also an elliptic generator triple of m1(On,,)
for any k € Z.
(1.2) (@, Q1Q2Q°,Q0Q2) is also an elliptic generator triple of T1(On,,).

(2) Conversely, any elliptic generator triple of m1(On,,) is obtained from a given elliptic
generator triple of m(On,,) by successively applying the operations in (1).

To prove Proposition 2.2, we need to introduce some definitions and notations. By a
word in {Qo, @1, @2}, we mean a finite sequence Q;, @, - . . Qi, Where Q;, € {Qo, Q1, Q2}.
Here we call Q);, the k-th letter of the word. In particular, the first letter @Q;, of the word
is called the initial letter of the word and the last letter @;, of the word is called the
terminal letter of the word. The inverse of a word V = Q;,Q;, ... @i, in {Qo,Q1, @2}
is the word V! = Q;,Q;,_, ... Qi,- The word length of V is denoted by /(V). A word
V =QuyQi, ... Qs in {Qo, @1, Q2} is reduced if Q;, # Q;,,, forany k=1,... ,t— 1. Note
that any element in m,(Ol,, ) is uniquely represented by a reduced word. For two words
U,V in {Qo, @1,Q2}, by U = V we denote the visual equality of U and V, meaning that
fU = QilQiz <o 'Qiz and V = ijQj2 o 'qu (Qimsz € {Q()a QlaQ2})a then £ = u and
@i, = Qj, foreach k = 1,...,t. For example, two words QpQ1Q:1Q2 and QuQ, are not
visually equal, though QoQ:1Q1Q2 and QQ: are equal as elements of 71 (O, ,).

Proof of Proposition 2.2. The author got the idea of the proof from the proof of [2, Propo-
sition 10.7] and [1, Lemma 2.1.7].

Since (1) can be proved by direct calculation, we give a proof of (2). For a given elliptic
generator triple (Qo, Q1,Q2), set Ko = Q1Q° and K, = Q?z, and let 7 and o be the
automorphism of 7, (O) defined by

(T(QO)’T(QI)?T(Q2)) = (Q§{2> Q{<27 éﬁ 3
(U(QO)va(Ql)va(Qz)) = (Q2aQ1Q2QO> (?2)

Then 7 and o preserve Ky,, and hence they map elliptic generator triples to elliptic
generator triples. Moreover, the operations in (1.1) is given by 7", and the operation in
(1.2) is given by . Hence we have only to show the following lemma.



Lemma 2.3. The group of automorphisms of m1(On,,) preserving Ky, , is generated by
oandT.

To prove this lemma, we prepare two claims.

Claim 2.4. Let f be an automorphism of m(On,,,) which preserves Ky, . Then for each
j=0,2, we have

K'ﬂ-
f(KJ) — KJ, N2,1
Proof of Claim £.4. We first note that (O, ) is regarded as a subgroup of Isom™ (H?).
Then (Ko, K3) is regarded as the stabilizer of co and Kp,, = KKy is regarded as a
parabolic transformation K,,(2) = z 4+ 2. On the other hand, since f(K3)f(Ko) =
K,;Ky = Kn,,, we see that

FEo) K, (F(Ko)) ™ = f(Ko) f(K2) f(Ko)(f(Ko) ™ = f(Ko)f(K2) = KR, .
This implies that f(Ko)Kn,, (f(Ko)) ™! is parabolic and that Fix(f(Ko)Kn,,(f(Ko))™) =
{co}, where Fix(A) denotes the fixed point set of A in 9H? = CU {oo}. By Fix(K Na1) =
{OO} and Fix(f(KO)KNz,l(f(KO))‘l) - f(KO)(FD((KN%i,l))v we have f(KU)(OO) = 0.

K
Hence f(K,) € (Ko, K2) and therefore f(Kg) = Kj,N”l for some n € Z and some
7' € {0,2}. By a similar argument, we obtain the desired result for f(X>). O

Claim 2.5. Let f be an automorphism of m(Op,,) such that f(K;) = K; for each
j = 0,2. Suppose that f(Qs) = W,Q:W;! for each s = 0,1,2, where W, is a reduced
word in {Qo, @1, Qa2} whose terminal letter is different from Q,. Then the following hold.
(1) If W, is a trivial word, then W; is also a trivial word for each j =0,2.
(2) If Wy is a non-trivial word, then one of the following holds for each j =0, 2.
(i) Wi Q; = VVijWj’l. In particular, the initial letter of Wi is Q.
(il) Wi = W;Q;W;'Q;. In particular, the terminal letter of W1 is Q.
(iii) W1Q; = W}QjW’j“l. In particular, the terminal letter of Wy is different from

je

for some n € Z and some j' € {0,2}.

Proof of Claim 2.5. For each j = 0,2, we have the following identity:
QiQ; = K; = f(K;) = f(QiQ1Q;) = W,Q;W; - Wi@uW ™ W,Q; Wi

This implies that @ - I/VijWj“1 - W, commutes with @Q;. Since 71(Ops,,) is isomorphic
to the free product of three cyclic groups (@;) of order 2, we have
(Eql) Q- W;Q;W; - Wy =Qor 1.

To show the assertion (1), we assume that W is a trivial word. Then, by the identity
(Eql), we have Q; - WijW/fl = (, or 1 . By the abelianization of this identity, we have
Q; - W;Q;W; ' = 1. This implies that W; commutes with @, and hence W; = Q; or 1.
Since the terminal letter of W; is different from @Q;, we have W; = 1. So we obtain the
desired result.

Next, we show the assertion (2). If either Wy or W is a trivial word, then the identity
(Eql) implies that W, = @ or 1. This is a contradiction. Hence W; is also a non-trivial
word for any j =0,2.

Suppose first that Q; - W; is a reduced word. Then Q); - W;Q;W; ! is also a reduced
word. Hence the identity (Eql) implies that the word Q; - %Qjo’i, except possibly for
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the first letter Q;, is cancelled out by the word Wy, and therefore one of the following
holds.

o Wi =W, Qj —1QJQ1,
o W, =W; Q]W“ and Q; = G,
o W =W, Q j IQJ
However, the first 1dent1ty can not hold because the terminal letter of W; is different from

@1 by the assumption, and second identity can not hold because j = 0, 2. Hence the third
identity holds. So we obtain the identity in the condition (ii)

Suppose next that Q; - W; is not a reduced word, i.e., = @; - V; for some reduced
word Vj. Then, by the identity (Eql), we have
(qu) VjQ]’Wj'—l . W1 = Ql or 1.

Since V;-Qjo~1 is a reduced word, it must be cancelled out by W;, except possibly for
the initial letter of V}, and therefore one of the following hold.

e Wi =W, QJ 1Q17

o Wi =W,Q; V" and V; = @, V] for some reduced word V]

® W1 W; QJV—
The first identity can not hold by the fact that the terminal letter of W is different from
Q1. If the second identity or the third identity holds, then the condition (i) or (iii) holds
accordingly. O

We now begin to prove Lemma 2.3 by using the above claims.
Let f be an automorphism of m1(Oy,,) preserving Ky, ,.
Step 1. For each j = 0, 2, we show that we may assume f(K;) = K i by post composing

a power of 7 to f if necessary. By Claim 2.4, we have f(Kj) = P R for some n € Z

and for some j' € {0,2}. Since 72 is an mner-automorphlsm by KNz ., We may assume

f(Ko) = Ky by post composing a power of 72 to f if necessary. By the assumption
(Kg)f(Kg) f(Kn,,) = Kn,,, we have f(K2) = Kn,, f(Ko) = KoKof(Ko). Hence

Ky, if7 =0,

Since T maps (K, K3) to (KX°, K;), we may assume f(K;) = Kj for each j = 0,2 by
post composing 7 to f if necessary.

Step 2. For each s = 0,1, 2, we show that we may assume f(Q,) = W, sQsW,1 by post
composing o to f if necessary. Since f(Q,) has order 2 and since 71(Op,,,) is isomorphic
to the free product of three cyclic groups (Q,) of order 2, we have f(Q,) = V, “Qo(s)V, ! for

some 6(s) € {0,1,2}, where V, is a reduced word whose terminal letter is different from
Qo(s)- By the abehamzatlon of the identity

Q@2 = Kz = f(K2) = f(Q21Q2) = f(Q2) f(Q1) f(Q2),
we have 6(1) = 1. By Stepl, we have the following identities:

QoQ1Qo = Ko = f(Ko) = f(Qo)f(@1)f(Qo),
Q:Q:1Q2 = K, = f(Kz) = f(Qz)f(Qﬂf(Qz)'



By these identities, we have the following identity:

Q1 Q2f(Q2) f(Q0)Qo = Q2£(Q2) f(Qo)Qo - Q1.

This implies that Q2f(Q2)f(Q0)Q0 = Q2V2Qex)Vs VoReo)Vs 'Qo commutes with Q1.
As in the proof of Claim 2.5, we see that

QZVQQB(Z)VQ"H/E)QO(O)%”lQO =1or Q.

Since the word length of the left hand side of the above identity is even, we have
Q2V2Qp2) Vo V()QG(O)VE) 10y = 1. By the abelianization of this identity, we have

R2Q2)Qo0)Qo = 1.

This implies that 6(0),8(2) € {0,2} and 6(0) # 6(2). Hence f must be a permutation
on the set {0,1,2} such that (1) = 1. Since o preserves Ky and K3 and since o maps
(Qo, @1, Q2) to (Qg,Q?’QD,QOQ), we may assume § = id by post composing o to f if
necessary. Hence f(Q,) = W,Q,W,! for each s = 0,1,2, where W is a reduced word
whose terminal letter is different from Q.

Step 3. We show that f = (¢)"*!. If Wi is a trivial word, Wj is a trivial word for
any j = 0,2 by Claim 2.5, and therefore f = id. So we assume that W) is a non-trivial
word. Since the terminal letter of W, is different from @y, we assume that the terminal
letter of Wy is Qq. (The other case is treated by a parallel argument.) Then the condition
(2)-(1) or (2)-(ii) in Claim 2.5 holds for j = 0, and the condition (2)-(i) or (2)-(iii) in
Claim 2.5 holds for 5 = 2. Note that the number of @; contained W; is odd or even
according to whether the condition (2)-(i) in Claim 2.5 holds or not. If the number of Q1
contained W, is odd, then the condition (2)-(i) in Claim 2.5 holds for each j = 0,2. In
particular, the initial letter of W is Qo and @2, a contradiction. Hence the number of Q4
contained W, is even. Then the condition (2)-(ii) in Claim 2.5 holds for j = 0, and the
condition (2)-(iii) m Claim 2.5 holds for j = 2, namely, we have W; = WOQOWO 1Qo and
W1Q2 W2Q2W2 Thus we see WQQQWO QOQ2 Wle W2Q2W2 This 1mphes
that i-th letter of WOQOWO 1Q0Q: is equal to (I — 4 + 1)-th letter of WoQoW; ' QoQe,
where | = [(WoQoW;'QoQ2). Hence Wy = (Q2Q0)" Q- for some n € N, and therefore
W1 = (Q2Q0)*™*Y) and W, = (Q2Q0)™"". Thus we see

F(@0) = Q9™ £(@1) = Q1T and £(Qa) = Q5%

On the other hand, (02(Qo),02(Q1), 0%(Q2)) = (QF2%, Q%% Q#%). Thus we have
f = (o?)"*1. Hence we obtain the desired result. O

)n+1

Remark 2.6. It should be noted that the proof of Proposition 2.2 does not use the
condition that (f(Qo), f(Q1), f(Q2)) generates m1(On,,). Hence, in Definition 2.1, the
condition that members of the triple generate m1(Op,,) is actually a consequence of the
other conditions (cf. [4, Remark 3.6]).

Definition 2.7. For an elliptic generator triple (Qo, Q1, Q2) of (O, ), the bi-infinite se-
quence {Q;} in Proposition 2.2(1.1) is called the sequence of elliptic generators of 71 (O, )

(associated with (Qo, @1, @2))-

In preparation for the next section, we recall the definition of elliptic generators of the
fundamental group of the quotient orbifold of the once- punctured torus.

Let X1 be the once-punctured torus and let ¢s,, @ X113 — %11 be the involution
illustrated in Figure 2. Then we denote the quotient orblfold 11/t by Os,, and
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denote the covering projection from X, to O, , by px, ,. We identify m;(2;,;) with the
image of the inclusion 71 (Z1,1) = m(Ox, , ) induced by the projection ps, ,. Then m(Z;,)
is regarded as a normal subgroup of m;(Og, ;) of index 2,

7r1(21,1) = (X1, X2 | -) <l71'1(021,1) = (P, P, P» i P()2 = P12 = PZ2 =1),
such that Xl = P2Pl and X2 = PoPl. Set Kgl'l = [Xl,XQ] = X]_XQX{IX;I, K =

(PoPyP,)t. Then Ky, , and K are represented by the punctures of ¥;; and Os, ,,
respectively.

O
Y11 1,1 K
.KE> PR R
‘; P G
X2 Py Py

FIGURE 2. The involution ts,, of X1

Definition 2.8. An ordered triple (P, P;, P;) of elements of m1(Ox, ,) is called an elliptic
generator triple of m (Ox, , ) if its members generate 1 (Ox, , ) and satisfy P? = P? = P? =
1 and (FyPyP;)™' = K. A member of an elliptic generator triple of 71(Ox, ,) is called an
elliptic generator of my(Oy, ,).

Definition 2.9. For an elliptic generator triple (Py, Py, P) of m(Os,, ), let {P;} be the
bi-infinite sequence defined as follows (see [1, Proposition 2.1.6(1.1)] and [4, Proposition
3.3(1.1)]).

K-2 K-1 K1 K1 K K K K?
'°7P2 1P0 ,Pl ’PZ 7P0)P1)P2,P0 9P1 7P2 aPO PR

We call the sequence {P;} the sequence of elliptic generators of m, (Og,,) (associated with
(Ro, P, P)).

3. COMMENSURABILITY

In this section, we prove the “converse” of [4, Theorem 5.1], namely, we give a condition
for a faithful type-preserving PSL(2, C)-representation of 7;(£1,1) to be commensurable
with that of 7;(/Vg;). We first introduce some notations and facts.

Let X1, O, ;, Oa and Og be the twice-punctured torus, the (2, 2,2, 00)-orbifold (i.e.,
the orbifold with underlying space a punctured sphere and with four cone points of cone
angle ), the (2;2, oo]-orbifold (i.e., the orbifold with underlying space a disk and with a
cone point of cone angle 7 and with a corner reflector of order 2 and a corner reflector of
order 0o) and the [2, 2,2, oo]-orbifold (i.e., the orbifold with underlying space a disk and
with three corner reflectors of order 2 and a corner reflector of order o), respectively.
Note that Oy, , is a quotient orbifold of Y1,2 by an involution and that both O, and
Op are common quotient orbifolds of O, , and Oy, , by involutions (see [4, Section2] for



details). Their (orbifold) fundamental groups have the following presentations:
11(12) = (21,24, Z3 | —),
m1(Os,,) = (Ro, Ry, Re, Rs | Ry = R = R3 = R} = 1),
1(Oa) = (S0, 51,52 | S5 = 87 = 85 =1,(515,)* = 1),

_ =T =T =T =1,
m1(Op) = <T0’T1>B’T3 | () = (ML) = (Lh)Y: =1 /"

Here the generators satisfy the following conditions:
Zy = RoRy, Zy = RyRy, Z3 = R\ Rs, Ky, , = Kogm’ Klzm = (Kc;;w)&
Py=S5% Py =58, P,=25,
Qo =552 Q1 =251, Q2= 5,
Py =Ty, A =T1T5, P, =115,
Qo=TT, =T, Q@ =TT,

where Ky, , = 212,73, Ky, , = Z3Z1Z3 and Koy, , = RoRi1 Ry Rs, which are represented
by the punctures of ¥;, and Og, , (see Figure 3).

In summary, we have the commutative diagram of double coverings as shown in Figure 3.
Every arrow represents a double covering (see [4, Section2] for details).

b

FI1GURE 3

Definition 3.1. (1) For F = 11, Moy 12, Os,,, Onyy, Osy s O or Op, a repre-
sentation p : m(F) — PSL(2,C) is type-preserving if it is irreducible (equivalently, it
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does not have a common fixed point in H?®) and sends peripheral elements to parabolic
transformations.

(2) Type-preserving PSL(2, C)-representations p and p' are eguivalent if 50 p = p/,
where i, is the inner automorphism, i4(h) = ghg™!, of PSL(2,C) determined by g.

In the above definition, if F is an orbifold with reflector lines, an element of m;(F) is
said to be peripheral if it is (the image of) a peripheral element of 7 (F'), where F is the
orientation double covering of F'.

Definition 3.2. Let p; and ps be type-preserving PSL(2, C)-representations of m;(X; 1)
(resp. m(Ox,,)) and 71(Na;) (resp. m1(On,,)), respectively. The representations p; and
p2 are commensurable if there exist a double covering p; from ¥y (resp. Oy, ,) to L1
(resp. Ox, ,) and a double covering p; from %, 5 (resp. Og,,) to Ny (resp. O, ,) such
that p; o (p;). and p o (p2). are equivalent, namely p; o (p1). = ig 0 pg 0 (p2). for some
g € PSL(2,C). After replacing p, with iy o p,, without changing the equivalence class,
the last identity can be replaced with the identity p; o (p1)« = p2 0 (D2)«.

In this paper, we study the following problem which is a “converse” of [4, Problem 2.3].

Problem 3.3. For a given type-preserving PSL(2, C)-representation p; of m1(2 1) (resp.
71(Ox, ,)), when does there exist a type-preserving PSL(2, C)-representation p, of m1(Na 1)
(resp. m(On,,)) which is commensurable with p,?

To answer this problem, we recall the definitions of complex probabilities of type-
preserving representations of m1(Os, ,) and m1(On, ) (see [1, Section 2] and [4, Section 4]
for details).

The following fact is well-known (cf. [5, Section 5.4] and [1, Proposition 2.2.2]).

Proposition 3.4. For F =X, or Ny, the following hold.
(1) The restriction of any type-preserving PSL(2,C)- representation of m(Of) to
m(F) is type-preserving.
(2) Conversely, every type-preserving PSL(2, C)-representation of m(F) extends to a
unique type-preserving PSL(2, C)-representation of m1(OF).

By this proposition, the following are well-defined.

Definition 3.5. (1) For F' = Xy, or Og, ,, the symbol £2(2; ;) denotes the space of all
type-preserving PSL(2, C)-representations p; of my (F).

(2) For F = Ny, or Oy,,, the symbol Q(Ny1) (resp. €¥'(N,:1)) denotes the space of
all type-preserving PSL(2, C)-representations p, of m(F') such that tr(ps(Kn,,)) = —2
(resp. tr(p2(Kn,,)) = +2).

Remark 3.6. For any p, € §'(Va;), the isometries p2(QoQ2) = p2(Y2) and pa( KN, , ) have
a common fixed point (see [3, Lemma 4.5(ii)]), and hence p. is indiscrete or non-faithful
(see [3, Lemma 4.7]).

Definition 3.7. (1) Let p; be an element of 2(2;;). Fix a sequence of elliptic generators
{P;} of m1(Oxg, ,). Set

(21, T12, T2) = (tr(p1(X1)), tr(p1(X1X2)), tr(p1(X2))),

where X; = P,P; and X3 = PyP,. Suppose that z1z12z2 # 0. Then we call the following
triple (ao, a1,az) € (C*)® the complez probability associated with {p:(P;)}, where C* =



C - {0}
Ty L12 T2
ay = y A1 = 2 = .
T19T2 ToZq T1T12
(2) Let pz be an element of Q(Ns;). Fix a sequence of elliptic generators {Q;} of

71(On,, ). Set

(1, 12, 92) = (tr(p2(Y1)) /4, tr(p2(Y1Y2)) /3, tr(p2(Y2))),

where Y; = QoQ; and Y, = QoQa. Set ¢}, = tr(p2(Y1Y5 1)) /i = y192 — y12- Suppose that
1YY}, # 0. Then we call the following triple (bg, b1,bs) € (C*)® the complez probability
associated with {p2(Q;)}.

) 4 _ Y

7 3

1 = ] 2 — .
Y2Y12 Y1921 Y1y

Remark 3.8. (1) For any sequence of elliptic generators {P;} of m1(Ox, ) and any p; €
2(%4,1), the complex probability (ao, a1, a2) associated with {p;(P;)} satisfies the following
identity (see [1, Lemma 2.4.1(1)] for details):

ap+ a1+ ag = 1.

bo‘f‘b;“l“bg = 1, where b() =

(2) For any sequence of elliptic generators {Qx} of 71(Ow,,) and any p2 € Q(Ny1), the
complex probability (bo, b1, bs) associated with {p2(Q;)} satisfies the following identity
(see [4, Section 4] for details):

bo+ by + b= 1.

We introduce the following proposition (cf. [1, Proposition 2.4.4] and [4, Propositions
4.8 and 4.11]).

Proposition 3.9. (1) For any triple (ag,a1,a2) € (C*)? such that ap+ a1 + a2 = 1 and
for any sequence of elliptic generators {P;} of n1(Os, ), there is an element p; € (X1 )
such that the complex probability associated with {p1(P;)} is equal to (ag,a1,as).

(2) For any triple (bo,b1,b2) € (C*)3 such that by + by + by = 1 and for any sequence
of elliptic generators {Q;} of m(On,,), there is an element py € Q(Ny1) such that the
complex probability associated with {p2(Q;)} is equal to (bo, b1, b2).

Notation 3.10. (1) Let p; be an element of Q(£;1) and let {P;} be a sequence of elliptic
generators of 71(Og, ). Let & be the automorphism of 7;(Os, ,) given by the following
(cf. [1, Proposition 2.1.6] and [4, Proposition 3.3]):

(E(Po), 6(P),€(P2) = (P, Pr, ).
If the complex probability associated with {p1(£*(P;))} is well-defined, then we denote it

k k k
by (a0, a{).

(2) Let po be an element of Q(Ny1) and let {Q;} be a sequence of elliptic generators of
11(On,, ). Let o be the automorphism of m(Oy, , ) given by Proposition 2.2(1.2), namely,

(0(Q0), 7(Q1), 0(Q2)) = (@2, @, Q5").
If the complex probability associated with {p2(c*(Q;))} is well-defined, then we denote
it by (5,5, b)),

The following lemma can be verified by simple calculation (cf. [1, Lemma 2.4.1] and
[4, Lemmas 4.10 and 4.13]).
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Lemma 3.11. (1) Let p; be an element of (X1,1) and let {P;} be a sequence of elliptic
generators of m(Ox,,). Suppose that the complex probability (a(()k),agk),agk)) associated
with {p1(€*(P;))} is well-defined for any k € Z. Then we have the following identities (cf.

Figure 4):

(k) (k) (k) (k)
(k1) _ 1 _ o0 kD) a, ay (k+1) __ G2 'Gg
ap =1l=a" 4 - Ky “2 - Ok
]. - a:2 1 - a2
k) (k k) (k
-y _ 0780 e _ @000t geny _ 1 oW
120 - (k) a, - ()’ 2 - ap -
1 - ao 1 - aO

(2) Let po be an element of QU(Na1) and let {Q;} be a sequence of elliptic genera-
tors of m(On,,). Suppose that the complex probability (b(()k),bgk),bgk)) associated with
{p2(c*(Q;))} is well-defined for any k € Z. Then we have the following identities (cf.
Figure 5):

pe) k) (k) 1, (k)
b((,k+1) =1— bgk), bgk+1) = 21 Y% b(k+1) —_ b2 bO

e .
k), (k k) (k
PR S
k)’ k)’ :
1- 5" 1- b
agk—n oD

agk—l) a(()k

FIGURE 5. Adjacent complex probabilities of p; € Q(Ny;)

Throughout this paper, we employ the following convention.

Convention 3.12. (1) For any element p; € 2(Zy,), after taking conjugate of p; by
some element of PSL(2, C), we always assume that p; is normalized so that the following

identity is satisfied.
11
pi(K) = (0 1) :



(2) For any element p, € Q(N21), after taking conjugate of py by some element of
PSL(2,C), we always assume that ps is normalized so that the following identities are

satisfied.
- Y
pa(Kop) = ((Z) ——z’) , p2(Ko) = (é __;) .

Now we give a partial answer to Problem 3.3. By [4, Lemma 4.15], we may only con-
sider the problem for the quotient orbifolds. Our partial answer to the commensurability
problem for representations of the fundamental groups of the orbifolds Os, , and Oy, , is
given as follows.

Theorem 3.13. Under Convention 3.12, the following hold:
(1) Let py be an element of Xy1). Suppose that py is faithful. Then the following
conditions are equivalent.
(¢) There exists a faithful representation ps € Q(Ny1) which is commensurable with
p1-
(i) There exist a sequence of elliptic generators {P;} of m1(Ox,,) and an integer ko
such that the complex probability (ag, a1, as) associated with {p1(P;)} satisfies the
following identity under Notation 8.10(1) (cf. Figure 6):

(a(kg) ko) (kO))z(ag,ahao)'

(ii1) There exists a sequence of elliptic generators {P;} of m(Ox,,) such that the com-
plex probability (ag, ay,as) associated with {p2(P;)} satisfies one of the following
tdentities:

(@) (a,a",al”) = (az,a1,a0),
(8) (a”, 01", af") = (a2, 01, 00).
(2) If the conditions in (1) hold, the representation p, is unique up to precomposition
by an automorphism of 7 (O, ,) preserving Ky, , .

(3) Moreover, the following hold:

(a) p1 extends to a type-preserving PSL(2, C)-representation of m1(O,) if and only if
p1 satisfies the condition (iii)-(a). Moreover, if these conditions are satisfied, the
eztension s unique.

(B) p1 extends to a type-preserving PSL(2, C)-representation of m1(Og) if and only if
p1 satisfies the condition (iii)-(8). Moreover, if these conditions are satisfied, the
extension s unique.

FIGURE 6. (G;gko), agk"), ngcO)) = (0,2, ai, a’O)
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Proof. We only show the implication (1)-(z) = (1)-(i7) and the assertion (2) because the
other assertions can be proved by an argument similar to [4, Theorem 5.1].

We first prove the implication (1)-(¢) = (1)-(¢7). Suppose that there exists a faithful
representation p; € Q(Np;) which is commensurable with p;. Then, by [4, Theorem
5.1(1)-(4¢)], there exist a sequence of elliptic generators {Q;} of 71(On,,) and an integer
ko such that the complex probability (bg,b1,bs) associated with {p2(Q;)} satisfies the
following identity under Notation 3.10(2):

(B, B, ) = (o, b, o).

By Proposition 3.9(1), there is an element p} € (X1 ) such that the complex probability
(ag, a1, a5) associated with {p}(P])} is equal to (bo, b1, b2) for some sequence of elliptic
generators {F;} of m(Oy, ,). Moreover, we can prove that p} and p, are commensurable
(see proof of the implication (1)-(i3) = (1)-(¢) in [4, Theorem 5.1] for details). Hence,
by [4, Theorem 5.1(2)], there is an automorphism f of m,(Os, ;) preserving K such that
pro f = pi. Set {P;} = {f(P])}. Then {F;} is also a sequence of elliptic generators
of m(Ox,,) and py(P;) = py(F}). Hence the complex probability (aq, a1, ;) associated
with {p1(P;)} is equal to (ay, a1, a3) = (bo, b1, b2). By Lemma 3.11, the complex proba-
bility (agc"), al®) a{¥)) associated with {p; (% (P;))} is equal to the complex probability
(8, b b)) associated with {p2(c*(Q;))}. Hence we have

(@8, alk) o)y = (5 5) p)) = (by, by, by) = (a2, a1, ag).

Next we prove the assertion (2). Let ps and p) be elements of (N, ;) such that they
are commensurable with p;. Then there exist double coverings p; : Og,, = Og,, and

po, Py ¢ Ox,, = On,, such that p; o (p1). = p2 o (p2)s and py o (p1)x = ph 0 (Ph)x-
Pick an elliptic generator triple (Qo, @1, @Q2) of m(On,,). Note that there is a unique
covering from Osg,, to Op,,; up to equivalence which corresponds to the epimorphism
¢2 : 1 (On,,,) = Z/2Z defined by the following formula (see [4, Section 2] for details):

0if j =0 or 2,
¢2(Qj):{ 1if;=1.

Hence there is a self-homeomorphism g of Oy, , such that p) = gop;, and Qo, Q2 €
(P2)«(m1(Ox,,))- Set @ = (pa)« © (p2)7(Qo) and Q5 = (p3)x o (p2);1(Q2)-

Claim 3.14. (Qp, @1, Q%) is also an elliptic generator triple of m1(On,,)-

Proof. Note that @ and @, have order 2, because

(1) (P2)s © (p2)i "+ (P2)x(m1(Ox, ) = (P2)s(m1(Ox, ,)) is an isomorphism and

(2) Qo and @, have order 2.
Since p1 0 (p1)s = p2 © (p2)s and p1 o (p1)s = p3 © (Ph)x, We have ps 0 (p2)s = pf 0 (Ph)..
Hence we have

p2(Qo) = p2 0 (p2).((p2);*(Qo))

= p 0 (p3).((p2)71(Qo)) by p2 0 (p2)s = py 0 (Ph)s
= ph(Qp) by @b = (p3)s © (p2),(Qo)-



Similarly, we have p2(Q2) = p5(Q%). Hence we have

QT Q) = pa(QF2QF) by p2(Qs) = p(Q) for j = 0,2

= p2(Kn, ) by QP Q" = Kn,,

= p5(Kn,,) by Convention 3.12.
Since p}, is faithful, we have qul’ Qg% = Kn,,. Thus, by Remark 2.6, the triple (@5, @1, Q)
is an elliptic generator triple of m;(Oys,, ). O

By this claim, there are elliptic generator triples (Qo,Q1,Q2) and (@}, Q1, Q%) of
11(On,, ) satisfying the following identity:

(p2(Qo), p2(Q1), p2(Q2)) = (p2{Q0), P2(Q1), P2(Q5))-
By Proposition 2.2(2), there is an automorphism f of m(Oy,,) preserving Ky,, such
that f maps (Qo, @1, Q2) to (Qf, @1, Q%). Hence we have py = pho f. O
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